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ABSTRACT 
In a previous paper  we introduced the condition-based ap- 
proach, consisting of identifying sets of input  vectors, called 
conditions, for which there exists an asynchronous protocol 
solving consensus despite the  occurrence of up to  f pro- 
cess crashes, and characterized this set of conditions, e~  k. 
Here, we investigate e~  k from the complexity perspective, 
and show tha t  this  class consists of a hierarchy of classes of 
conditions, ely d], where d, 0 _< d < f ,  is the  degree of the 
condition, each one strictly contained in the  previous one. 
The value f - d represents the  "di~cult9 ~' of the class e[yd]: 
we present a generic condition-based protocol tha t  can be 
instant ia ted with any C E ely d], and solve consensus with 
( 2 n +  1) rlog2(r( f - d)/2] + 1)] shared memory read/wr i te  
operations per process. For each d we present two natural  
conditions, C1 [a] and C2 [d], tha t  might be useful in practice, 
and we use them to show tha t  the class containments s ta t-  
ed above are strict.  Various properties of the hierarchy are 
also derived. Mainly, it  is shown tha t  a class can be char- 
acterized in two equivalent but  complementary ways: one 
is convenient for designing protocols while the  other is for 
analyzing the class properties. 
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1. INTRODUCTION 
The Consensus problem lies a t  the  heart  of many dis- 

t r ibuted  computing problems one has to solve when de- 
signing reliable applications on top of unreliable dis t r ibuted 
asynchronous systems. There is a large l i terature dedicated 
to s tudying theoretical  and  practical aspects of this prob- 
lem (e.g., [5, 21]), t ha t  can be informally s ta ted in terms 
of three requirements. Each process proposes a value, and 
has to decide on a value (termination) such tha t  there is a 
single decided value (agreement), and the decided value is 
a proposed value (validity). One of the most fundamental  
impossibility results in dis t r ibuted computing says tha t  this 
apparent ly  simple problem has actually no deterministic so- 
lution in an asynchronous system even if only one process 
may crash [15]. To circumvent this impossibility, known as 
FLP, two main approaches have been investigated. One of 
them consists of relaxing the requirements of the problem, 
by either allowing for probabilist ic solutions (e.g., [6]), or for 
approximate  solutions (f-agreement [14], or k-set agreemen- 
t [12]). Another  approach consists of enriching the system 
with synchrony assumptions until they allow the problem to 
be solved [13]. This  approach has been abst racted in the 
notion of unreliable failure detectors [11]. There have al- 
so been studies of hybr id  approaches, like combining failure 
detection with randomizat ion [2, 25], or more general ap- 
proar~hes for designing algorithms in situations where there 
is some information about  the  typical conditions tha t  are 
encountered when the respective problem is solved [7]. 

We have recently introduced a now condition-based ap- 
proach to tackle the  consensus problem [22]. This approach 
focuses on sets of input  vectors tha t  allow n processes to  
solve the  consensus problem despite up to f process crashes, 
in a s tandard  asynchronous model. Let an input vector be a 
size n vector, whose i - th entry contains the value proposed 
by a process pi. A condition (which involves the parame- 
ters f and  n) is a set of such vectors tha t  can be proposed 
under normal operat ing conditions. We are interested in 
f - faul t  tolerant  protocols tha t  (1) solve consensus at  least 
when such a condition holds, and (2) are always safe. Safe 
means tha t  the  protocol guarantees agreement and validity, 
whether the  proposed input  vector is allowed by the  condi- 
t ion or not. In addit ion,  we would like the  protocols to make 
the "best effort" to  te rminate  (for example, they should ter- 
minate in all failure-free executions). This is the  best  we can 
hope for, since the F L P  impossibility result says we cannot 
require tha t  a consensus protocol terminates always, for ev- 
ery input  vector. But,  by guaranteeing tha t  safety is never 
violated, the  hope is tha t  such a protocol should be useful 
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in applications. For example, consider the condition "more 
than a majority of the processes propose the same value." 
It is not hard to see that  consensus can be solved when the 
inputs satisfy this condition, when f = 1. It  is plausible 
to imagine an application that  in some real system satisfies 
this condition most of the time; only when something goes 
wrong, the processes proposals get evenly divided, and only 
then should the protocol take longer to terminate (or even 
not terminate). 

In [22], we characterized the conditions that  admit a con- 
sensus protocol with the above properties. That  is, we de- 
scribed a set of conditions, denoted here e~ k, and proved 
that  there is a consensus protocol for a condition C if and 
only if C E e~ k. We presented two equivalent combinatorial 
descriptions of the class e~ h, and described two natural con- 
ditions C1 and C2 in e~ h that  might be useful in practice, 
and proved them to be maximal (they cannot be extended). 
The class e~ 'k is quite rich, since it includes every condition 
for which there exists a condition-based consensus protocol. 
The protocol we have presented in [22] can be iustantiated 
for each particular condition C E e~ k. It  has the same step 
complexity, whatever the condition it is instantiated with, 
namely O(n log(f  + 1)) read/write shared memory opera- 
tions per process. 

Content o f  the paper. This paper continues our study of 
the condition-based approach, from the complexity perspec- 
tive. It  has four main contributions. 
1. Although a priori it could be that  all conditions of e~ '~ 
are equally difficult to  solve, it seems plausible that  some 
conditions of e~ k are more difficult to  solve than others. 
If  this is the case, there would be more efficient protocol- 
s, specially tailored for particular classes of conditions. In 
practice, one would be interested in identifying the simplest 
classes of conditions whose input vectors occur frequently, 
because such classes would perhaps have very efficient con- 
sensus protocols. In this paper we show tha t  this is indeed 
the case. For the first contribution we study the structure of 
the class e~ k, defining a hierarchy of classes of conditions, 
each one of some degree d (0 <_ d <_ f), 

e; 
where e[O]_ _ ~ k  and e [ll is the class of easiest conditions, 
also denoted e~ t. 
2. We present a condition-based consensus protocol that  
can be used for any condition of degree d, and shows that  
the value f - d upper bounds I the "di~cultff' of the class 
e [d]. More precisely, it is shown that  the number of collect 
operations that  are executed by our consensus protocol is 
related to d. l~ugh ly  speaking, for any condition C E ell d], 
the number of collect invocations of the wait-free, condition- 
dependent part of the protocol is proportional to l o g 2 ( f -  
d + 1). Hence, when we progress in the hierarchy from the 
largest class e~ k = e~  ] to the smallest class e} t = e [f] f ,  
there are more and more efficient consensus protocols, until 
one gets e~ t, which can be solved with essentially zero collect 
operations. 

The condition-based consensus protocol uses two param- 

1We recently discovered a more efficient protocol for f < 
n/2, with only linear complexity [24], showing that  our hi- 
erarchy is interesting only for f >_ n/2. 

eters P and S (as in [22]) that  depend directly on the condi- 
tion. The predicate P tells a process if it can decide based 
on its view of the input vector, and the function S tells it 
the value to decide. The protocol consists of three parts. 
The first part  allows a process to get an initial view of the 
input vector, namely, a vector with at least (n - f )  input 
values. The second part, based on an idea presented in [4], 
is wait-free, and executes a number of collect/write itera- 
tions that  depends on the degree d of the condition. During 
each iteration, a process tries to enrich its view of the input 
vector, in such a way that  the views finally obtained by the 
processes satisfy some containment properties. Among the 
final views, any two views that  (together) have more than 
( f  + d) undefined entries are ordered. Basically, this means 
that  the degree d of a condition defines the view coherence 
level needed for the processes to decide consistently. Finally, 
the last part of the protocol is where a process makes its best 
effort to terminate. The complexity of a condition is evalu- 
ated in terms of the number of steps of the walt-free part of 
the protocol. The other two parts of the protocol are inde- 
pendent of the condition; the first depends only on f ,  while 
the last does not depend on f but  may never terminate• 
3. For each degree d, two conditions, denoted U1 [d] and 

C2 [a], are presented. These provide examples of natural con- 
dit|ons that  might be useful in practice, and show that  the 
class containments stated above are strict. They general- 
ize the natural conditions Cll ,  C2f tha t  were introduced in 
[22], showing tha t  they are of the hardest, i e ,  in e [°] - e { f  1] 

• . f • 

4. Various structural properties of the hierarchy are stud- 
ied. Two equivalent characterizations of the classes e Ia] are 
described. The first, acceptability, is in terms of the prop- 
erties that  the parameters P and S have to satisfy for the 
above protocol to solve consensus for a condition C in e~ a].- 
The second, called legality, is in terms of a graph derived 
from C, d and f: among its vertices there are the input 
vectors, and among its edges, there is an edge connecting 
two input vectors when they differ in at most f + d entries• 
The acceptability characterization is useful for deriving con- 
sensus protocols, while the legality characterization is more 
adequate to s tudy noteworthy properties of the hierarchy of 
conditions. We have the following applications of the char- 
acterizations. (1) It  is decidable in polynomial time if a 
condition C belongs to a class eta]. (2) If  f is too large, 
then every condition of degree d is trivial (i.e., a single value 
can be decided); namely, if n _< f + d, every condition in 
e[t a] is trivial. For instance, every condition in e ft] is trivial 
when f >_ n/2. (3) Several relations between the classes 
of the hierarchy are derived. For instance, e2~ C e~ t, for 
f < n/2. This means that  ~using the protocol complexity 
log2(f - d + 1)) for C E e ~  there is a consensus protocol 
with complexity O( log (2 f+  1)) tolerating 2 f  failures, or one 
with constant complexity tolerating f failures. 

Theoretical basis and related work. The foundat ion un- 
derlying the proposed condition-based approach can be for- 
realized using topology (e.g., [18])• Our setting is not exactly 
that  of the previous topology papers, because those consid- 
er decision tasks where processes have to terminate always, 
with an output  vector satisfying the task specification. Our 
notion of problem is a kind of "safe tasl~' where, in addi- 
tion to the requirements of a decision task, processors are 
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required to satisfy a safety proper ty  when inputs  are illegal, 
without  necessarily terminat ing.  
From this point  of view, our paper  is a complexity s tudy of 
the  class of safe tasks with a part icular  kind of output  vec- 
tors: all decisions in an execution are equal. In general, the 
s tudy of f - faul t  tolerant  decision tasks requires higher di- 
mensional topology (except for the  case of f = I which uses 
only graphs [9]), and leads to  undecidable characterizations 
[16, 17] (NP-Hard for f = 1 [10]). We are able to  derive our 
results using only graph connectivity, due to the  simplicity 
of the  allowed output  vectors. The main innovation in this 
context is tha t  the  definition of our input  graphs depends 
on the degree d, and hence its connectivity is affected by a 
bound on step complexity. 

Our work might be a first s tep in the  direction of showing 
interesting lower bounds on the  number of read/write oper- 
ations needed to implement an atomic snapshot operation. 
The problem of defining and implementing a linearizable s- 
napshot  object  from single-writer mult i-reader registers has 
been studied since [1]. In the  wait-free snapshot protocol- 
s presented in [1], each update/snapshot operat ion requires 
O(n 2) read and write operations on atomic registers. The 
best  known wait-free simulation of snapshots from read/write 
operations has O(n log n) step complexity [4] 2. If there turn- 
s out to  exist a linear t ime implementat ion of the  snapshot 
operation, the  hierarchy introduced in this paper  would col- 
lapse 3. Indeed, in models where linear snapshot implemen- 
tat ions axe known (e.g., mult i-wri ter  registers [19], dynamic 
test&set  or randomized dynamic,  single-writer multi-reader 
[3]) the  hierarchy collapses, because one can use such a s- 
napshot implementat ion (in the  algori thm of [22]) to solve 
consensus for any condition in e~  ~ with linear step com- 
plexity in the corresponding model. 

We remark tha t  the set of acceptable conditions is quite 
rich. In general, they do not  satisfy the  closure properties 
needed for the  BG-simulat ion [8] tha t  would allow us to 
derive results from one level of resilience to  another. 

Organization of the paper. Section 2 introduces the com- 
puta t ion model. Section 3 presents the  condit ion-based ap- 
proach. Section 4 defines the  hierarchy of classes of condi- 
tions. Section 5 presents the  general condit ion-based pro- 
tocol. Section 6 studies the two par t icular  conditions 01  [al 

and 0 2  [d]. Some proofs are omi t ted  for lack of space, they 
can be found in [23]. 

2. COMPUTATION MODEL 
We consider a s tandard  asynchronous shared-memory sys- 

tem with n,  n > 1, processes, where at  most f ,  0 _< f < n, 
processes can crash. The shared memory consists of single- 
writer, mult i-reader atomic registers. For details of this 
model  see any s tandard  tex tbook such as [5, 21]. 

The shared memory is organized into arrays. The j - t h  
entry of an array X[1..n] can be read by any processes pi 
with an operation read(X[j]). Only pi can write to the  i- 
th  component,  X[i], it uses the  operat ion write(v, X[i]) for 
this. In addit ion to the  shared memory, each process has a 

2More precisely, using [20], the proposed protocol can be 
improved to require O(n log n) basic operations per  snapshot 
and O(n) per update, or vice-versa. 
3Although this is not  the only way of showing tha t  it col- 
lapses, as demonstrates  our sequel work [24] for f < n/2. 

local memory. The subindex i is used to  denote pi's local 
variables. 

To simplify the  notat ion we also consider the  following 
non-primitive, non-atomic collect operation which can be 
invoked by any process pi. I t  can only be applied to  a whole 
array X[1..n], and is an abbreviat ion for V~ : d o  read(X[j]) 
e n d d o .  Hence, it  re turns an array of values [ a l , . . .  , an] 
such t ha t  a s is the value re turned by read(X[j]). 

3. THE CONDITION-BASED APPROACH 
FOR CONSENSUS SOLVABILITY 

In the  consensus problem there is a set V of values tha t  
can be proposed by the  processes, _L ~ ~,  and IV[ _> 2. In an 
execution, every correct process pi proposes a value vi E V 
and all correct processes have to  decide on the same value 
v, t ha t  has to  be one of the  proposed values. The proposed 
values in an execution are represented as an input vector, 
such tha t  the  i - th entry contains the  value proposed by pl, 
or _l_ if pi did not take any step in the execution. We usually 
denote with I an input  vector with all entries in V, and with 
J an input  vector tha t  may have some entries equal to 1 .  
If at  most  f processes can crash, we consider only input  
vectors J with at  most f entries equal to l ,  called views. 
Let V n be the  set of all possible input  vectors with all entries 
in V. For I E V n, let ~Z I be the  set of possible views, i.e., 
the  set of all input  vectors J with at  most f entries equal 
to  l ,  and  such tha t  I agrees with J in all the  non-J_ entries 
of J .  For a set C, C C_ ~)n, let Cf be the  union of the  :Zf's 
over all I E C. Thus, in the consensus problem, every vector 
J E V~' is a possible input  vector. 

The  condition-based approach consists of considering sub- 
sets C of ~)n, called conditions, tha t  represent common input  
vectors in a part icular  dis t r ibuted application. We are in- 
terested in conditions C that ,  when satisfied (i.e., when the 
proposed input  vector does belong to C f) ,  make the  consen- 
sus problem solvable, despite up to f process crashes. More 
precisely, we say tha t  a protocol solves the consensus problem 
for a condition C and f if in every execution whose input  
vector J belongs to V~, the protocol satisfies the  following 
properties: 

• P-Validity: A decided value is a proposed value. 
• P-Agreement: No two processes decide different values. 
• P-Best_Effort_Termination: If  (1) J 6 Cy and no more 

than  f processes crash, or (2) all processes are correct, or 
(3) a process decides, then every correct process decides. 

The first two are the  usual validity and agreement con- 
sensus requirements. 

4. A HIERARCHY OF CLASSES OF CON- 
DITIONS 

This section defines and investigates the  hierarchy e l i  "] C 
If 1] [1] [0] e I -  c . . .  c e I c e f  of condition classes tha t  allow 

solving the  consensus problem. As previously noted, i t  was 
proved in [22] tha t  the  largest class in the hierarchy, eli °1, in- 
cludes every condition for which a consensus protocol  does 
exist. This s tudy is done in two directions, namely, ac- 
ceptabil i ty and legality of a condition. These notions were 
introduced in [22] without  the  degree notion. Here they are 
generalized to any degree d. 

We use the  following notation. For vectors J1,  J2 E V~, 
Jl < J2 ifVk : J l [k]  ~ 1 =~ J l [k]  = J2[k], a n d w e  say tha t  
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J2 contains J1. Let ~=(J )  denote the number of entries of 
J whose value is z, with = E Y U {_L}. 

4.1 Acceptability and Legality 
Given a condition C and a value of f ,  acceptability is a 

combinatorial property of C, inspired on an operational no- 
tion defined in terms of a predicate P and a function S that  
have to satisfy some properties in order tha t  a protocol can 
be designed. Those properties are related to termination, 
validity and agreement, respectively. 

The intuition for the first property is the following. The 
predicate P allows a process p / t o  test i f  a decision value can 
be computed from its view. Thus, P returns true at least 
for all those input vectors J such that  J E 27! for I E C. 

• Property Tc-+p: I E C =:, VJ  E :r! : P(J) .  

The second property is related to validity. 

• Property VP-,s:  V I E  ~ : VJ  E l y  : 
P (J )  =~ S ( J ) =  a non-_L value of J.  

The next property concerns agreement. Given an input vec- 
tor I ,  if two processes p~ and pj get the views J1 and J2, 
and both belong to Z! such tha t  P ( J1 )  and P( J2 )  are sat- 
isfied, these processes have to decide the same value of V, 
from J1 for p~ and J2  for pj,  whenever the following holds, 
for each integer d in the range 0 < d < f .  

• Property Aid] "=P--*s : V l  E ~ : VJl, J2 E Zy: 
P(J1)  A P(J2)  

A ((J1 _< J2) V ( # ± ( J 1 )  + # ± ( J 2 )  _< f + d)) 
=~ S(J1)  -- S(J2).  

DEFINITION 1. A condition C is ( f  , d)-acceptable if there 
exist a predicate P and a function S satisfying the properties 

,[d] o and V P...+ S for f . To-+p, ~P~o 

The parameter d is called the degree of the condition. A 
class of conditions can be analyzed using an alternative rep- 
resentation of its conditions, namely a graph. Given a condi- 
tion C and 0 < d < f ,  we associate with it a graph G[d](C, f )  
defined as follows. Its vertices are the input vectors I of C 
plus all their views, J E Z! for every I in C. Two vertices 
I1, 12 of C are connected by an edge if their Hamming dis- 
tance dis t ( I i ,  I2) _< ( f  + d), and two views J1, J2  E I f  are 
connected by an edge if J1 _< J2  ( I  is connected to all its 
views J E Zy, since I belongs to  ZI). 

DEFINITION 2. A condition C is (f ,  d)-legal if  for every 
connected component of Gtd](C, f ) ,  there is an input value v 
that appears in every one of its vertices. 

THEOaEM 1. A condition C is (f,d)-acceptable iff it is 
( f , d)-leaa. 

P r o o f  =~ direction: Let C be an (f,  d)-acceptable condition 
with parameters P and S, and consider the graph G[dI(C, f ) .  
Let C' be the vertices of one of its connected components. 
Let us show by induction on the edges of the connected 
component C '  that  S is constant on C'.  We consider two 
eases representing the two kinds of edges: 

• Case of an edge (I1, I2) with I1, I2  E C'  N C. By def- 
inition of G[d](c,f), let = be such that  dis t ( I i ,  I2) = = <_ 
( f  + d). Let J1 E I l l  be the view obtained by replacing 

the first [x/2] (<_ f )  entries in which 11 and I2  differ by _L. 
Thus, P ( J1 )  is true, by Property Tc-~P. Let J2  6 Z2y be 
the view obtained by replacing the last Lz/2](< f )  entries 
in which I1 and I2  differ by _1_. Thus, P ( J2 )  is true, by 
Property Tc - .P .  

Let I be the vector obtained by combining all non-J_ en- 
tries of J1  and J2. Notice tha t  ~ ± ( I )  = 0 and J1, J2 6 :/:f, 
and I is not  necessarily in C. Since J 1 , J 2  E Zf ,  P(J1)  A 
P ( J2 )  and # ± ( J 1 )  + # ± ( J 2 )  = z < ( f  + d), Property 
A[d] implies that  S(J1)  = S(J2).  Since J1  E Z l t  and P--}S 

P ( J 1 )  A P( I1) ,  Property A~]+s gives S(I1)  = S(J1).  Simi- 
larly, we have S(I2)  = S(J2).  Consequently, S(I1)  = S(I2).  

• Case of an edge (J1, J2) with J1,  J2  E I f  and J1  < J2. 
Property "[d] o and Property T c - . P  imply that  S(J1)  = 2A.p. . .}  ,~ 

S(J2) .  

¢= direction: Assume C is (f,d)-legal. We have to con- 
struct P and S to prove that  C is (f ,  d)-acceptable. Let 
P ( J )  = (BI E C : J E I f ) .  For each connected component 
Of Gtdl(c,f), there is a non-& value v tha t  all its vertices 
have in common. Let S be a function tha t  returns v for ev- 
ery vertex of this connected component. Clearly, Property 
Tc-}p  and Property V p- , s  hold. We now prove that  Aid] "=P-4S 
holds. Consider an I E V n, and any two J1, J2 E ZI, such 
that  P ( J 1 )  A P(J2 )  hold. We consider the two cases of the 
definition of AId] • ~ = P - - } S "  

• Case J1 _< J2. J1  and J2  are connected in G[dI(c, f ) .  
Hence, S(J1)  = S(J2)  by definition of S. 

• Case ~ ± ( J 1 ) + # ± ( J 2 )  _< ( f+d ) .  We need to show that  
S(J1)  = S(J2).  Since P ( J1 )  A P ( J 2 )  holds, by definition 
of P ,  there exist I1, I2  in C, with J1  E :Zlf and J2 E 772f. 
Thus, d i s t ( I i , I )  = # ± ( J 1 )  and dist(I ,  I2) < # ± ( J 2 ) ,  and 
hence dis t ( I i ,  I2) < ( #± ( J1 )  + # ± ( J 2 ) )  _< ( f  + d). That  
is, I 1 , I 2  are vertices of G[d](c,f) joined by an edge, and 
hence with S(I1) = S(I2).  Similarly, I1, J1 and 12, J2  are 
vertices of G[d](c, f )  joined by an edge, and S(I1)  = S(J1),  
S(I2)  = S(J2).  The equality S(J1)  = S(J2)  follows and 
terminates the proof of the theorem. [-]Theorem 1 

Let us notice that  if U is (f ,  d)-acceptable (or equivalently 
by the previous theorem (f,  d)-legal) then C is (f, d - 1)- 
acceptable (i.e., (f, d -  1)-legal). This is easily seen using ei- 
ther the acceptability representation, since ~P-*sA[d] =~ " =P-*S,A[d-1] 
or the legality representation, since G [d] (U, f )  is a subgraph 
of G[d-H(C, f) .  In the next section we will use this property 
to define the hierarchy. 

The two extremes, d = f and d = 0, are particularly in- 
teresting. We will use f-wcak-aceeptability as a synonym of 
(f, 0)-acceptability (or (f,  0)-legality), and f-strong-accepta- 
bility as a synonym of (f, f)-acceptability (or (f, f)-legality). 
Then it is easy to check that  we can use 
• Property A~_,s : VI 6 V n : VJ1, J2  E I f  : P ( J1 )  A 
P ( J2 )  =} S(J1)  = S(J2),  
instead of A[pY~s in the definition of (f,  f)-acceptability. Al- 
so, we can use 

~ok . Vn • Property Ap_~s. V I E  : VJI ,  J2  E Zy : ( J l  < 
J2) A P ( J 1 )  A P(J2 )  =¢. S(J1)  = S(J2) ,  
instead of ^[o] in the definition of (f ,  0)-acceptability, al- xxp- . }S  
though this is not as easy to see [22]. 
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4.2 The Hierarchy 
Here we describe the hierarchy of conditions that  allow 

solving the consensus problem, and some of its properties. 

DEFINITION 3. The class C~ ] consists of all the (f,  d)- 
acceptable conditions (or equivalently, by Theorem I, all the 
(f, d)-legal conditions). 

The next theorem provides the complete hierarchy of classes 
of conditions. We already discussed the reason for the C 
containments. We shall later prove, in Theorem 9, that  they 
are strict. 

THEOREM 2. 

( e ?  --) C [I1 C e [I- '1 c el/-2] C ' "  C el/°]( = C~'k). 

The next theorem proves that,  given a condition C, there 
is a polynomial (in [C[ and n) time algorithm for deciding 
if C is of degree d (4). 

THEOREM 3. The class C [d] is decidable in polynomial 
time, for all d, 0 <_ d <_ f . 

P r o o f  To check if a finite condition C is (f, d)-legal, we 
consider the graph Gtd](c, f) ,  and check that  the vertices 
of each connected component have at least one input value 
in common. We can consider only vertices with no entry 
equal_~td] to _L, because if" two such vertices are connected in 
G (C, f) ,  they axe connected without passing through ver- 
tices with _l_ entries. In this case we have to check that  the 
value in common appears at least f + 1 times in each vertex 
I ,  to guarantee that  it appears also in every view J E Zf, 
since these views are in the same connected component of I .  
Thus, the graph can be constructed in polynomial time as 
follows. First, ICI vertices are generated. Second, the edges 
are defined by comparing the n entries of each pair of vertices 
of C, hence they can be constructed in time O(n ICr). The 
connected components of this subgraph of G [d] (C, f ) ,  can be 
identified in time proportional to the number of edges, which 
is 0(ICI2), using say, BFS. Once a spanning tree of each con- 
nected component Gi has been constructed, the intersection 
of the values appearing in the vertices of a connected com- 
ponent can be computed in polynomial time. One way of 
doing this is by considering the set X of values tha t  appear 
f + 1 times in the root of the tree, IX I _< n, and then, for 
every other vertex of the component, checking if each value 
x E X appears f + 1 times in it; if not, x is removed from 
X. This procedure takes time O(n 2 [GiD, where IGi[ is the 
number of vertices in Gi. ["]Theorem 3 

It  is clear that  every class el/d] is non-empty. But some 
conditions are trivial in the following sense. For example, 
consider the condition C = {I} that  contains a single vector 
I (with all its entries equal to some non-_L value). C trivially 
belongs to C) t, and hence to all other classes. This motivates 
the following definition: 

DEFINITION 4. A condition C is trivial if for any param- 
eters (P,S)  such that C is (f,d)-acceptable, IS(C)I = 1, 
where S(C) = {S(I)  : I e C}. 
4However, one could envision very compact representations 
of C, such that  the algorithm might not be polynomial in 
the size of that  representation. 

The following theorem, a direct consequence of the legality 
~[d] notion, says that  the class ~f "s interesting only when f < 

n-d .  When considering the class of the strongest conditions 
(d = f) ,  this means the class eII] is trivial when f < n/2. 

THEOREM 4. l f  n <_ ( f  + d), every condition C in C [d] is 
trivial. 

P r o o f  Let us first observe that  G[dl(c, f )  has a single con- 
nected component because for every pair of vertices I1,12 E 
C, dist(I1,12) _< n _< ( f  + d), and hence I1, I2  are joined by 
an edge. As G [dl (C, f )  contains exactly one connected com- 
ponent, and, for any (P, S) that  make C (f,  d)-acceptable, 
S is constant on a given connected component, we conclude 
that  IS(C)I = 1, i.e., C is trivial. [2Th . . . .  4 

Another property tha t  follows from the legality charac- 
terization of a condition is tha t  it is possible to trade fault 
tolerance for "richness" of a condition. For example, for 
f < n/2, C2'~ C_ C~ t. More generally, this is expressed by 
the following "trading" theorem: 

THEOREM 5. C[/.~,~ ] C: e~  1, for 0 ~_ Ct ~_ d. 

P r o o f  Consider a condition C E ff~d~a] and its graph 

G[d-a](C, f +or), where vertices I1 ,12  are joined by an edge 
if dist(Ii,  I2) <_ f + a + d - a  = ( f  +d). Now let us consider 
the graph G[d](C,f). It is a subgraph of G[d-a](C,f + cO, 
since it is based on the same input vectors, which are con- 
nected in the same way; G[d](c, f)  is exactly G[d-a](C, f+a)  
where all views that  contain more that  f values equal to _k 
are removed. Since G [d-a] (C, f + c~) contains a common 
element in each connected component, so does Gidl(C,f). 
That  is, C is (f, d)-legal, and hence C E e[j  ]. r~Theo~e,,~ 5 

4.3 Defining Predicates P for the Classes e7 k 
and c)* 

We conclude from Theorem 5 that  C~f = ~2lP[°] C_ C[/] --- 
C) *. But, if a 2f-weak-acceptable condition is given with a 
pair of associated parameters (P, S), this theorem does not 
provide a systematic way to derive a pair of parameters for 
the corresponding f-strong-acceptable condition. The theo- 
rem that  follows provides such a systematic construction. 

THEOREM 6. Let f < n]2. If C is a 2f-weak-acceptable 
condition with parameters (P, S), then C is f-strong accept- 
able with parameters (Pmi~,S), where P,m,~(J) - (31 E C : 
JeZD. 

P r o o f  Let C be a 2f-weak-acceptable condition with pa- 
rameters (P,S).  C is (2f,0)-acceptable, or equivalently 
(2f, 0)-legal. From Theorem 5, it follows that  C is (f, f ) -  
legal, which is the definition of the f-strong-legality. As 
Zf C /:2I, it follows that  S is well-defined on I f .  More- 
over, Pmln trivially satisfies Ta~p,~i~. It follows that  C is 
f-strong acceptable with (Pmin, S). [3Zheore,n S 

Given an f-strong-acceptable condition C with parame- 
ters P and S, the following theorem introduces a system- 
atic way to associate with C a pair of predicates (/~, S ~) 
such that  P '  may be better than P in the following sense: 
VJ E V~: P(J)  ::~ P'(J). 
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THEOREM 7. Let C be an f-strong-acceptable condition 
(i.e., C E e [I]) with associated parameters (P,S) .  C is 
f-strong-acceptable with the parameters (P ' , S ' )  defined as 
follows: 

• P'(J) --- (3J0 _< J :  (#±(J0) < f)  ^ P(Jo)), 

• S ' ( J )  = S(Jo) where Jo is such that (Jo < d') ^ 
(#±(Jo )  <_ f )  ^ P(Jo).  

P r o o f  See [23]. nTh . . . .  m 7 

5. A CONDITION-BASED CONSENSUS PRO- 
TOCOL FOR e~ 

The Consensus protocol Presented in Figure 1 is an n 
process protocol tha t  solves the consensus problem for any 
condition C of degree d and f ,  once its parameters P, S 
have been correspondingly instantiated 5. It  generalizes the 
protocol we presented in [22] (that works only for d -- 0) 
by including a strong_collect procedure tha t  partially order- 
s views. This procedure (including the auxiliary classifi- 
er_improver called classifier in [4]) is a direct generalization 
of the scale procedure of Attiya and Rachman in [4] (in turn 
inspired by [3]), and the correctness proofs are similar. 

5.1 The Consensus Protocol  
To take into account and exploit the degree d of a condi- 

tion, the protocol uses a strong_collect abstraction. We first 
define its specification, and based on it, prove the correct- 
ness of the consensus protocol. The next subsection presents 
an implementation of the strong_collect abstraction. 

The strong_collect abstraction. The goal of this abstrac- 
tion is to provide processes with views of the proposed val- 
ues tha t  are ordered by containment when the number of _1_ 
values exceed some threshold. Due to Property Aid] the ~ P ' - - ~ S '  
views including ~few" / values are guaranteed to provide a 
consistent decision (if any). A snapshot abstraction (such 
as [1, 4]) could be used instead. But, ordering by contain- 
ment all views, a snapshot would be more expensive than 
the strong_collect abstraction which is not required to or- 
der all views. As d increases, the step complexity (i.e. the 
number of atomic read/write operations on shared variables) 
of the strong_collect abstraction reduces, until it becomes a 
void statement when d = f .  Conversely, when d decreases, 
strong_collect orders more views. More precisely, to  correctly 
implement the strong_collect abstraction, a protocol should 
satisfy the following specification, where I is the input vec- 
tor of the execution of the consensus protocol that  invokes 
strong_collect: 

SPECIFICATION I. strong_collect [d] is an n process wait- 
free protocol. Assume a set of processes {Pi} invoke it with 
views {Ji} in T. I .  Let J be the union of all Ji vectors. Then, 
they eventually get back views {J '}  resp., such that: 

~. j , < j ;  <J ,  

SAs we have seen, the class e~  ] is interesting only when 
f < n - d. Moreover, in our sequel [24] there is a protocol 
with no collect in the walt-free part when f < n/2.  Hence, 
this section is interesting for f _> n/2  > d, which is exactly 
the case where there is no message passing solution [22]. 

~. (#±(J~)  + # ± ( J j )  > f + d) =~ ( J '  _< J~ V Jj _< J ' ) ,  

3. The number of steps ezecuted by a process pi is: 
O(n log(f  - d + 1)). 

The consensus protocol. The protocol assumes P and 
S have been instantiated to correspond to a condition C 
that  belongs to the class e td], so tha t  P, S satisfy Property 

• [d] o for f .  A pro- T o - , p ,  Property Vp- . s ,  and Property ~p_+o 
tess pi starts executing the protocol by invoking the function 
Consensus[dl(vi) where vi is the value it proposes. It  termi- 
nates when it executes the statement r e t u r n  which provides 
it Cat line 6, 8 or 11) with the decided value. The protocol 
has the three-part structure described in the Introduction: 

P a r t  I (lines 1-2): A process pi first writes its input value 
vi to a shared array V. Then pi repeatedly reads V until at 
least (n - f )  processes (including itself) have written their 
input values in V, from which it constructs its initial view 
Ji, where Ji[j] is the input value of pj, or I if pj has not 
yet written its input value. 

P a r t  2 (lines 3-6): Now, pi enters its wait-free, condition- 
dependent part of the protocol. It  uses the strong_collect~ d] 
underlying abstraction to compute a possibly enriched view 
J '  according to Specification 1. With  the view J~, it tries 
to make a decision, by evaluating P(J ' ) .  If  true, pi returns 
S(J~) = wi (line 6), otherwise (i.e., wi = T) pi proceeds to 
the next part, the best effort termination section. In either 
case, it writes first its decision (or T if it could not decide) 
in the shared variable W[i] to  help other processes decide in 
the next part. 

P a r t  3 (lines 7-11): In this section, pi enters a loop to 
look for a decision value (i.e., a value different from I , T )  
provided by another process pj in the shared variable W[j]. 
If, while waiting for a decision, pi discovers tha t  every pro- 
cess has written a value to W, and no process can directly 
decide (all these values are T) ,  Pi concludes that  every pro- 
cess has deposited its initial value in the shared array V in 
line 1. Then, pi reads V (line 10) to get the full input vec- 
tor, and proceed to decide according to a fixed, deterministic 
rule F that  returns one of the input values (such as max). 

F u n c t i o n  Consensus[fdl ( vi ): 

I1) write(v,, v[i]); 
2) repeat Ji ~- collect(V) unt i l  (#_L(Ji) _< f);  

(3) J~ +- strong_collect[d](Ji); 
(4) if  P ( J ' )  t h e n  wl +- S(J'i) e lse  wi +-- T; 
(5) write(  , w[i]); 
(6) if  (wl ~ T) t h e n  r e tu rn (wi )  
(7) else repeat Xi ~-- collect(W); 
(8) i f  (3 j :  X,[j] ~ / ,  T)  

t h e n  re turn(Xi[ j ] )  
(9) un t i l  ( / ~  Xi); 
(lO) [a~,..., a.] ~- co,ect(v); 
(11) r e t u r n ( F ( [ a , , . . . ,  a d )  ) 

F i g u r e  1: D e g r e e  d C o n s e n s u s  P r o t o c o l  

Recall tha t  the step complexity considers only the second, 
walt-free part of the protocol, tha t  is, the shared memory 
operations performed by the strong_collect subprotocol. The 
other parts are independent of d and C. 
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THEOREM 8. Consensus~ ] solves the consensus problem 

for f and any condition C E etf d] if  its parameters P, S sat- 

isfy Property Tc-~ p , Property VP-~ S , and Property atdl ~ p . . + S  • 
The step complexity of a process is O(n  log(f  - d + 1)). 

P r o o f  P-Validity: It follows from the code, from Property 
VP- .s ,  and from the first item of Specification 1, tha t  a 
decided value is a proposed value. 

P-Agreement: To prove that  no two processes decide differ- 
ent values, let us first consider two processes, pi and pj that  
decide in line 6. Thus, P(J~) and P ( J j )  are true, and they 
decide S(J~) and S(J~), respectively. If  # ± ( J ' ) +  #±(J~)  _< 
f + d, then we get S(J~) = S(J~) from the second part of 

Property A X I s .  If #±(J,'-) + ~ ( J j )  > f + d, then, due to 
the second item of Specification 1, J~ _< J~ (or the opposite), 
and consequently we get S ( J ' )  = S(J j )  from the first part 

of Property A[~l s. 
Now, let us assume that  Pi decides at line 8. Then, it 

decides a value decided by another process at line 6, and we 
are done. Finally, assume pi decides in line 11. Then pi gets 
Xi[k] = T for all k, and hence no process decides at lines 6 
or 8. Moreover, all processes that  decide get the complete 
input vector, and as they all apply the same (deterministic) 
function F to this vector, they get the same decided value. 

P-Best_Effort_Termination: The proof is similar to the one 
in [22], using Specification 1 and Property T v - . e .  

Step Complexity: Follows directly from item 3 of Specifi- 
cation 1. F-]Theorem 8 

5.2 Implementing the strong_collect Abstraction 
This section describes the implementation of the strong_ 

collect abstraction in Figure 2. Basically, an execution of 
strong_collect by a process Pi traverses a labeled binary tree 
T, starting at the root with its initial view Ji, and then 
going down one level in each iteration of its loop (fines 4-5), 
until it terminates in a leaf with a final view J~. At each 
vertex of the tree, processes propose views, which get refined 
into two categories: "rich" views proceed to the right son of 
the vertex, and the other views proceed to the left son. The 
aim of a tree traversal is to allow processes to classify and 
enrich their views, and ensure that  the final views obtained 
by processes tha t  have "too many" _L entries (those views 
are at the left of the tree) are dominated by the views that  
have less _L entries (those views are at the right of the tree). 

Notice tha t  f and d do not appear in any line of the 
protocol. These parameters affect only the depth of the 
tree T and its labeling. So, we first describe the behavior 
of the protocol for arbitrary trees. We will then show that  
there exists a particular tree for which the proposed protocol 
satisfies the strong_collect requirements of Specification 1. 

Traversing a labeled binary tree. The tree used by strong_ 
collect is a data structure shared by the processes which can 
access i t  f rom the pointer root. Each non-leaf vertex v con- 
talns (1) pointers to its children (v.left and v.right), and (2) 
an array v .R  of n vectors. The vector v.R[i] is a shared vari- 
able initialized to [_l_,... , _L] that  can atomically be written 
by pi (to store its current view) and read by any process. 
Each vertex v is labeled with a pair of integers, namely, L(v) 
and H(v )  defining an integer interval associated with v. 

Let the size of a view J be [JI = n - # ± ( J )  (number of 
positions of J with a non-_l_ value). As suggested before, 

each process Pi traverses the tree from the root downwards 
modifying its initial view and getting a possibly enriched 
view such that  its size is always in the interval [L(v), H(v)] 
of the vertex v being traversed. An interval is trivial  if its 
size is 1. The processes that  terminate in a leaf v with a 
trivial interval, namely, L(v) = H(v)  = z, get the same 
view (of size z), while the views of processes that  terminate 
in leafs with non-trivial intervals are not guaranteed to be 
ordered by containment. In addition, the tree structure and 
its traversal guarantee that  any view J dominates any view 
J '  obtained in a leaf on the left of tha t  view, i.e., J '  < J.  
Any tree can be used, as long as the intervals of the children 
of a vertex form a partition of the parent interval, and the 
interval of the root contains the sizes of the initial views. 
More precisely, the labels are set to satisfy the following 
properties (hence, the intervals associated with the leafs of 
the tree form a partition of the interval associated with the 
root): 

• [L(root),/-/(root)] = [ .  -- f ,  n], 

• L(v.left) = L(v),  H(v.left)  = L(v.right) - 1 and 
H(v.right) = H(v )  for any non-leaf vertex v. 

t execution. The process starts at the root with its ini- 
tial view, namely, currenti  = Ji. Then, it uses an under- 
lying abstraction classifier_improver (see below) to amelio- 
rate its view. More precisely, at line 4 the process calls 
root.classifier_improver(currenti) (which uses H(root.lefl) as 
the boundary between the intervals of the children of root, 
and root.R as shared array), and gets back a "new" view 
stored in currenti ,  and a boolean value (richi) indicating if 
the view is rich for this node (for the root of the tree, richi is 
true if the view has more than H(root.lefl) entries different 
from _L). If  so, the process moves to the right son of root, 
while if the view is not rich enough, it moves to its left son. 
This is repeated until a leaf of the tree is reached. 

F u n c t i o n  strong_collect~](,h): resu/ t (~)  

(1) currenti  ~- J~; 
(2) v +-- root; 
(3) whi le  v is not a leaf d o  

141 i f  rich,(current" richi) ~- yes t h e n  v +-- v.right 
else v ~ v.left 

(6) endwhi le ;  
(7) re turn(J~  = currenti)  

F i g u r e  2: A n  I m p l e m e n t a t i o n  o f  strong_collect[f ] 

The classifier_improver abstract ion. The v.classifier_im prover 
abstraction is attached to the vertex v of the tree. The no- 
tation U{J l , . . .  , Jn},  for views Ji E Z!  denotes the view J 
that  has a n o n - / v a l u e  v = J[j]  in a position j if at least for 
one i, Ji[J] = v. A classifier_improver protocol should satisfy 
the following specification. 

SPECIFICATION 2. v.classifier_improver/8 an n process wait- 
free protocol attached to the vertex v, with associated integer 
interval [L(v), H(v)]. Processes p~ invoke it with views Ji 
such that Ji E Z f ,  for some input vector I ,  and [ U {J~}l < 
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H(v) .  They eventually get back views J~ E Z !  and baoleans 
richi, such that: 

1. Je ~_ J~, 

e. Ifrich~ = yes then lJ~l > H(v.left) else I~1 --- H(v.lefQ, 

3. (rich, = no h richj = yes) =~ (J~ < J~), 

4. u{s ' }  = u{s,} ,  

5. I u {J' s.t. rich, = no}l -< H(v.lefQ. 

The execution of v.classifierJmprover by Pi (line 4), dur- 
ing a strong_collect invocation, is denoted pi • visited(v). 
Moreover, J,,= denotes the actual value of the corresponding 
input parameter (currenti), while rich,,= denotes the value 
returned by classifier_improver at the end of the visit of v by 
pi. The lemma tha t  follows states the main properties of 
the traversal of an arbitrary tree T. 

LEMMA 1. Assume there is an input vector I ,  such that 
processes pi invoke strong_collect[y d] udth views J, • Z I .  For 
every vertez v and process p~ : 

1. L(v) <_ IJ,,~[ < H(v)  uJhen pi • visited(v), 

e. I u,,,o~.,-~c.) {s,,~}l --- H(v) ,  

3. J,,~ < J~,~ tohenever H(v)  < L(u) h Pi • visited(v) 
^pj  • visited(u) 

4. J,,~ = Jj,~ uJhenever L(v) = H(v)  
^ p , ,pj  • visited(v). 

P r o o f  See [23]. E]ze~= 1 

Designing an appropriate tree. We now design a tree T [d] 
for each d in [0, f], to be used by the protocol Strong_collect~ 1. 
We assume d < f ,  because otherwise the protocol is not 
needed: no views need to be ordered, and no tree is need- 
ed. To satisfy Specification 1(2), we want views Ji, Jj to 
be ordered whenever ~J_(Ji) + ~_L(Jj) > f + d; tha t  is, 
whenever IJ, I + [JJl < 2n - ( f  + d). Thus, we want the tree 
to have a leaf v with interval L(v) = H(v)  = x for every 
n - / _< z < r(2n - (f + d))/21. As we shall see, these are 
the only leaves tha t  require trivial intervals (i.e., of size 1); 
we use one more leaf with interval [[(2n - ( f  + d))/2] ,n]. 
This leaf can have non-trivia` interval, since we do not need 
the corresponding views to be ordered. Using these inter- 
vals for the leaves, the interval of every other vertex is de- 
fined inductively, as the union of the intervals of its chil- 
dren. For this to work, we assume the number of leafs, 
r(2n-  ( y  + d))/21 - (n - f )  + 1 = r ( / -  d ) / 2 1  + 1, to  be a 
power of two (standard techniques can be used otherwise). 
It  follows that,  in the general case, the tree T [d] has a depth 
equai to pog2(r(/-d)/21 + 1)1. We can now prove that  
strong_collect[f d] satisfies its specification when using the tree 
T [d] previously defined. 

LEMMA 2. The Strong_collect~ protocol described in Fig- 
ure ~ satisfies Specification I. 

P r o o f  The proof of Specification 1(1) is a direct conse- 
quence of the classifierJmprover Specification 2(1). 

To prove Specification 1(2), we consider two returned views 
J~,J~ with ~j_(J[)-t-  ~±(J~)  > / + d ;  that  is, with ]J~l-F 
[J~l < 2n - ( f  + d). Let us first consider the case where 
IJ'l < r (2n-  ( f + d ) ) / 2 ]  and ]Jj] < r (2n-  ( . f+d) ) /2] .  
Thus, both views end in leaves with trivial intervals, and 
either one is less than the other, by Lemma 1(3) or else 
they are equal by Lemma 1(4). The other case is when 
IJ'l < r ( 2 n - ( f + d ) ) / 2 1  and IJjl-> r ( 2 n - ( f + d ) ) / 2 ]  (or 
the opposite). Then, J" < J~ by Lemma 1(3). 

The proof of Specification 1(3) follows from (1) the height 
of T [d] which is Flog2(r(f- d)/21 + 1)1, and (2) the fact 
that  a process executes one write and at most two collect 
operations along each vertex on a path from the root to  a 
leaf. OLemma 2 

COROLLARY i. The step complexity of the Strong_collect 
protocol (and hence the step complexity of the uJait-free part 

the Consensnsl: protocol) is at most of 

( 2 n + l )  [ l o g z ( [ t ~ ]  + 1 ) ] .  

P r o o f  lmrnediate consequence of the height of the tree T [d], 
and the fact tha t  a collect costs n steps. [3CoroUaru 1 

5 3  I m p l e m e n t i n g  the  classifier_improver A b s t r a c -  
t ion  

As we have seen, the aim of the classifier_improver abstrac- 
tion associated with the vertex v is to ameliorate the current 
views of processes pi visiting this vertex v, orienting them to 
the left or right subtree rooted at v, according to the size and 
the content of their current views. A protocol, implement- 
ing this abstraction for a vertex v, is described in Figure 
3. It  works as follows. The processes write their views J~ 
to a shared array v.R, and end up with views J '  either of 
size at most H(v.left) or greater than H(v.lefl). Processes 
also get back a boolean value richi that  indicates which of 
the two cases occurred. Hence, this procedure is invoked 
for each non-leaf vertex v, and each of these invocations is 
independent of the others. 

F u n c t i o n  v.classifier_improver(J~): result( J~ , richi ) 

/~I write(Ji, v.Rli]); 
P~ ~--collect(v.R); 

(3) ~ lu {P~[z], . . .  , ~ [ - ] } / >  HCv.le#) 
(4) t h e n  R~ ~-collect(v.R); 
(5) r e t u r n  ( J~ = U{R~[1], . . .  ,P~[n]}, 

richi = yes) 
(6) else r e t u r n  ( J; = Ji, 

rich~ = no ) 

Figure 3: An Implementat ion of classifier_improver 

LEMMA 3. Let us consider a vertex v. The v.classifier_im- 
prover protocol described in Figure 3 satisfies Specification ~. 

P r o o f  The proof of Specification 2(1) follows directly from 
the code and the fact that, VJi , . . .  , J j ,  we have J~ _< J~ U 
. . .UJ j .  
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The proof of Specification 2(2) follows directly from the 
lines 3-6 (test of line 3 and containment property of sequen- 
tial collect invocations). 

For the proof of Specification 2(3) let us observe that,  as 
richj = yes, pj executes two collect operations, that  we call 
collectl (line 2) and collect2 (line 4). There are two cases. 
- If  Pl executes its write (line 1) before pj starts collect2, 
this collect gets the value written by pl, and consequently 
Ji _< J~. As, r i ch ,=  no, J[ = Ji (from the protocol text). 
Moreover, as rich~ = no and richj = yes, we have [J'[ < 
H(v.left) < IJjl from the protocol test at line 3. Hence, 
J ;  # J~. It  follows that  J~ < J~. 
- Let us now examine the other case: pi executed its write 
(line 1) after pj starts collect2. Hence, p( wrote after the 
end of collect1 by pj. If follows that  when pl executes collect 
(line 2) it gets at least at many values as collectl (because 
it started after collect1 terminated). Consequently, pi sees 
a union of size at least as large as pj saw in that  line, which 
is greater than H(v.left). It follows that  richi = yes, a 
contradiction. 

The proof of Specification 2(4), follows directly from the 
code (no entry value is created by the protocol). 

For the proof of Specification 2(5), let us first notice that  
for every process pi such that  richi = no, we have J,'. = Ji. 
Now, let us consider the set of processes pj that  get richj = 
no. Among them, let Pk be the last tha t  executed line 1. 
Due to the linearizability property on the basic write and 
read operations, when Pk executes line 2, it sees the inputs 
of all the processes pj such that  richj = no. Thus, the size 
of the union of these inputs must be at most H(v.left), since 
otherwise pi would get richi = yes when it executes line 3. 

['l L e m m a  3 

6. T W O  CONDITIONS 
~,[d] f,~Id] Here, we present two families of conditions, ~ !  , v = !  , 

~ k  wk for 0 < d < f _< n, in the style of the conditions C l f  , C2I  
introduced in [22]. Indeed, C1~ k -- C1 I°] and C2~ k = C2 {°]. 

6.1 The Condition c1~ d] 
The idea of this condition is to guarantee that  all the 

processes have the same extremai (largest or smallest) value 
in their local views in order to decide on it. We (arbitrarily) 
consider the largest value (max(J)  denotes the largest non-_L 
value of J). Formally, we have: 

i (IECI~I) iff [a=max(1) :=~ #a(I I>( f+d) ] .  i 

For ease of notation, in the next theorem we define (~]  
to be empty for d = f + 1. It  follows from Lemma 4, 5, and 
Theorem 1. 

THEOREM 9. For (f +d) < n, c l [d ]  E E [d] - - e  [d+l]. 

LEMMA 4. I f  ( f  + d) < n, Cl[i d] is (f ,  d)-acceptable with 
the following parameters: 

• Pl[yd](J) = (a = max(J))  ==~ ( # a ( J )  > ( f - I - d -  
#±(J))), 

• SI(J) = max(J) .  

P r o o f  First, we show that  CII~ d] is (f, d)-legal, and then 
exhibit the (P, S) parameters for its (f,  d)-acceptability. 

In order to show that  CI[s d] is (f,  d)-legai, we prove that  

S1 is constant on any connected component of G [dl (C1 ~d], f).  

Let C' be a connected component of G[d](cI~ ], f ) .  We con- 
sider two cases, induced by the two types of vertices: 

Let I1 ,12 be two vertices of Cl[/d], connected in C'.  Let 
a (resp. b) be the maximum of I i ( resp •2). Assume 
that  a _> b. We have #=( I2)  _> #=(I1)  - d(Ii ,  I2) >_ 
# = ( I 1 ) - ( f + d ) ,  because I1 and 12 are connected by an 
edge. Since I1  belongs to Cl[f ], it satisfies #=(I1)  > 
( f  + d), and hence #=(12) > 0, i.e., a belongs to 12. 
Finally, as a _> b, we can conclude that  a ---- max(I2),  
i.e., $1(II) = $1(12). 

Let J1, J2  be two vertices of Cl[ f  ], such that  J2  _< J1 
(hence, there is an edge connecting them in C').  Let I 
in Cl[f ] NC' such that  J1  E Z I,  and a the maximum of 
I .  Since I belongs to the condition, a appears at least 
( f + d + l )  times in I .  As J1 is obtained by replacing up 
to f entries of I by _L, we can conclude that  a E J 1 .  As 
the same applies to J2, we get S I ( J1 )  = $1(J2) = a. 

It follows that  S1 is constant in each connected component 
C '  of G[d](ClIid], f ) .  Consequently, Cl[l d] is (f, d)-legai, and 
due to Theorem 1, ( f ,  d)-acceptable. 

Let us consider the pair (P, S) used in the proof of the 
Theorem 1: 

• P (J )  - -  ( 3 I  E C l [ d ]  : J E Zf), 

• S ( J )  = a non-_L value common to the vertices of the 
connected component to which J belongs. 

$1 is S instantiated with max (which is constant on a con- 
nected component). We show that  PI[~ dl is exactly P.  

Let us first prove VJ : Pl[fd](J) =~ P(J) .  Let J such that  

Pl[ydl(j) holds, i.e., (max(J)  = a) =~ # , ( J )  > ( f  + d -  
# ± ( J ) ) .  Let I be the vector obtained by replacing each _L 
in J by a. So, J E I f .  Trivially, # = ( I )  > ( f  + d), and 
I 6 C l ~  ]. Hence, P(J)  holds. 

Let us now prove VJ : P ( J )  =~ p I ~ I ( J ) .  Let J such 

that  P(J )  holds. Let I E C1 {d! such that  J E I I ,  and 
a = max(I) .  Notice that  #= ( I )  > f + d. Combined with 
J _< I ,  we get # , ( J )  > ( f + d - # ± ( J ) )  _> 0. Hence, 
the value a belongs to the vertex J .  As, except for _L, the 
values of J belong to I ,  we have a = max(J) .  Consequently, 
PI~=](J)" holds. OL . . . .  4 

C1 [d], the following lemma proves that  there is Using a 

(f, d)-legal condition that  is not (f, d -I- 1)-legal. A forward 
reference to this lemma appeared in Theorem 2 to prove 
strict class contalnement. 

LEMMA 5. Assume ( f  + d) < n and d < f . Then, C1~ ] 
is not (f ,  d + 1 ) - l e g a l .  

P r o o f  Assume for contradiction that  ( f  +d) < n and Cl[I d] 
is (f,  d-I-1)-legal. Consider its graph G[d+q(f, Cl[yd]). Con- 

sider the following vertices 11,12 E C1~ 1. I1 has the first 
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( f  + d + 1) positions equal to  a value a, and the others e- 
qual to  b, such tha t  a > b, and  I2  has all its entries equal 
to  b. Clearly, I1  is in the  same connected component tha t  
the vector with all entries equal to a, since we can switch 
one by one the b's of I1  to a ' s  while maintaining the  prop- 
erty tha t  the  number of a ' s  is more than  ( f  + d + 1). Thus, 
there is one, and only one value in common to all vectors 
of this component,  namely, a. On the  other  hand, 12 has 
only b's, so i t  is in a different connected component.  How- 
ever, dis t ( I i ,  I2) = ( f  + d + 1), and hence there is an edge 

I1 and 12 in G[d+l](f, cl[d]), a contradiction. connecting 
d 

DLemm= 5 

6.2 The Condition c2~ ~ 
The idea of this  condition is to guarantee tha t  the most 

common value in the  input  vector I can be unambiguously 
decided by each process. Some notat ions are required to  
formally express it: #1~t(J)  denotes the  occurrence number  
of the  most common n o n - / v a l u e  of J;  #and(J )  denotes the  
occurrence number of the  second most common n o n - / v a l u e  
of J (if there is no such value, #and( J )  = 0). Wi th  these 

C2[/d] can be formally expressed as notations follows: 

I ( I E e 2 [ f  d]) iff [ # 1 . t ( I ) - - # a n d ( I ) > ( f + d ) ] .  [ 
I I 

The following is a consequence of Lemma 6 (that follows) 
and Theorem 1. The proof of Lemma 6 can be found in [23]. 

THEOREM 10. For (I "]" t 0 < , ,  C2 [4] q C [d]. 

LEMMA 6. I f  ( f  + d) < n, C2[I d] ~ ( f ,  d)-acceptable with 
the follou~ing parameters: 

* P2[/dl(J) --  #1odJ)--#2nd(J) > ( f + d - # ¢ ( J ) ) ,  

• S2(J )  = a such that #=(J)  = # | , t ( J ) .  
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