
A Hierarchy of Conditions for Consensus Solvability

[Extended Abstract] *

t
Achour Mostefaoui
IRISA, Campus Beaulieu

35042 Rennes Cedex
France

$
Sergio Rajsbaum

Compaq CRL
One Cambridge Center
02142 Cambridge, MA

§
Michel Raynal

IRISA, Campus Beaulieu
35042 Rennes Cedex

France

¶
Matthieu Roy

IRISA, Campus Beaulieu
35042 Rennes Cedex

France

ABSTRACT
In a previous paper we introduced the condition-based ap-
proach, consisting of identifying sets of input vectors, called
conditions, for which there exists an asynchronous protocol
solving consensus despite the occurrence of up to f pro-
cess crashes, and characterized this set of conditions, e~ k.
Here, we investigate e~ k from the complexity perspective,
and show tha t this class consists of a hierarchy of classes of
conditions, ely d], where d, 0 _< d < f , is the degree of the
condition, each one strictly contained in the previous one.
The value f - d represents the "di~cult9 ~' of the class e[yd]:
we present a generic condition-based protocol tha t can be
instant ia ted with any C E ely d], and solve consensus with
(2 n + 1) rlog2(r(f - d)/2] + 1)] shared memory read/wr i te
operations per process. For each d we present two natural
conditions, C1 [a] and C2 [d], tha t might be useful in practice,
and we use them to show tha t the class containments s ta t-
ed above are strict. Various properties of the hierarchy are
also derived. Mainly, it is shown tha t a class can be char-
acterized in two equivalent but complementary ways: one
is convenient for designing protocols while the other is for
analyzing the class properties.

Keywords
Asynchronous Shared Memory, Consensus, Fault-Tolerance,
Snapshot, Step Complexity.

*A full version of this paper is available in [23].

tachonr~irisa.fr

~Sergio.Rajsbaum~compaq.com. On leave from Instituto de
Matem~ticas, UNAM, Mexico. rajsbaum~math.unam.mx

§raynal~irisa.fr

¶mroy~ir isa . f r

Pemlission to make digital or hard copies of all or part of this work Ibr
personal or classroom use is granted without tee provided that copies
are not made or distributed for profit o1" commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 01 Newport Rhode Island LISA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

1. INTRODUCTION
The Consensus problem lies a t the heart of many dis-

t r ibuted computing problems one has to solve when de-
signing reliable applications on top of unreliable dis t r ibuted
asynchronous systems. There is a large l i terature dedicated
to s tudying theoretical and practical aspects of this prob-
lem (e.g., [5, 21]), t ha t can be informally s ta ted in terms
of three requirements. Each process proposes a value, and
has to decide on a value (termination) such tha t there is a
single decided value (agreement), and the decided value is
a proposed value (validity). One of the most fundamental
impossibility results in dis t r ibuted computing says tha t this
apparent ly simple problem has actually no deterministic so-
lution in an asynchronous system even if only one process
may crash [15]. To circumvent this impossibility, known as
FLP, two main approaches have been investigated. One of
them consists of relaxing the requirements of the problem,
by either allowing for probabilist ic solutions (e.g., [6]), or for
approximate solutions (f-agreement [14], or k-set agreemen-
t [12]). Another approach consists of enriching the system
with synchrony assumptions until they allow the problem to
be solved [13]. This approach has been abst racted in the
notion of unreliable failure detectors [11]. There have al-
so been studies of hybr id approaches, like combining failure
detection with randomizat ion [2, 25], or more general ap-
proar~hes for designing algorithms in situations where there
is some information about the typical conditions tha t are
encountered when the respective problem is solved [7].

We have recently introduced a now condition-based ap-
proach to tackle the consensus problem [22]. This approach
focuses on sets of input vectors tha t allow n processes to
solve the consensus problem despite up to f process crashes,
in a s tandard asynchronous model. Let an input vector be a
size n vector, whose i - th entry contains the value proposed
by a process pi. A condition (which involves the parame-
ters f and n) is a set of such vectors tha t can be proposed
under normal operat ing conditions. We are interested in
f - faul t tolerant protocols tha t (1) solve consensus at least
when such a condition holds, and (2) are always safe. Safe
means tha t the protocol guarantees agreement and validity,
whether the proposed input vector is allowed by the condi-
t ion or not. In addit ion, we would like the protocols to make
the "best effort" to te rminate (for example, they should ter-
minate in all failure-free executions). This is the best we can
hope for, since the F L P impossibility result says we cannot
require tha t a consensus protocol terminates always, for ev-
ery input vector. But, by guaranteeing tha t safety is never
violated, the hope is tha t such a protocol should be useful

151

in applications. For example, consider the condition "more
than a majority of the processes propose the same value."
It is not hard to see that consensus can be solved when the
inputs satisfy this condition, when f = 1. It is plausible
to imagine an application that in some real system satisfies
this condition most of the time; only when something goes
wrong, the processes proposals get evenly divided, and only
then should the protocol take longer to terminate (or even
not terminate).

In [22], we characterized the conditions that admit a con-
sensus protocol with the above properties. That is, we de-
scribed a set of conditions, denoted here e~ k, and proved
that there is a consensus protocol for a condition C if and
only if C E e~ k. We presented two equivalent combinatorial
descriptions of the class e~ h, and described two natural con-
ditions C1 and C2 in e~ h that might be useful in practice,
and proved them to be maximal (they cannot be extended).
The class e~ 'k is quite rich, since it includes every condition
for which there exists a condition-based consensus protocol.
The protocol we have presented in [22] can be iustantiated
for each particular condition C E e~ k. It has the same step
complexity, whatever the condition it is instantiated with,
namely O(n log(f + 1)) read/write shared memory opera-
tions per process.

Content o f the paper. This paper continues our study of
the condition-based approach, from the complexity perspec-
tive. It has four main contributions.
1. Although a priori it could be that all conditions of e~ '~
are equally difficult to solve, it seems plausible that some
conditions of e~ k are more difficult to solve than others.
If this is the case, there would be more efficient protocol-
s, specially tailored for particular classes of conditions. In
practice, one would be interested in identifying the simplest
classes of conditions whose input vectors occur frequently,
because such classes would perhaps have very efficient con-
sensus protocols. In this paper we show tha t this is indeed
the case. For the first contribution we study the structure of
the class e~ k, defining a hierarchy of classes of conditions,
each one of some degree d (0 <_ d <_ f),

e;
where e[O]_ _ ~ k and e [ll is the class of easiest conditions,
also denoted e~ t.
2. We present a condition-based consensus protocol that
can be used for any condition of degree d, and shows that
the value f - d upper bounds I the "di~cultff' of the class
e [d]. More precisely, it is shown that the number of collect
operations that are executed by our consensus protocol is
related to d. l~ugh ly speaking, for any condition C E ell d],
the number of collect invocations of the wait-free, condition-
dependent part of the protocol is proportional to l o g 2 (f -
d + 1). Hence, when we progress in the hierarchy from the
largest class e~ k = e~] to the smallest class e} t = e [f] f ,
there are more and more efficient consensus protocols, until
one gets e~ t, which can be solved with essentially zero collect
operations.

The condition-based consensus protocol uses two param-

1We recently discovered a more efficient protocol for f <
n/2, with only linear complexity [24], showing that our hi-
erarchy is interesting only for f >_ n/2.

eters P and S (as in [22]) that depend directly on the condi-
tion. The predicate P tells a process if it can decide based
on its view of the input vector, and the function S tells it
the value to decide. The protocol consists of three parts.
The first part allows a process to get an initial view of the
input vector, namely, a vector with at least (n - f) input
values. The second part, based on an idea presented in [4],
is wait-free, and executes a number of collect/write itera-
tions that depends on the degree d of the condition. During
each iteration, a process tries to enrich its view of the input
vector, in such a way that the views finally obtained by the
processes satisfy some containment properties. Among the
final views, any two views that (together) have more than
(f + d) undefined entries are ordered. Basically, this means
that the degree d of a condition defines the view coherence
level needed for the processes to decide consistently. Finally,
the last part of the protocol is where a process makes its best
effort to terminate. The complexity of a condition is evalu-
ated in terms of the number of steps of the walt-free part of
the protocol. The other two parts of the protocol are inde-
pendent of the condition; the first depends only on f , while
the last does not depend on f but may never terminate•
3. For each degree d, two conditions, denoted U1 [d] and

C2 [a], are presented. These provide examples of natural con-
dit|ons that might be useful in practice, and show that the
class containments stated above are strict. They general-
ize the natural conditions Cll , C2f tha t were introduced in
[22], showing tha t they are of the hardest, i e , in e [°] - e { f 1]

• . f •

4. Various structural properties of the hierarchy are stud-
ied. Two equivalent characterizations of the classes e Ia] are
described. The first, acceptability, is in terms of the prop-
erties that the parameters P and S have to satisfy for the
above protocol to solve consensus for a condition C in e~ a].-
The second, called legality, is in terms of a graph derived
from C, d and f: among its vertices there are the input
vectors, and among its edges, there is an edge connecting
two input vectors when they differ in at most f + d entries•
The acceptability characterization is useful for deriving con-
sensus protocols, while the legality characterization is more
adequate to s tudy noteworthy properties of the hierarchy of
conditions. We have the following applications of the char-
acterizations. (1) It is decidable in polynomial time if a
condition C belongs to a class eta]. (2) If f is too large,
then every condition of degree d is trivial (i.e., a single value
can be decided); namely, if n _< f + d, every condition in
e[t a] is trivial. For instance, every condition in e ft] is trivial
when f >_ n/2. (3) Several relations between the classes
of the hierarchy are derived. For instance, e2~ C e~ t, for
f < n/2. This means that ~using the protocol complexity
log2(f - d + 1)) for C E e ~ there is a consensus protocol
with complexity O(log (2 f+ 1)) tolerating 2 f failures, or one
with constant complexity tolerating f failures.

Theoretical basis and related work. The foundat ion un-
derlying the proposed condition-based approach can be for-
realized using topology (e.g., [18])• Our setting is not exactly
that of the previous topology papers, because those consid-
er decision tasks where processes have to terminate always,
with an output vector satisfying the task specification. Our
notion of problem is a kind of "safe tasl~' where, in addi-
tion to the requirements of a decision task, processors are

152

required to satisfy a safety proper ty when inputs are illegal,
without necessarily terminat ing.
From this point of view, our paper is a complexity s tudy of
the class of safe tasks with a part icular kind of output vec-
tors: all decisions in an execution are equal. In general, the
s tudy of f - faul t tolerant decision tasks requires higher di-
mensional topology (except for the case of f = I which uses
only graphs [9]), and leads to undecidable characterizations
[16, 17] (NP-Hard for f = 1 [10]). We are able to derive our
results using only graph connectivity, due to the simplicity
of the allowed output vectors. The main innovation in this
context is tha t the definition of our input graphs depends
on the degree d, and hence its connectivity is affected by a
bound on step complexity.

Our work might be a first s tep in the direction of showing
interesting lower bounds on the number of read/write oper-
ations needed to implement an atomic snapshot operation.
The problem of defining and implementing a linearizable s-
napshot object from single-writer mult i-reader registers has
been studied since [1]. In the wait-free snapshot protocol-
s presented in [1], each update/snapshot operat ion requires
O(n 2) read and write operations on atomic registers. The
best known wait-free simulation of snapshots from read/write
operations has O(n log n) step complexity [4] 2. If there turn-
s out to exist a linear t ime implementat ion of the snapshot
operation, the hierarchy introduced in this paper would col-
lapse 3. Indeed, in models where linear snapshot implemen-
tat ions axe known (e.g., mult i-wri ter registers [19], dynamic
test&set or randomized dynamic, single-writer multi-reader
[3]) the hierarchy collapses, because one can use such a s-
napshot implementat ion (in the algori thm of [22]) to solve
consensus for any condition in e~ ~ with linear step com-
plexity in the corresponding model.

We remark tha t the set of acceptable conditions is quite
rich. In general, they do not satisfy the closure properties
needed for the BG-simulat ion [8] tha t would allow us to
derive results from one level of resilience to another.

Organization of the paper. Section 2 introduces the com-
puta t ion model. Section 3 presents the condit ion-based ap-
proach. Section 4 defines the hierarchy of classes of condi-
tions. Section 5 presents the general condit ion-based pro-
tocol. Section 6 studies the two par t icular conditions 01 [al

and 0 2 [d]. Some proofs are omi t ted for lack of space, they
can be found in [23].

2. COMPUTATION MODEL
We consider a s tandard asynchronous shared-memory sys-

tem with n, n > 1, processes, where at most f , 0 _< f < n,
processes can crash. The shared memory consists of single-
writer, mult i-reader atomic registers. For details of this
model see any s tandard tex tbook such as [5, 21].

The shared memory is organized into arrays. The j - t h
entry of an array X[1..n] can be read by any processes pi
with an operation read(X[j]). Only pi can write to the i-
th component, X[i], it uses the operat ion write(v, X[i]) for
this. In addit ion to the shared memory, each process has a

2More precisely, using [20], the proposed protocol can be
improved to require O(n log n) basic operations per snapshot
and O(n) per update, or vice-versa.
3Although this is not the only way of showing tha t it col-
lapses, as demonstrates our sequel work [24] for f < n/2.

local memory. The subindex i is used to denote pi's local
variables.

To simplify the notat ion we also consider the following
non-primitive, non-atomic collect operation which can be
invoked by any process pi. I t can only be applied to a whole
array X[1..n], and is an abbreviat ion for V~ : d o read(X[j])
e n d d o . Hence, it re turns an array of values [a l , . . . , an]
such t ha t a s is the value re turned by read(X[j]).

3. THE CONDITION-BASED APPROACH
FOR CONSENSUS SOLVABILITY

In the consensus problem there is a set V of values tha t
can be proposed by the processes, _L ~ ~, and IV[_> 2. In an
execution, every correct process pi proposes a value vi E V
and all correct processes have to decide on the same value
v, t ha t has to be one of the proposed values. The proposed
values in an execution are represented as an input vector,
such tha t the i - th entry contains the value proposed by pl,
or _l_ if pi did not take any step in the execution. We usually
denote with I an input vector with all entries in V, and with
J an input vector tha t may have some entries equal to 1 .
If at most f processes can crash, we consider only input
vectors J with at most f entries equal to l , called views.
Let V n be the set of all possible input vectors with all entries
in V. For I E V n, let ~Z I be the set of possible views, i.e.,
the set of all input vectors J with at most f entries equal
to l , and such tha t I agrees with J in all the non-J_ entries
of J . For a set C, C C_ ~)n, let Cf be the union of the :Zf's
over all I E C. Thus, in the consensus problem, every vector
J E V~' is a possible input vector.

The condition-based approach consists of considering sub-
sets C of ~)n, called conditions, tha t represent common input
vectors in a part icular dis t r ibuted application. We are in-
terested in conditions C that , when satisfied (i.e., when the
proposed input vector does belong to C f) , make the consen-
sus problem solvable, despite up to f process crashes. More
precisely, we say tha t a protocol solves the consensus problem
for a condition C and f if in every execution whose input
vector J belongs to V~, the protocol satisfies the following
properties:

• P-Validity: A decided value is a proposed value.
• P-Agreement: No two processes decide different values.
• P-Best_Effort_Termination: If (1) J 6 Cy and no more

than f processes crash, or (2) all processes are correct, or
(3) a process decides, then every correct process decides.

The first two are the usual validity and agreement con-
sensus requirements.

4. A HIERARCHY OF CLASSES OF CON-
DITIONS

This section defines and investigates the hierarchy e l i "] C
If 1] [1] [0] e I - c . . . c e I c e f of condition classes tha t allow

solving the consensus problem. As previously noted, i t was
proved in [22] tha t the largest class in the hierarchy, eli °1, in-
cludes every condition for which a consensus protocol does
exist. This s tudy is done in two directions, namely, ac-
ceptabil i ty and legality of a condition. These notions were
introduced in [22] without the degree notion. Here they are
generalized to any degree d.

We use the following notation. For vectors J1, J2 E V~,
Jl < J2 ifVk : J l [k] ~ 1 =~ J l [k] = J2[k], a n d w e say tha t

153

J2 contains J1. Let ~=(J) denote the number of entries of
J whose value is z, with = E Y U {_L}.

4.1 Acceptability and Legality
Given a condition C and a value of f , acceptability is a

combinatorial property of C, inspired on an operational no-
tion defined in terms of a predicate P and a function S that
have to satisfy some properties in order tha t a protocol can
be designed. Those properties are related to termination,
validity and agreement, respectively.

The intuition for the first property is the following. The
predicate P allows a process p / t o test i f a decision value can
be computed from its view. Thus, P returns true at least
for all those input vectors J such that J E 27! for I E C.

• Property Tc-+p: I E C =:, VJ E :r! : P(J) .

The second property is related to validity.

• Property VP-,s: V I E ~ : VJ E l y :
P (J) =~ S (J) = a non-_L value of J.

The next property concerns agreement. Given an input vec-
tor I , if two processes p~ and pj get the views J1 and J2,
and both belong to Z! such tha t P (J1) and P(J2) are sat-
isfied, these processes have to decide the same value of V,
from J1 for p~ and J2 for pj, whenever the following holds,
for each integer d in the range 0 < d < f .

• Property Aid] "=P--*s : V l E ~ : VJl, J2 E Zy:
P(J1) A P(J2)

A ((J1 _< J2) V (# ± (J 1) + # ± (J 2) _< f + d))
=~ S(J1) -- S(J2).

DEFINITION 1. A condition C is (f , d)-acceptable if there
exist a predicate P and a function S satisfying the properties

,[d] o and V P...+ S for f . To-+p, ~P~o

The parameter d is called the degree of the condition. A
class of conditions can be analyzed using an alternative rep-
resentation of its conditions, namely a graph. Given a condi-
tion C and 0 < d < f , we associate with it a graph G[d](C, f)
defined as follows. Its vertices are the input vectors I of C
plus all their views, J E Z! for every I in C. Two vertices
I1, 12 of C are connected by an edge if their Hamming dis-
tance dis t (I i , I2) _< (f + d), and two views J1, J2 E I f are
connected by an edge if J1 _< J2 (I is connected to all its
views J E Zy, since I belongs to ZI).

DEFINITION 2. A condition C is (f , d)-legal if for every
connected component of Gtd](C, f) , there is an input value v
that appears in every one of its vertices.

THEOaEM 1. A condition C is (f,d)-acceptable iff it is
(f , d)-leaa.

P r o o f =~ direction: Let C be an (f, d)-acceptable condition
with parameters P and S, and consider the graph G[dI(C, f) .
Let C' be the vertices of one of its connected components.
Let us show by induction on the edges of the connected
component C ' that S is constant on C'. We consider two
eases representing the two kinds of edges:

• Case of an edge (I1, I2) with I1, I2 E C' N C. By def-
inition of G[d](c,f), let = be such that dis t (I i , I2) = = <_
(f + d). Let J1 E I l l be the view obtained by replacing

the first [x/2] (<_ f) entries in which 11 and I2 differ by _L.
Thus, P (J1) is true, by Property Tc-~P. Let J2 6 Z2y be
the view obtained by replacing the last Lz/2](< f) entries
in which I1 and I2 differ by _1_. Thus, P (J2) is true, by
Property Tc - .P .

Let I be the vector obtained by combining all non-J_ en-
tries of J1 and J2. Notice tha t ~ ± (I) = 0 and J1, J2 6 :/:f,
and I is not necessarily in C. Since J 1 , J 2 E Zf , P(J1) A
P (J2) and # ± (J 1) + # ± (J 2) = z < (f + d), Property
A[d] implies that S(J1) = S(J2). Since J1 E Z l t and P--}S

P (J 1) A P(I1) , Property A~]+s gives S(I1) = S(J1). Simi-
larly, we have S(I2) = S(J2). Consequently, S(I1) = S(I2).

• Case of an edge (J1, J2) with J1, J2 E I f and J1 < J2.
Property "[d] o and Property T c - . P imply that S(J1) = 2A.p. . .} ,~

S(J2) .

¢= direction: Assume C is (f,d)-legal. We have to con-
struct P and S to prove that C is (f , d)-acceptable. Let
P (J) = (BI E C : J E I f) . For each connected component
Of Gtdl(c,f), there is a non-& value v tha t all its vertices
have in common. Let S be a function tha t returns v for ev-
ery vertex of this connected component. Clearly, Property
Tc-}p and Property V p- , s hold. We now prove that Aid] "=P-4S
holds. Consider an I E V n, and any two J1, J2 E ZI, such
that P (J 1) A P(J2) hold. We consider the two cases of the
definition of AId] • ~ = P - - } S "

• Case J1 _< J2. J1 and J2 are connected in G[dI(c, f) .
Hence, S(J1) = S(J2) by definition of S.

• Case ~ ± (J 1) + # ± (J 2) _< (f+d) . We need to show that
S(J1) = S(J2). Since P (J1) A P (J 2) holds, by definition
of P , there exist I1, I2 in C, with J1 E :Zlf and J2 E 772f.
Thus, d i s t (I i , I) = # ± (J 1) and dist(I , I2) < # ± (J 2) , and
hence dis t (I i , I2) < (#± (J1) + # ± (J 2)) _< (f + d). That
is, I 1 , I 2 are vertices of G[d](c,f) joined by an edge, and
hence with S(I1) = S(I2). Similarly, I1, J1 and 12, J2 are
vertices of G[d](c, f) joined by an edge, and S(I1) = S(J1),
S(I2) = S(J2). The equality S(J1) = S(J2) follows and
terminates the proof of the theorem. [-]Theorem 1

Let us notice that if U is (f , d)-acceptable (or equivalently
by the previous theorem (f, d)-legal) then C is (f, d - 1)-
acceptable (i.e., (f, d - 1)-legal). This is easily seen using ei-
ther the acceptability representation, since ~P-*sA[d] =~ " =P-*S,A[d-1]
or the legality representation, since G [d] (U, f) is a subgraph
of G[d-H(C, f) . In the next section we will use this property
to define the hierarchy.

The two extremes, d = f and d = 0, are particularly in-
teresting. We will use f-wcak-aceeptability as a synonym of
(f, 0)-acceptability (or (f, 0)-legality), and f-strong-accepta-
bility as a synonym of (f, f)-acceptability (or (f, f)-legality).
Then it is easy to check that we can use
• Property A~_,s : VI 6 V n : VJ1, J2 E I f : P (J1) A
P (J2) =} S(J1) = S(J2),
instead of A[pY~s in the definition of (f, f)-acceptability. Al-
so, we can use

~ok . Vn • Property Ap_~s. V I E : VJI , J2 E Zy : (J l <
J2) A P (J 1) A P(J2) =¢. S(J1) = S(J2) ,
instead of ^[o] in the definition of (f , 0)-acceptability, al- xxp- . }S
though this is not as easy to see [22].

154

4.2 The Hierarchy
Here we describe the hierarchy of conditions that allow

solving the consensus problem, and some of its properties.

DEFINITION 3. The class C~] consists of all the (f, d)-
acceptable conditions (or equivalently, by Theorem I, all the
(f, d)-legal conditions).

The next theorem provides the complete hierarchy of classes
of conditions. We already discussed the reason for the C
containments. We shall later prove, in Theorem 9, that they
are strict.

THEOREM 2.

(e ? --) C [I1 C e [I- '1 c el/-2] C ' " C el/°](= C~'k).

The next theorem proves that, given a condition C, there
is a polynomial (in [C[and n) time algorithm for deciding
if C is of degree d (4).

THEOREM 3. The class C [d] is decidable in polynomial
time, for all d, 0 <_ d <_ f .

P r o o f To check if a finite condition C is (f, d)-legal, we
consider the graph Gtd](c, f) , and check that the vertices
of each connected component have at least one input value
in common. We can consider only vertices with no entry
equal_~td] to _L, because if" two such vertices are connected in
G (C, f) , they axe connected without passing through ver-
tices with _l_ entries. In this case we have to check that the
value in common appears at least f + 1 times in each vertex
I , to guarantee that it appears also in every view J E Zf,
since these views are in the same connected component of I .
Thus, the graph can be constructed in polynomial time as
follows. First, ICI vertices are generated. Second, the edges
are defined by comparing the n entries of each pair of vertices
of C, hence they can be constructed in time O(n ICr). The
connected components of this subgraph of G [d] (C, f) , can be
identified in time proportional to the number of edges, which
is 0(ICI2), using say, BFS. Once a spanning tree of each con-
nected component Gi has been constructed, the intersection
of the values appearing in the vertices of a connected com-
ponent can be computed in polynomial time. One way of
doing this is by considering the set X of values tha t appear
f + 1 times in the root of the tree, IX I _< n, and then, for
every other vertex of the component, checking if each value
x E X appears f + 1 times in it; if not, x is removed from
X. This procedure takes time O(n 2 [GiD, where IGi[is the
number of vertices in Gi. ["]Theorem 3

It is clear that every class el/d] is non-empty. But some
conditions are trivial in the following sense. For example,
consider the condition C = {I} that contains a single vector
I (with all its entries equal to some non-_L value). C trivially
belongs to C) t, and hence to all other classes. This motivates
the following definition:

DEFINITION 4. A condition C is trivial if for any param-
eters (P,S) such that C is (f,d)-acceptable, IS(C)I = 1,
where S(C) = {S(I) : I e C}.
4However, one could envision very compact representations
of C, such that the algorithm might not be polynomial in
the size of that representation.

The following theorem, a direct consequence of the legality
~[d] notion, says that the class ~f "s interesting only when f <

n-d . When considering the class of the strongest conditions
(d = f) , this means the class eII] is trivial when f < n/2.

THEOREM 4. l f n <_ (f + d), every condition C in C [d] is
trivial.

P r o o f Let us first observe that G[dl(c, f) has a single con-
nected component because for every pair of vertices I1,12 E
C, dist(I1,12) _< n _< (f + d), and hence I1, I2 are joined by
an edge. As G [dl (C, f) contains exactly one connected com-
ponent, and, for any (P, S) that make C (f, d)-acceptable,
S is constant on a given connected component, we conclude
that IS(C)I = 1, i.e., C is trivial. [2Th 4

Another property tha t follows from the legality charac-
terization of a condition is tha t it is possible to trade fault
tolerance for "richness" of a condition. For example, for
f < n/2, C2'~ C_ C~ t. More generally, this is expressed by
the following "trading" theorem:

THEOREM 5. C[/.~,~] C: e~ 1, for 0 ~_ Ct ~_ d.

P r o o f Consider a condition C E ff~d~a] and its graph

G[d-a](C, f +or), where vertices I1 ,12 are joined by an edge
if dist(Ii, I2) <_ f + a + d - a = (f +d). Now let us consider
the graph G[d](C,f). It is a subgraph of G[d-a](C,f + cO,
since it is based on the same input vectors, which are con-
nected in the same way; G[d](c, f) is exactly G[d-a](C, f+a)
where all views that contain more that f values equal to _k
are removed. Since G [d-a] (C, f + c~) contains a common
element in each connected component, so does Gidl(C,f).
That is, C is (f, d)-legal, and hence C E e[j]. r~Theo~e,,~ 5

4.3 Defining Predicates P for the Classes e7 k
and c)*

We conclude from Theorem 5 that C~f = ~2lP[°] C_ C[/] ---
C) *. But, if a 2f-weak-acceptable condition is given with a
pair of associated parameters (P, S), this theorem does not
provide a systematic way to derive a pair of parameters for
the corresponding f-strong-acceptable condition. The theo-
rem that follows provides such a systematic construction.

THEOREM 6. Let f < n]2. If C is a 2f-weak-acceptable
condition with parameters (P, S), then C is f-strong accept-
able with parameters (Pmi~,S), where P,m,~(J) - (31 E C :
JeZD.

P r o o f Let C be a 2f-weak-acceptable condition with pa-
rameters (P,S). C is (2f,0)-acceptable, or equivalently
(2f, 0)-legal. From Theorem 5, it follows that C is (f, f) -
legal, which is the definition of the f-strong-legality. As
Zf C /:2I, it follows that S is well-defined on I f . More-
over, Pmln trivially satisfies Ta~p,~i~. It follows that C is
f-strong acceptable with (Pmin, S). [3Zheore,n S

Given an f-strong-acceptable condition C with parame-
ters P and S, the following theorem introduces a system-
atic way to associate with C a pair of predicates (/~, S ~)
such that P ' may be better than P in the following sense:
VJ E V~: P(J) ::~ P'(J).

155

THEOREM 7. Let C be an f-strong-acceptable condition
(i.e., C E e [I]) with associated parameters (P,S) . C is
f-strong-acceptable with the parameters (P ' , S ') defined as
follows:

• P'(J) --- (3J0 _< J : (#±(J0) < f) ^ P(Jo)),

• S ' (J) = S(Jo) where Jo is such that (Jo < d') ^
(#±(Jo) <_ f) ^ P(Jo).

P r o o f See [23]. nTh m 7

5. A CONDITION-BASED CONSENSUS PRO-
TOCOL FOR e~

The Consensus protocol Presented in Figure 1 is an n
process protocol tha t solves the consensus problem for any
condition C of degree d and f , once its parameters P, S
have been correspondingly instantiated 5. It generalizes the
protocol we presented in [22] (that works only for d -- 0)
by including a strong_collect procedure tha t partially order-
s views. This procedure (including the auxiliary classifi-
er_improver called classifier in [4]) is a direct generalization
of the scale procedure of Attiya and Rachman in [4] (in turn
inspired by [3]), and the correctness proofs are similar.

5.1 The Consensus Protocol
To take into account and exploit the degree d of a condi-

tion, the protocol uses a strong_collect abstraction. We first
define its specification, and based on it, prove the correct-
ness of the consensus protocol. The next subsection presents
an implementation of the strong_collect abstraction.

The strong_collect abstraction. The goal of this abstrac-
tion is to provide processes with views of the proposed val-
ues tha t are ordered by containment when the number of _1_
values exceed some threshold. Due to Property Aid] the ~ P ' - - ~ S '
views including ~few" / values are guaranteed to provide a
consistent decision (if any). A snapshot abstraction (such
as [1, 4]) could be used instead. But, ordering by contain-
ment all views, a snapshot would be more expensive than
the strong_collect abstraction which is not required to or-
der all views. As d increases, the step complexity (i.e. the
number of atomic read/write operations on shared variables)
of the strong_collect abstraction reduces, until it becomes a
void statement when d = f . Conversely, when d decreases,
strong_collect orders more views. More precisely, to correctly
implement the strong_collect abstraction, a protocol should
satisfy the following specification, where I is the input vec-
tor of the execution of the consensus protocol that invokes
strong_collect:

SPECIFICATION I. strong_collect [d] is an n process wait-
free protocol. Assume a set of processes {Pi} invoke it with
views {Ji} in T. I . Let J be the union of all Ji vectors. Then,
they eventually get back views {J '} resp., such that:

~. j , < j ; <J ,

SAs we have seen, the class e~] is interesting only when
f < n - d. Moreover, in our sequel [24] there is a protocol
with no collect in the walt-free part when f < n/2. Hence,
this section is interesting for f _> n/2 > d, which is exactly
the case where there is no message passing solution [22].

~. (#±(J~) + # ± (J j) > f + d) =~ (J ' _< J~ V Jj _< J ') ,

3. The number of steps ezecuted by a process pi is:
O(n log(f - d + 1)).

The consensus protocol. The protocol assumes P and
S have been instantiated to correspond to a condition C
that belongs to the class e td], so tha t P, S satisfy Property

• [d] o for f . A pro- T o - , p , Property Vp- . s , and Property ~p_+o
tess pi starts executing the protocol by invoking the function
Consensus[dl(vi) where vi is the value it proposes. It termi-
nates when it executes the statement r e t u r n which provides
it Cat line 6, 8 or 11) with the decided value. The protocol
has the three-part structure described in the Introduction:

P a r t I (lines 1-2): A process pi first writes its input value
vi to a shared array V. Then pi repeatedly reads V until at
least (n - f) processes (including itself) have written their
input values in V, from which it constructs its initial view
Ji, where Ji[j] is the input value of pj, or I if pj has not
yet written its input value.

P a r t 2 (lines 3-6): Now, pi enters its wait-free, condition-
dependent part of the protocol. It uses the strong_collect~ d]
underlying abstraction to compute a possibly enriched view
J ' according to Specification 1. With the view J~, it tries
to make a decision, by evaluating P(J ') . If true, pi returns
S(J~) = wi (line 6), otherwise (i.e., wi = T) pi proceeds to
the next part, the best effort termination section. In either
case, it writes first its decision (or T if it could not decide)
in the shared variable W[i] to help other processes decide in
the next part.

P a r t 3 (lines 7-11): In this section, pi enters a loop to
look for a decision value (i.e., a value different from I , T)
provided by another process pj in the shared variable W[j].
If, while waiting for a decision, pi discovers tha t every pro-
cess has written a value to W, and no process can directly
decide (all these values are T) , Pi concludes that every pro-
cess has deposited its initial value in the shared array V in
line 1. Then, pi reads V (line 10) to get the full input vec-
tor, and proceed to decide according to a fixed, deterministic
rule F that returns one of the input values (such as max).

F u n c t i o n Consensus[fdl (vi):

I1) write(v,, v[i]);
2) repeat Ji ~- collect(V) unt i l (#_L(Ji) _< f);

(3) J~ +- strong_collect[d](Ji);
(4) if P (J ') t h e n wl +- S(J'i) e lse wi +-- T;
(5) write(, w[i]);
(6) if (wl ~ T) t h e n r e tu rn (wi)
(7) else repeat Xi ~-- collect(W);
(8) i f (3 j : X,[j] ~ / , T)

t h e n re turn(Xi[j])
(9) un t i l (/ ~ Xi);
(lO) [a~,..., a.] ~- co,ect(v);
(11) r e t u r n (F ([a , , . . . , a d))

F i g u r e 1: D e g r e e d C o n s e n s u s P r o t o c o l

Recall tha t the step complexity considers only the second,
walt-free part of the protocol, tha t is, the shared memory
operations performed by the strong_collect subprotocol. The
other parts are independent of d and C.

156

THEOREM 8. Consensus~] solves the consensus problem

for f and any condition C E etf d] if its parameters P, S sat-

isfy Property Tc-~ p , Property VP-~ S , and Property atdl ~ p . . + S •
The step complexity of a process is O(n log(f - d + 1)).

P r o o f P-Validity: It follows from the code, from Property
VP- .s , and from the first item of Specification 1, tha t a
decided value is a proposed value.

P-Agreement: To prove that no two processes decide differ-
ent values, let us first consider two processes, pi and pj that
decide in line 6. Thus, P(J~) and P (J j) are true, and they
decide S(J~) and S(J~), respectively. If # ± (J ') + #±(J~) _<
f + d, then we get S(J~) = S(J~) from the second part of

Property A X I s . If #±(J,'-) + ~ (J j) > f + d, then, due to
the second item of Specification 1, J~ _< J~ (or the opposite),
and consequently we get S (J ') = S(J j) from the first part

of Property A[~l s.
Now, let us assume that Pi decides at line 8. Then, it

decides a value decided by another process at line 6, and we
are done. Finally, assume pi decides in line 11. Then pi gets
Xi[k] = T for all k, and hence no process decides at lines 6
or 8. Moreover, all processes that decide get the complete
input vector, and as they all apply the same (deterministic)
function F to this vector, they get the same decided value.

P-Best_Effort_Termination: The proof is similar to the one
in [22], using Specification 1 and Property T v - . e .

Step Complexity: Follows directly from item 3 of Specifi-
cation 1. F-]Theorem 8

5.2 Implementing the strong_collect Abstraction
This section describes the implementation of the strong_

collect abstraction in Figure 2. Basically, an execution of
strong_collect by a process Pi traverses a labeled binary tree
T, starting at the root with its initial view Ji, and then
going down one level in each iteration of its loop (fines 4-5),
until it terminates in a leaf with a final view J~. At each
vertex of the tree, processes propose views, which get refined
into two categories: "rich" views proceed to the right son of
the vertex, and the other views proceed to the left son. The
aim of a tree traversal is to allow processes to classify and
enrich their views, and ensure that the final views obtained
by processes tha t have "too many" _L entries (those views
are at the left of the tree) are dominated by the views that
have less _L entries (those views are at the right of the tree).

Notice tha t f and d do not appear in any line of the
protocol. These parameters affect only the depth of the
tree T and its labeling. So, we first describe the behavior
of the protocol for arbitrary trees. We will then show that
there exists a particular tree for which the proposed protocol
satisfies the strong_collect requirements of Specification 1.

Traversing a labeled binary tree. The tree used by strong_
collect is a data structure shared by the processes which can
access i t f rom the pointer root. Each non-leaf vertex v con-
talns (1) pointers to its children (v.left and v.right), and (2)
an array v .R of n vectors. The vector v.R[i] is a shared vari-
able initialized to [_l_,... , _L] that can atomically be written
by pi (to store its current view) and read by any process.
Each vertex v is labeled with a pair of integers, namely, L(v)
and H(v) defining an integer interval associated with v.

Let the size of a view J be [JI = n - # ± (J) (number of
positions of J with a non-_l_ value). As suggested before,

each process Pi traverses the tree from the root downwards
modifying its initial view and getting a possibly enriched
view such that its size is always in the interval [L(v), H(v)]
of the vertex v being traversed. An interval is trivial if its
size is 1. The processes that terminate in a leaf v with a
trivial interval, namely, L(v) = H(v) = z, get the same
view (of size z), while the views of processes that terminate
in leafs with non-trivial intervals are not guaranteed to be
ordered by containment. In addition, the tree structure and
its traversal guarantee that any view J dominates any view
J ' obtained in a leaf on the left of tha t view, i.e., J ' < J.
Any tree can be used, as long as the intervals of the children
of a vertex form a partition of the parent interval, and the
interval of the root contains the sizes of the initial views.
More precisely, the labels are set to satisfy the following
properties (hence, the intervals associated with the leafs of
the tree form a partition of the interval associated with the
root):

• [L(root),/-/(root)] = [. -- f , n],

• L(v.left) = L(v), H(v.left) = L(v.right) - 1 and
H(v.right) = H(v) for any non-leaf vertex v.

t execution. The process starts at the root with its ini-
tial view, namely, currenti = Ji. Then, it uses an under-
lying abstraction classifier_improver (see below) to amelio-
rate its view. More precisely, at line 4 the process calls
root.classifier_improver(currenti) (which uses H(root.lefl) as
the boundary between the intervals of the children of root,
and root.R as shared array), and gets back a "new" view
stored in currenti , and a boolean value (richi) indicating if
the view is rich for this node (for the root of the tree, richi is
true if the view has more than H(root.lefl) entries different
from _L). If so, the process moves to the right son of root,
while if the view is not rich enough, it moves to its left son.
This is repeated until a leaf of the tree is reached.

F u n c t i o n strong_collect~](,h): resu/ t (~)

(1) currenti ~- J~;
(2) v +-- root;
(3) whi le v is not a leaf d o

141 i f rich,(current" richi) ~- yes t h e n v +-- v.right
else v ~ v.left

(6) endwhi le ;
(7) re turn(J~ = currenti)

F i g u r e 2: A n I m p l e m e n t a t i o n o f strong_collect[f]

The classifier_improver abstract ion. The v.classifier_im prover
abstraction is attached to the vertex v of the tree. The no-
tation U{J l , . . . , Jn}, for views Ji E Z! denotes the view J
that has a n o n - / v a l u e v = J[j] in a position j if at least for
one i, Ji[J] = v. A classifier_improver protocol should satisfy
the following specification.

SPECIFICATION 2. v.classifier_improver/8 an n process wait-
free protocol attached to the vertex v, with associated integer
interval [L(v), H(v)]. Processes p~ invoke it with views Ji
such that Ji E Z f , for some input vector I , and [U {J~}l <

157

H(v) . They eventually get back views J~ E Z ! and baoleans
richi, such that:

1. Je ~_ J~,

e. Ifrich~ = yes then lJ~l > H(v.left) else I~1 --- H(v.lefQ,

3. (rich, = no h richj = yes) =~ (J~ < J~),

4. u{s ' } = u{s,} ,

5. I u {J' s.t. rich, = no}l -< H(v.lefQ.

The execution of v.classifierJmprover by Pi (line 4), dur-
ing a strong_collect invocation, is denoted pi • visited(v).
Moreover, J,,= denotes the actual value of the corresponding
input parameter (currenti), while rich,,= denotes the value
returned by classifier_improver at the end of the visit of v by
pi. The lemma tha t follows states the main properties of
the traversal of an arbitrary tree T.

LEMMA 1. Assume there is an input vector I , such that
processes pi invoke strong_collect[y d] udth views J, • Z I . For
every vertez v and process p~ :

1. L(v) <_ IJ,,~[< H(v) uJhen pi • visited(v),

e. I u,,,o~.,-~c.) {s,,~}l --- H(v) ,

3. J,,~ < J~,~ tohenever H(v) < L(u) h Pi • visited(v)
^pj • visited(u)

4. J,,~ = Jj,~ uJhenever L(v) = H(v)
^ p , ,pj • visited(v).

P r o o f See [23]. E]ze~= 1

Designing an appropriate tree. We now design a tree T [d]
for each d in [0, f], to be used by the protocol Strong_collect~ 1.
We assume d < f , because otherwise the protocol is not
needed: no views need to be ordered, and no tree is need-
ed. To satisfy Specification 1(2), we want views Ji, Jj to
be ordered whenever ~J_(Ji) + ~_L(Jj) > f + d; tha t is,
whenever IJ, I + [JJl < 2n - (f + d). Thus, we want the tree
to have a leaf v with interval L(v) = H(v) = x for every
n - / _< z < r(2n - (f + d))/21. As we shall see, these are
the only leaves tha t require trivial intervals (i.e., of size 1);
we use one more leaf with interval [[(2n - (f + d))/2] ,n].
This leaf can have non-trivia` interval, since we do not need
the corresponding views to be ordered. Using these inter-
vals for the leaves, the interval of every other vertex is de-
fined inductively, as the union of the intervals of its chil-
dren. For this to work, we assume the number of leafs,
r(2n- (y + d))/21 - (n - f) + 1 = r (/ - d) / 2 1 + 1, to be a
power of two (standard techniques can be used otherwise).
It follows that, in the general case, the tree T [d] has a depth
equai to pog2(r(/-d)/21 + 1)1. We can now prove that
strong_collect[f d] satisfies its specification when using the tree
T [d] previously defined.

LEMMA 2. The Strong_collect~ protocol described in Fig-
ure ~ satisfies Specification I.

P r o o f The proof of Specification 1(1) is a direct conse-
quence of the classifierJmprover Specification 2(1).

To prove Specification 1(2), we consider two returned views
J~,J~ with ~j_(J[)-t- ~±(J~) > / + d ; that is, with]J~l-F
[J~l < 2n - (f + d). Let us first consider the case where
IJ'l < r (2n- (f + d)) / 2] and]Jj] < r (2n- (. f+d)) /2] .
Thus, both views end in leaves with trivial intervals, and
either one is less than the other, by Lemma 1(3) or else
they are equal by Lemma 1(4). The other case is when
IJ'l < r (2 n - (f + d)) / 2 1 and IJjl-> r (2 n - (f + d)) / 2] (or
the opposite). Then, J" < J~ by Lemma 1(3).

The proof of Specification 1(3) follows from (1) the height
of T [d] which is Flog2(r(f- d)/21 + 1)1, and (2) the fact
that a process executes one write and at most two collect
operations along each vertex on a path from the root to a
leaf. OLemma 2

COROLLARY i. The step complexity of the Strong_collect
protocol (and hence the step complexity of the uJait-free part

the Consensnsl: protocol) is at most of

(2 n + l) [l o g z ([t ~] + 1)] .

P r o o f lmrnediate consequence of the height of the tree T [d],
and the fact tha t a collect costs n steps. [3CoroUaru 1

5 3 I m p l e m e n t i n g the classifier_improver A b s t r a c -
t ion

As we have seen, the aim of the classifier_improver abstrac-
tion associated with the vertex v is to ameliorate the current
views of processes pi visiting this vertex v, orienting them to
the left or right subtree rooted at v, according to the size and
the content of their current views. A protocol, implement-
ing this abstraction for a vertex v, is described in Figure
3. It works as follows. The processes write their views J~
to a shared array v.R, and end up with views J ' either of
size at most H(v.left) or greater than H(v.lefl). Processes
also get back a boolean value richi that indicates which of
the two cases occurred. Hence, this procedure is invoked
for each non-leaf vertex v, and each of these invocations is
independent of the others.

F u n c t i o n v.classifier_improver(J~): result(J~ , richi)

/~I write(Ji, v.Rli]);
P~ ~--collect(v.R);

(3) ~ lu {P~[z], . . . , ~ [-] } / > HCv.le#)
(4) t h e n R~ ~-collect(v.R);
(5) r e t u r n (J~ = U{R~[1], . . . ,P~[n]},

richi = yes)
(6) else r e t u r n (J; = Ji,

rich~ = no)

Figure 3: An Implementat ion of classifier_improver

LEMMA 3. Let us consider a vertex v. The v.classifier_im-
prover protocol described in Figure 3 satisfies Specification ~.

P r o o f The proof of Specification 2(1) follows directly from
the code and the fact that, VJi , . . . , J j , we have J~ _< J~ U
. . .UJ j .

158

The proof of Specification 2(2) follows directly from the
lines 3-6 (test of line 3 and containment property of sequen-
tial collect invocations).

For the proof of Specification 2(3) let us observe that, as
richj = yes, pj executes two collect operations, that we call
collectl (line 2) and collect2 (line 4). There are two cases.
- If Pl executes its write (line 1) before pj starts collect2,
this collect gets the value written by pl, and consequently
Ji _< J~. As, r i ch ,= no, J[= Ji (from the protocol text).
Moreover, as rich~ = no and richj = yes, we have [J'[<
H(v.left) < IJjl from the protocol test at line 3. Hence,
J ; # J~. It follows that J~ < J~.
- Let us now examine the other case: pi executed its write
(line 1) after pj starts collect2. Hence, p(wrote after the
end of collect1 by pj. If follows that when pl executes collect
(line 2) it gets at least at many values as collectl (because
it started after collect1 terminated). Consequently, pi sees
a union of size at least as large as pj saw in that line, which
is greater than H(v.left). It follows that richi = yes, a
contradiction.

The proof of Specification 2(4), follows directly from the
code (no entry value is created by the protocol).

For the proof of Specification 2(5), let us first notice that
for every process pi such that richi = no, we have J,'. = Ji.
Now, let us consider the set of processes pj that get richj =
no. Among them, let Pk be the last tha t executed line 1.
Due to the linearizability property on the basic write and
read operations, when Pk executes line 2, it sees the inputs
of all the processes pj such that richj = no. Thus, the size
of the union of these inputs must be at most H(v.left), since
otherwise pi would get richi = yes when it executes line 3.

['l L e m m a 3

6. T W O CONDITIONS
~,[d] f,~Id] Here, we present two families of conditions, ~ ! , v = ! ,

~ k wk for 0 < d < f _< n, in the style of the conditions C l f , C2I
introduced in [22]. Indeed, C1~ k -- C1 I°] and C2~ k = C2 {°].

6.1 The Condition c1~ d]
The idea of this condition is to guarantee that all the

processes have the same extremai (largest or smallest) value
in their local views in order to decide on it. We (arbitrarily)
consider the largest value (max(J) denotes the largest non-_L
value of J). Formally, we have:

i (IECI~I) iff [a=max(1) :=~ #a(I I>(f+d)] . i

For ease of notation, in the next theorem we define (~]
to be empty for d = f + 1. It follows from Lemma 4, 5, and
Theorem 1.

THEOREM 9. For (f +d) < n, c l [d] E E [d] - - e [d+l].

LEMMA 4. I f (f + d) < n, Cl[i d] is (f , d)-acceptable with
the following parameters:

• Pl[yd](J) = (a = max(J)) ==~ (# a (J) > (f - I - d -
#±(J))),

• SI(J) = max(J) .

P r o o f First, we show that CII~ d] is (f, d)-legal, and then
exhibit the (P, S) parameters for its (f, d)-acceptability.

In order to show that CI[s d] is (f, d)-legai, we prove that

S1 is constant on any connected component of G [dl (C1 ~d], f).

Let C' be a connected component of G[d](cI~], f) . We con-
sider two cases, induced by the two types of vertices:

Let I1 ,12 be two vertices of Cl[/d], connected in C'. Let
a (resp. b) be the maximum of I i (resp •2). Assume
that a _> b. We have #=(I2) _> #=(I1) - d(Ii , I2) >_
= (I 1) - (f + d) , because I1 and 12 are connected by an
edge. Since I1 belongs to Cl[f], it satisfies #=(I1) >
(f + d), and hence #=(12) > 0, i.e., a belongs to 12.
Finally, as a _> b, we can conclude that a ---- max(I2),
i.e., $1(II) = $1(12).

Let J1, J2 be two vertices of Cl[f], such that J2 _< J1
(hence, there is an edge connecting them in C'). Let I
in Cl[f] NC' such that J1 E Z I, and a the maximum of
I . Since I belongs to the condition, a appears at least
(f + d + l) times in I . As J1 is obtained by replacing up
to f entries of I by _L, we can conclude that a E J 1 . As
the same applies to J2, we get S I (J1) = $1(J2) = a.

It follows that S1 is constant in each connected component
C ' of G[d](ClIid], f) . Consequently, Cl[l d] is (f, d)-legai, and
due to Theorem 1, (f , d)-acceptable.

Let us consider the pair (P, S) used in the proof of the
Theorem 1:

• P (J) - - (3 I E C l [d] : J E Zf),

• S (J) = a non-_L value common to the vertices of the
connected component to which J belongs.

$1 is S instantiated with max (which is constant on a con-
nected component). We show that PI[~ dl is exactly P.

Let us first prove VJ : Pl[fd](J) =~ P(J) . Let J such that

Pl[ydl(j) holds, i.e., (max(J) = a) =~ # , (J) > (f + d -
± (J)) . Let I be the vector obtained by replacing each _L
in J by a. So, J E I f . Trivially, # = (I) > (f + d), and
I 6 C l ~]. Hence, P(J) holds.

Let us now prove VJ : P (J) =~ p I ~ I (J) . Let J such

that P(J) holds. Let I E C1 {d! such that J E I I , and
a = max(I) . Notice that #= (I) > f + d. Combined with
J _< I , we get # , (J) > (f + d - # ± (J)) _> 0. Hence,
the value a belongs to the vertex J . As, except for _L, the
values of J belong to I , we have a = max(J) . Consequently,
PI~=](J)" holds. OL 4

C1 [d], the following lemma proves that there is Using a

(f, d)-legal condition that is not (f, d -I- 1)-legal. A forward
reference to this lemma appeared in Theorem 2 to prove
strict class contalnement.

LEMMA 5. Assume (f + d) < n and d < f . Then, C1~]
is not (f , d + 1) - l e g a l .

P r o o f Assume for contradiction that (f +d) < n and Cl[I d]
is (f, d-I-1)-legal. Consider its graph G[d+q(f, Cl[yd]). Con-

sider the following vertices 11,12 E C1~ 1. I1 has the first

159

(f + d + 1) positions equal to a value a, and the others e-
qual to b, such tha t a > b, and I2 has all its entries equal
to b. Clearly, I1 is in the same connected component tha t
the vector with all entries equal to a, since we can switch
one by one the b's of I1 to a ' s while maintaining the prop-
erty tha t the number of a ' s is more than (f + d + 1). Thus,
there is one, and only one value in common to all vectors
of this component, namely, a. On the other hand, 12 has
only b's, so i t is in a different connected component. How-
ever, dis t (I i , I2) = (f + d + 1), and hence there is an edge

I1 and 12 in G[d+l](f, cl[d]), a contradiction. connecting
d

DLemm= 5

6.2 The Condition c2~ ~
The idea of this condition is to guarantee tha t the most

common value in the input vector I can be unambiguously
decided by each process. Some notat ions are required to
formally express it: #1~t(J) denotes the occurrence number
of the most common n o n - / v a l u e of J; #and(J) denotes the
occurrence number of the second most common n o n - / v a l u e
of J (if there is no such value, #and(J) = 0). Wi th these

C2[/d] can be formally expressed as notations follows:

I (I E e 2 [f d]) iff [# 1 . t (I) - - # a n d (I) > (f + d)] . [
I I

The following is a consequence of Lemma 6 (that follows)
and Theorem 1. The proof of Lemma 6 can be found in [23].

THEOREM 10. For (I "]" t 0 < , , C2 [4] q C [d].

LEMMA 6. I f (f + d) < n, C2[I d] ~ (f , d)-acceptable with
the follou~ing parameters:

* P2[/dl(J) -- #1odJ)--#2nd(J) > (f + d - # ¢ (J)) ,

• S2(J) = a such that #=(J) = # | , t (J) .

Acknowledgments
We thank Nancy Lynch for discussions tha t lead to the ques-
t ion considered in this paper .

7. REFERENCES
[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and

Shavit N., Atomic Snapshots of Shared Memory. Journal of
the ACM, 40(4):873-890, 1993.

[2] Aguilera M.K. and Toueg S., Failure Detection and
Randomization: a Hybrid Approach to Solve Consensus.
SIAM Journal of Computing, 28(3):890-903, 1998.

[3] Attiya H., Herlihy M.P. and Rachman O., Atomic
Snapshots Using Lattice Agreement, Distributed
Computing, 8(3):121-132, 1995.

[4] Attiy~ H. and Rachman O., Atomic Snapshots in
O(nlogn) Operations. SIAM Journal of Computing,
27(2):319-340, 1998.

[5] Attiya H. and Welch J., Distributed Computing:
Fundamentals, Simulations and Advanced Topics,
McGraw-Hill, 451 pages, 1998.

[6] Ben-Or M., Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols. Proc. ~nd
A CM Symposium on Principles of Distributed Computing
(PODC'83), ACM Press, pp. 27-30, Montrdal (Canada),
1983.

[7] Garay J. and Berman P., Adaptability and the Usefulness
of Hints (Extended Abstract). 6th European Symposium on
Algorithms (ESA '98), Venice (Italy). Springer-Verlag
LNCS #1461, pp. 271-282, 1998.

[8] Borowsky E., Gafni E., Lynch N.A. and Rajsbaum S., The
BG Distributed Simulation Algorithm. To appear in
Distributed Computing, 2001.

[9] Biran O., Moran S. and Zaks S., A Combinatorial
Characterization of the Distributed 1-Solvable Tasks.
Journal of Algorithms, 11:420-440, 1990.

[10] Biran O., Moran S. and Zaks S., Deciding 1-Solvability of
Distributed Tasks is NP-Hard. Proc. 16th International
Workshop on Graph-Theoretic Concepts in Computer
Science (WG'90), Springer-Verlag LNCS #484, pp.
206-220, 1990.

[11] Chandra T. and Toueg S., Unreliable Failure Detectors for
Reliable Distributed Systems. JACM, 43(2):225-267, 1996.

[12] Chaudhuri S., More Choices Allow More Faults: Set
consensus Problems in Totally Asynchronous Systems.
Information and Computation, 105:132-158, 1993.

[13] Dwork C., Lynch N.A. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. JACM, 35(2):288-323,
1988.

[14] Dolev D., Lynch N.A., Pinter S., Stark E.W., and Weihl
W.E., Reaching Approximate Agreement in the Presence of
Faults. JACM, 33(3):499-516, 1986.

[15] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility
of Distributed Consensus with One Faulty Process. JA CM,
32(2):374-382, 1985.

[16] Gafni E. and Koutsoupias E., Three-Processor Tasks Are
Undecidable. SIAM Journal of Computing, 28(3):970-983,
1999.

[17] Herlihy M.P. and Rajsbaum S., On the Decidability of
Distributed Decision Tasks. Proc. ~9th A CM Symposium
on the Theory of Computing (STOC'97), ACM Press, pp.
589-598, 1997.

[18] Herlihy M.P. and Rajsbaum S., New Perspectives in
Distributed Computing. Invited Talk, Proc. ~4th Int.
Symposium on Mathematical Foundations of Computer
Science (MFCS'99), Springer-Verlag LNCS #1672, pp.
170-186, 1999.

[19] Inoue M., Chen W, Masuzawa T. , and Tokura N. ,
Linear-Time Snapshot Using Multi-Writer Multi-Reader
Registers. Proc. 8th Int. Workshop on Distributed
Algorithms (WDAG'94), Springer-Verlag LNCS #857, pp.
130-140, October 1994.

[20] Israeli A., Shaham A., and Shirazi A., Linear-Time
Snapshot Protocols for Unbalanced Systems, Proc. 7th Int.
Workshop on Distributed Algorithms, Springer-Verlag
LNCS #725, pp. 26-38, 1993.

[21] Lynch N.A., Distributed Algorithms. Morgan Kaufmann
Pub., San Fransisco (CA), 872 pages, 1996.

[22] Mostefaoui A., Rajsbanm S. and Raynal M., Conditions on
Input Vectors for Consensus Solvability in Asynchronous
Distributed Systems. Proc. 33rd A CM Symposium on
Theory of Computing (STOC'01), ACM Press, Crete
(Greece), July 2001.

[23] Mostefaoui A., Rajsbanm S., Raynal M., and Roy M., A
Hierarchy of Conditions for Consensus Solvability. Research
Report #1381, IRISA, University of Rennes, Prance,
January 2001. Available at:
wmv. irisa.fr/bibli/publi/pi/2001/t381/t381.html

[24] Mostefaoui A., Rajsbanm S., Raynal M. and Roy M.,
Condition-Based Protocols for Set Agreement Problems.
Research Report #1393, IRISA, University of Rennes,
France, April 2001, 21 pages.
http:/ /www.irisa.fr/bibli/publi/pi/2001/1393/1393.html.

[25] Mostefaoui A., Raynal M. and Tronel F., The Best of Both
Worlds: a Hybrid Approach to Solve Consensus. Proc.
/BEE Int. Conf. on Dependable Systems and Networks
(DSN'O0, previously FTCS), pp. 513-522, June 2000.

160

