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Abstract 

Self-stabilization is an abstraction of fault tolerance 
for transient malfunctions. Intuitively, a self-stabilizing 
program resumes normal behavior even if execution be- 
gins in an illegal initial state. In this paper, we ex- 
plore the possibility of extending an arbitrary program 
into a self-stabilizing one. Our contributions are: (1) 
a formal definition of the concept of a program being 
a self-stabilizing extension of a non-stabilizing program; 
(2) a characterization of what properties may hold in 
such extensions; (3) a demonstration of the possibility 
of mechanically creating such extensions. 

The computational model used is that of an asyn- 
chronous distributed message-passing system whose 
communication topology is an arbitrary graph. We con- 
trast the difficulties of self-stabilization in this model 
with those of the more common shared-memory mod- 
els. 

1 Introduction 

1.1 Problem Statement 

Self-stabilization is an abstraction of fault-tolerance for 
a model in which transient faults arbitrarily corrupt 
data, messages, and location counters (but not the pro- 
gram code). Each such fault is assumed to be followed 
by a long period without additional faults. The concept 
of a self-stabilizing distributed program, introduced by 
Dijkstra [Dij74], requires that a program executing with 
an arbitrary initial state (including arbitrary control lo- 
cations) eventually must reach a legitimate state and 
thereafter remain in legitimate states. In other words, 
the property “the program is in a legitimate state” is 
stable (see [CLSS]) and eventually true. The arbitrary 
initial state represents the situation immediately after 
a fault. 
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The difficulty of self-stabilization lies mainly in the 
fact that a process has no way of distinguishing between 
an initial state and one that occurs during the compu- 
tation, For example, the assertion (Z = 0) does not 
always hold following the code z := 0 since the initiai 
control state may be just after this statement, without 
it having actually executed. Similarly, control of a pro- 
cess can be just after a send instruction in a message- 
passing model, without a message having actually been 
sent and with no indication of this fact, Thus, no pro- 
cess can ever “depend” on the accuracy of any value 
stored in its memory. 

The contributions of this paper are (1) to formally 
define the concept of a program being a self-stabilirin,g 

extension of a non-stabilizing program; (2) to charac- 
terize which properties may eventually hold in such an 
extension; (3) to examine the limits of self-stabilization 
in the asynchronous distributed message-passing model 
of computation; (4) to demonstrate the possibility of au- 
tomatically creating such extensions, via the superim- 
position of self-stabilizing algorithms for taking global 
distributed snapshots and performing resets. 

The self-stabilizing version of the snapshot algorithm 
has repeated sending of messages to ensure liveness, and 
round numbers to ensure eventual consistency of the 
results. A technique is also introduced to avoid clog- 
ging the system with outdated messages. The proof of 
self-stabilization is based on showing that all messages 
initially in the channels (including snapshot messages 
that were never actually sent) and the effects of those 
messages will eventually be ‘flushed’ from the system, 
as will the effects of the arbitrary initial values in the 
processes. 

We also show that although self-stabilization is glob- 
ally achievable, no process in the system can ever know 

that the system has self-stabilized. This rules out the 
possibility of algorithms that switch from an inefficient 
but self-stabilizing mode to one that is more efficient 
but non-stabilizing. 

1.2 Previous Work 

Previous results on self-stabilization generally employ 
a shared-memory model of computation, with self- 
stabilization being a primary consideration in the con- 
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struction of the program. In contrast, our results exam- 
ine a different computational model (message-passing 
in a communication graph with arbitrary topology), 
and focus on the mechanical transformation of a pro- 
gram into an extension that is also self-stabilizing. This 
necessitates formulating a precise semantics for self- 
stabilization and using it to define when a program is 
“a self-stabilizing equivalent” (i.e, extension) of a non- 
stabilizing program. 

Dijkstra[Dij74] demonstrated the concept of self- 
stabilization through an example that identified the le- 
gitimate states as those with exactly one enabled opera- 
tion (called a privilege). His solutions thus are examples 
of self-stabilization for a form of mutual exclusion (or, 
equivalently, for a token ring with a single token). Sub- 
sequent results [Dij74,Lam84,GE88,BP89,BGW89] fol- 
low Dijkstra in that they deal with mutual exclusion or 
token-passing and create self-stabilizing programs from 
scratch. Lamport’s mutual exclusion algorithm[Lam84] 
is the exception in that he creates a self-stabilizing pro- 
gram by inserting statements into a non-stabilizing pro- 
gram. 

There are few results providing a precise semantics for 
self-stabilization. Lamport[Lam84] defined a trunsienl 
malfunction behavior as an execution in which each pro- 
cess initially assigns arbitrary values to its variables be- 
fore following the code of the algorithm. Then an algo 
rithm is self-stabilizing for a property A if A eventually 
holds for every such behavior. He leaves open the dc+ 
main of the values in the malfunction operation. 

2 The Model and Its Difficulties 

An outline of a formal semantics for the model is given 
in the following section. Intuitively, the computational 
model used in this paper is that of an asynchronous 
message passing system. A message passing system is 
a collection of processes that are connected by FIFO 
communication channels. Processes may exchange val- 
ues only by transmitting messages. The system is asyn- 
chronous in that there are no bounds on either relative 
process speeds, message delivery time, or channel ca- 
pacities. We do assume that every message sent is even- 
tually received and that every statement whose guard 
remains true is eventually selected for execution. In the 
initial state of such a system, process states, location 
counters, and channels may have arbitrary values. 

Although simulations of message-passing by shared- 
memory (and vice-versa) exist, they are not self- 
stabilizing. With regard to self-stabilization, the asyn- 
chronous message-passing model introduces several phe- 
nomena absent from the shared-memory model. 

The primary one is apparently sent messages. In a 

local process state intended to follow the sending of a 
message, there is no way to determine whet.her (a) the 
desired message has actually been sent or (b) this is 
merely a false impression, and the local state is part of 
the initial global state. This could cause deadlock, with 
a process waiting for a response that will never come 
because the request message was never actually sent. In 
contrast, shared memory allows a process to determine 
(by reading) that a variable has an unexpected value. 

Another difficulty is of infinite propagation of false 
channel information. Since the channels can initially 
have arbitrary messages on them, the effects of these 
messages must not be to indefinitely generate new mes- 
sages that are possible only in response to the mislead- 
ing incoming messages. Otherwise an acceptable global 
state might never be reached. At some point, these in- 
jurious initial messages and injurious new messages gen- 
erated due to them must be purged from the system. 

3 Semantics of self-stabilization 

We precisely define the notion of what it means for one 
program to be both self-stabilizing and “an extension” 
of another program. The definitions below are for the 
interleaving execution model of concurrent systems. 

We adopt the usual definitions of: a local state of a 
process (an assignment of values to the local variables 
and the location counter); a global state of a system of 
processes (the cross product of the local states of its con- 
stituent processes, plus the contents of the FIFO chan- 
nels); the semantics of program operations (the possi- 
ble atomic steps and their associated state changes); 
an execution sequence of program P (a possibly infinite 
sequence of global states in which each element follows 
from its predecessor by execution of a single atomic step 
of P). 

The set of all possible execution sequences of program 
P is denoted by sem(P) and defines the semantics of P. 
Note that no assumption is made about the initial state 
of an execution sequence, except that all values are from 
the appropriate domain. 

The definition of self-stabilization depends on what 
are considered the “legitimate” states of a program. We 
could define the legitimate states of prograrn P as those 
satisfying a predicate (called P’s specification). Alterna- 
tively, these states could be defined as those obtainable 
from a “normal” execution. For the purpose of defining 
self-stabilizing extensions of a program, we choose the 
latter. Of course, the normal initial states could also be 
defined using a predicate but, for the sake of concrete- 
ness, we choose a particular common possibility. Those 
initial states in which the location counter of each pro- 
cess is 0 and all channels are empty are said to be nor- 

92 



mal; the legal (i.e,, intended) semantics of program P 
is the subset of sem(P) containing only sequences with 
normal initial state and is denoted by legsem( Ev- 
ery global state in a sequence from legsem is also 
defined to legal. 

Note that the set, of legal global states is, in gen- 
eral, much smaller than the set of possible global states, 
since the latter includes many combinations of values 
that do not, arise in any legal execution sequence. The 
iitegnl execution sequences are those that have initial 
illegal states. There is yet a third class of execution se- 
quences: those with initial states that are legal, but not 
normal, e.g., with control not at the beginning of the 
code. These are clearly suffixes of legal sequences. In 
the continuation, note that a suffix of a sequence can be 
the sequence itself. 

Definition 1 Program P is self-stabilizing $ each se- 
quence in sem(P) has a non-empty sufix that is iden- 
tical to a sufix of some sequence in legsem( 

In other words, from some point on every computation 
is identical to a legal one. Now we turn to the relation 
between a program and an extension. A projection of 
a global state onto a subset of the variables and the 
messages on the channels is the value of the state for 
those variables and messages. 

Definition 2 Program Q is an extension of program P 
if for each global state in legsem there is a projec- 
tion onto all variables and messages of P such that the 
resdting set of sequences is idenfical to legsem( up 
to stuttering’. 

Definition 3 Program Q is a self-stabilizing extension 
of program P if Q is self-stabilizing and also is an ex- 
tension of P. 

That is, considering only those portions of Q’s global 
state that correspond to P’s variables and messages, the 
legal semantics of P and Q are identical if repetitions of 
states are ignored. Moreover, Q is self-stabilizing for all 
its computations. When begun in normal initial states, 
P and Q have the same possible executions (relative to 
P’s state, ignoring location counters) and Q resumes 
the intended semantics when begun in an illegal initial 
stat For legal but not normal initial states, Q merely 
executes the suffix of a legal computation, relative to 
P. Note that no correspondence is required among the 
illegal computations of P and Q, or among the location 
counters. 

’ When comparing sequences, adjacent identical states are 

eliminated; this is sometimes called the elimination of stuttering. 

In particular, program P may terminate with control 
locations after all statements of its program (or, equiva- 
lently, at halt statements), but Q generally has no such 
halting locations. Otherwise, Q could have an initial 
state with its control halted, but with an illegal global 
state relative to the messages and variables-and thus 
not be self-stabilizing. The extension for a terminating 
computation of P has execution sequences that even- 
tually repeat a final stake of P forever, changing only 
variables not present in P. By similar reasoning, ex- 
cept for trivial cases, no process can ever have a local 
state that guarantees a legal global state. (The pro- 
cess could intially have that state, even when the global 
state is illegal.) This means that no process can ever 
know that the system has self-stabilized, even though 
self-stabilization can be guaranteed to eventually occur. 

4 Limits on Self-Stabilizing Ex- 
tensions 

Before demonstrating how a self-stabilizing extension 
of a program is created, we consider which properties 
can hold in the extension. A simple example illustrates 
the potential problems. ,Suppose that the specification 
of program P is “a 1 is eventually output” and that 
“l,o,o,. . . ” is the only legal output sequence of P. Fur- 
thermore, suppose that program Q outputs only all-zero 
sequences when started in an illegal initial state and oth- 
erwise produces the same sequence as P. Then Q is a 
self-stabilizing extension of P but does not eventually 
satisfy P’s specification. The problem is that some se- 
quences in legsem satisfy the specification but have 
suffixes that do not. 

The following theorem characterizes properties that 
can hold in self-stabilizing extensions. 

Theorem 1 (Characteristic) 
If Q is a self-stabilizing extension of P, and A is an 
assertion in (future) linear temporal logic over variables 
and messages of P, then: 
A holds for a sufix of every execution sequence of Q i@ 
for each sequence in legsem either A is true in the 
final state (f or nz e sequences) or A is infinitely often f; .-t 
true. 

Proof Since A is in the future fragment of linear 
temporal logic, for a suffix S of a sequence T, the truth 
of A for S is independent of the states in T but not S. 
That is, the states before S are irrelevant to the truth 
of A on S. 

3. In sem(Q), every suffix of an execution sequence 
is in itself an execution sequence. Since A is true for 
a suffix of every execution sequence of Q, if the se- 
quence is infinite, A is true infinitely often along the 
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sequence, because it only relates to the suffix, as noted 
above. Similarly, if the state relative to P repeats for- 
ever from some point on, A must hold in this “final” 
state, since it too is an execution sequence. Since Q is 
a self-stabilizing extension of P, by definition for each 
sequence in legsem there is a sequence in legsem 
identical w.r.t. P’s state. A must be true for these se- 
quences of legsem and their suffixes, since they are 
a subset of the sequences in sern(Q), and thus it must 
also hold infinitely often (or in the final state) for the 
sequences in legsem( 

e. If A is infinitely often true for the infinite se- 
quences in Zegsem(P), then it is infinitely often true for 
the infinite sequences in legsem that correspond to 
them. Similarly, for finite sequences, if A is true in the fi- 
nal state, then Q will have a sequence in legsem that 
eventually repeats the final state of P forever, changing 
only variables and messages not in P, and thus not af- 
fecting the continued truth of A in that sequence. Ev- 
ery sequence in legsem has a projection onto one in 
[egsem(P). S ince Q is self-stabilizing, every sequence 
in sem(Q) has a suffix identical to one in legsem( 
and thus satisfying A. I 

Note that properties that cannot hold in a self- 
stabilizing extension can often be rephrased as ones that 
do. For example, if legsem contains only the infi- 
nite sequence of values (O,l,O,l,...), then an assertion 
that eventually the number of l’s and of O’s will be 
equal may never become true (e.g., if in Q there are se- 
quences that begin with (l,l,l,O,l,O,l,... )). On the other 
hand, an assertion that infinitely often there is a state 
followed by a later state for which in the states between 
them there are equal numbers of l’s and O'S is true for 
every sequence in a self-stabilizing extension. 

5 Automatically creating self- 
stabilizing extensions 

In this section, we give a means for automatically creat- 
ing a self-stabilizing extension of a distributed program 
P. This demonstrates the possibility of such an ap- 
proach. Our technique is to superimpose onto P a self- 
stabilizing “control” program. The “control” program 
interleaves steps of P with steps of an intuitively simple 
task that repeatedly (a) takes “snapshots” of the global 
state; (b) tests whether these snapshots indicate an il- 
legal global state; (c) resets the memory of each process 
to some default legal state,. if a problem is detected. 
The difhculty in implementing this simple task arises 
because it too must function correctly no matter what 
the initial state. In particular, messages and variable 
values indicating partially completed snapshots or in- 
consistent fragments of several snapshots can be present 

in the initial state. Toward this end, our main contri- 
bution is the creation of self-stabilizing global snapshot 
and global reset algorithms. 

The extended program resulting from the superim- 
position has the following properties, which guarantee 
self-stabilization of P: (1) eventually an accurate snap- 
shot completes (even though the accuracy cannot be 
known by any process) (2) eventually, if an illegal state 
is revealed in an accurate snapshot, the reset algorithm 
is invoked and establishes a legal global state, and (3) 
thereafter, snapshots remain accurate and no further 
resets occur because legal global states only have legal 
successors. Thus, the extended program eventually con- 
tinues to take snapshots but in no other way interferes 
with P. 

5.1 A Self-Stabilizing Snapshot Algo- 
rit hm 

5.1.1 Overview 

We now present a self-stabilizing algorithm to take ac- 
curate snapshots of the global state. This (and the re- 
set algorithm) are imposed onto program P (called the 
basic program; P’s messages are called basic as well). 

Definition 4 At any global state 0, a process is said to 
have an accurate snapshot for cr if local variables of the 
process contain a representation of a global state that is 
a possible successor of CI and a possible predecessor of 
cr. 

StableSnap (Figures 1, 2, 3) is a self-stabilizing algo- 
rithm that permits process 0 to iteratively obtain ac- 
curate snapshots for the state that P had when each 
iteration began. Process 0 is arbitrarily chosen to have 
the special role of being both the initiator of snapshots 
and the process whose variables contain its results. We 
assume that the network topology is described by a 
set E of ordered pairs of process-identifiers. The net- 
work topology is unrestricted (except for being strongly- 
connected, which is needed if a single process both ini- 
tiates and collects information). 

We emphasize that a self-stabilizing algorithm is only 
required to eventually establish the desired property, 
and not to establish it immediately. It is both accept- 
able and likely (e.g, when the initial state is not a normal 
initial state) that some number of inaccurate snapshots 
will initially occur. The sole requirement is that, from 
some point onwards, only accurate snapshots of P are 
obtained by process 0. 

StableSnap is based on an iterated version of the sin- 
gle snapshot algorithm of Chandy and Lamport[CL85] 
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that appears in Figure 1 as a macro2 CL to be invoked 
by each process i upon receiving a message (called a 
marker) from process j. The first marker received by a 
process causes it to save its local portion of P’s state 
in a variable, begin recording basic messages received 
on each incoming channel, and propagate a marker to 
its neighbors. Subsequent markers cause the channel 
recording to terminate. A process terminates when it 
has received one marker on each incoming channel. 

StableSnap is defined to iteratively invoke the 
Chandy-Lamport algorithm and collect the recorded in- 
formation. It both regulates the iteration (by initiat- 
ing waves of token messages) and insulates the Chandy- 
Lamport algorithm from unexpected messages. For ex- 
ample, an invariant of the single snapshot algorithm is 
that exactly one marker is received on each channel; this 
assumption can clearly be violated by marker messages 
that may be present in initial states that are not nor- 
mal. Lastly, it also establishes the initialization condi- 
tion (initiated = false) for each iteration of the single 
snapshot algorithm. 

The difficulty of correctly defining StableSnap arises 
because the variables and messages of the initial state 
are completely arbitrary. For example, initially two pro- 
cesses may have different values in the local variable 
(Current) that defines the iteration in which each is 
participating. This introduces the potential problems 
of deadlock and the infinite propagation of messages. 
We avoid deadlock by introducing a non-reactive state- 
ment (GENPROD) to create prods (spontaneously-sent 
messages); these prods themselves introduce problems 
in that it is now possible for messages created in differ- 
ent iterations to simultaneously be in the system. To 
distinguish between them, we add to each token and 
report message an integer field VAL, which contains an 
iteration number. Infinite propagation is avoided by 
adding to each message a field PATH, which is a se- 
quence of process identifiers. 

5.1.2 Behavior of processes 

At a high-level, the behavior of each process other than 
0 in executing StableSnap is to“react” to the receipt of 
a message m, containing the values v,p, and r in the 
VAL, PATH, and PIECE fields respectively. If predi- 
cate IsNext recognizes m as a token meant to start a 
new iteration, the process executes statement (NEXT), 
which changes its iteration counter and invokes macro 
CL. Should m be recognized as a marker message (i,e., 
predicate IsMarker holds), the process executes state- 
ment (RECSNAP) and invokes the CL macro. If neither 

‘We look at macro invocation as an abbreviation for the state- 
ments contained in its body, after parameter substitution has been 
performed. 

of the above hold, the message is recognized as a prod 
(statement (RECPROD)) and is passed on to its neigh- 
bors. Additionally, the prod may cause a report message 
to be sent to process 0 if predicate Finished, which 
determines whether local termination has occurred, is 
satisfied. The PIECE field of a report message contains 
the state and channel information recorded by macro 
CL; this enables process 0 to obtain a representation of 
the global state. The correct implementation of these 
predicates is made non-trivial because of the multitude 
of global states (particularly the illegal ones) in which 
they may be evaluated. 

One possibility for the report messages is to broad- 
cast them like the token messages (with all the compo- 
nents to prevent indefinite flooding). Another is to send 
them on a fixed (constant, built-in) path to process 0. 
The option usually employed in the Chandy-Lamport 
algorithm - of using the edges along which the initiat- 
ing token for the present round was first received to 
get a spanning tree to the origin- is not possible in 
our context. The initiating edge is recorded as data, 
and could be inaccurate in an initial state, leading to a 
non-terminating reporting stage. There are additional 
options such as building a self-stabilizing spanning tree 
algorithm for our model, but we do not deal with this as- 
pect here, and assume one of the two possibilities above. 

Process O’s behavior is different in that it (a) initiates 
each new iteration of the single snapshot algorithm (by 
executing statement (START)) (b) non-reactively creates 
prods by executing statement (GENPROD) (c) saves the 
information contained in report messages by executing 
statement (RECREPT). Statement (START) detects ter- 
mination of an iteration when reported[k] becomes true 
for all k and initiates a new iteration of the single snap- 
shot algorithm by creating a new token. (Solely for the 
purpose of avoiding awkward coding, we assume a chan- 
nel from process 0 to itself; this allows it to “react” to 
its own messages, just Iike the other processes.) 

6 Correctness of the Snapshot 
Algorithm 

The proof that StableSnap is a self-stabilizing algorithm 
that eventually permits process 0 to iteratively obtain 
accurate snapshots proceeds by defining a certain class 
of good states, demonstrating that such states are even- 
tually repeated (Lemma a), and demonstrating that an 
accurate snapshot is obtained when the single snapshot 
iteration begins in such a state (Theorem 2). Intuitively, 
the good states are the ones in which an iteration is 
guaranteed to terminate with an accurate snapshot. 

Definition 5 A global state u is good if and only if 
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macro CL(j): 
Process i, i 2 0 

-initiated + [initiated := true; 
eoc[j] := true; 
eoc[k] := false, for all k: f j : (Ic, i) E E; ’ 
record[k] := nil, for all k : (k, i) E E; 
basicstate := state of P 
/ * Send* a marker to all Cc : (i, A-) E E */ 

I 

initiated A -eocb] =+ eocb] := true 

initiated A eocb] =+ skip / * Illegal state 1: / 

OA side effect not shown is that process i starts to record in variable record[k] all b asic messages of P that are received from 
each neighboring process k when eoc[k] is false. 

*In a legal state, the marker will be piggy-backed onto a token message of the algorithm that invokes this macro. 

Variables: 

l basic-state is state of the basic program P. 

l initiated is a Boolean indicating that initialization has been performed. 

l eoc[j] is a Boolean indicating that a marker message has been received from j. 

l record[k] is the sequence of basic messages received from k while eoc[k] was false. 

Figure 1: Chandy-Lamport snapshot algorithm. 

1. The value of the Current variable in each process 
is identical. 

2. No message in u can henceforth cause IsNext to 
become true, for any process i. 

3. reported[k] is true for all 0 5 k < n. 

We first show that nothing prevents a new iteration from 
beginning. 

Lemma 1 (Iteration Liveness) In any execution of 
StableSnap, for any state CY, there is some successor 
state u in which the guard of statement (START) is sat- 
isfied. Moreover, this guard remains satisfied in each 
successor of u until the next (START) statement is exe- 
cuted. 

Proof Let v, denote the value of process O’s Current 
variable in state cr. We claim that eventually, there is 
some successor state of cr in which either “reported[k] is 
true for all k” already holds (in which case the lemma 
hoIds) or in which every message is a copy of a mes- 
sage created by executing statement (GENPROD) in a 
successor state of cr. In the latter case, each of these 
messages has field VAL = v, because process 0 cannot 
change its Current variable until reported[k] becomes 
true for all k. By the continued enabling and execution 

of statement (GENPROD) and the assumptions of FIFO 
channels and eventual message delivery, we see that re- 
peated reception of the messages arising from statement 
(GENPROD) results in each process eventually sending a 
report message with VAL = v,. As each report is re- 
ceived by process 0, reported[k] become true for each k 
in turn until finally a state u results in which reported[k] 
is true for all k. 1 

In the next lemma, we establish that reaching a good 
state is unavoidable, no matter what the initial state. 

Lemma 2 (Eventuality of good) In every execu- 
tion of StableSnap, every state eventuaIly has a good 
successor state. Moreover, each successor of a good state 
remains good until the subsequent (START) statement is 
executed. 

Proof Let Q be any state and let V denote the fi- 
nite set of values that are present in cr either as values 
of Current variables or as VAL fields of messages. By 
Lemma 1, inspection of the guards, and the assump- 
tions of eventual message delivery and fairness, a state 
/3 occurs in which process 0 has just executed a (START) 

statement and for which vp, the value of Current for 
process 0, exceeds the maximum value in V. 

Eventually, each process in turn receives a copy of 
the token with VAL = vp. By construction of vp and 

96 



Process i > 0, upon receiving token message-m with VAL = v, and PATH = p from process j: 

(RECSNAP) IsMarker =+ [CL(j);Finished 3 Report] 
(DEJAVU) IsCntl A Seen * skip 
(NEXT) IsCntl A +een A IsNext * [Current := v; 

Propagate; 
initiated:= false;CL(j)] 

(RECPROD) IsCntl A +een A 4sNext 3 [Propagate; Finished 3 Report] 

Upon receiving a report message: 
(PASSREP) InReportForm A -Seen + / * pass it on * / 

Variables and macro specifications: 

a Current is the “iteration number”. 

l Propagate sends a token message with PATH = append(p, i) and VAL = v to each process t such that (i, k) E E. 

l Report sends a report message with PATH = i, VAL = v, and 

PIECE = (basic-state, record[lc], for each k : (k, i) E E) 

to process 0 in one of the ways described in the text. 

Definition of predicates: 

l IsMarker s Teoc[j] A (v = Current) 

l IsCntl E -IsMarker z eoc[j] V (v # Current) 

0 Seen z (i appears in sequence p) A((i # 0) V (p # 0)) 

l IsNext - (v > Current) 

l Finished E (v # Current) V (/lk.(k,i)EE eoc[k]) 

l InReportForm is true only on report messages. 

Figure 2: Snapshot algorithm for process i > 0. 
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Process 0, upon receiving token (or report) message m with VAL = v, and PATH = p, (and PIECE = r) from process 
j: 

(SELFSNAP) IsMarker 3 [CL(j); Finished 3 Report] 
(SELFSENT) Iscntl A Seen + skip 

(RECREPT) IsCntl A TSeen A IsReport * [k := first(p); 
-reported[k] * 

[reported[k] := true;piece[t] := r] 

1 
(SELFPROD) IsCntl A TSeen A -IsReport 3 [Finished 3 Report] 

Process 0, spontaneously: 

(GENPROD) true =+ Start 

(START) AL:: reported[k] * [ reported[l] := false, for all k 2 0; 
Current := Current + 1; 
Start; 
initiated := false; CL(O) 

1 

Variables and macro specifications: 

l reported[t] is a Boolean indicating that process k has ended its participation in the current iteration and that 
piece[k] is k’s portion of the global state recorded. 

l Start sends a token message with PATH = 0 and VAL = Current to each process k such that (0, k) E E. 

Definition of additional predicate: 

l IsReport E (v = Current) A InReportForm 

Figure 3: Snapshot algorithm for process 0 
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inspection of the guards, it can be shown that eventually 
there is a state 7 in which the Current variable of each 
process i is equal to VP and for which no message in 
state y can henceforth cause IsNext to become true 
when it is received by any process. Both these properties 
are stable until the next (START) statement is executed. 
Therefore, y has a successor in which reporfed[k] is also 
truefor allO<Ic<n. 1 

Invoking Lemma 2 inductively gives 

Lemma 3 (Recurrence of good) In any ezecu2ion 
of StableSnap, good states repeatedly occur. 

Theorem 2 (Good Snapshot) In any execution of 
StableSnap, eventually process 0 repeatedly obtains ac- 
curate sndpshots for the state in which each (START) 
statement is executed. 

Proof Since Lemma 3 shows that good states re- 
peat, we need only show that accurate snapshots are 
obtained for them. This is demonstrated by a care- 
ful analysis that shows that the (START) statement ex- 
ecuted at a good state results in each process receiving 
the same messages as it would were it executing the 
Chandy-Lamport algorithm in isolation. a 

7 The reset algorithm 

It is assumed that, along with the text of basic pro- 
gram P, we are given a predicate that recognizes repre- 
sentations of the legal global states of P. By applying 
this predicate to each representation of the global state 
obtained by StableSnap, process 0 may invoke a reset 
algorithm when an illegal state of P is detected. The 
reset algorithm is imposed onto StableSnap by associ- 
ating “flavors” with the VAL field of each token and 
report message. To begin a normal snapshot, “vanilla” 
tokens are created; to begin a reset, “reset” tokens are 
created. Upon receiving a “reset” token, in addition to 
the actions described in StabieSnap, each process sus- 
pends execution of P (discarding any basic messages 
that subsequently arrive) and changes its local part of 
P’s state to the values it would have in some default 
legal global state. Vanilla tokens are handled exactly as 
in StableSnap, with the addition that receiving a token 
that starts a new snapshot causes a process to resume 
execution of P if it were suspended. The correctness 
proof is deferred to a fuller version of the paper. 

8 Complexity 

Gouda and Evangelist have defined the convergence 
span[GE88] of a self-stabilizing system to be the maxi- 
mum number of “critical” steps that must be executed 

before a legal state is reached. For StableSnap, consider 
statement (START) to be a critical step. Then because 
each critical step increments process O’s Current vari- 
able by 1, the convergence span of StableSnap may be 
as much as the difference between the initial value of 
process O’s Current variable and the maximum of V, 
where V is the set of values that are present in the ini- 
tial state as values of Cprrent variables or VAL fields 
of messages. 

The convergence span may be reduced by having a 
process include its Current value in each report mes- 
sage that it creates. Process 0, in executing statement 
(START), may then simply choose a value that exceeds 
the maximum value received in the last set of report 
messages. This reduces the convergence span to at most 
the cardinality of the subset of V that contains values 
greater than or equal to the initial value of process O’s 
Current variable. If by chance there are no initial token 
or report messages (only arbitrary Current values), the 
modified version will converge on the second iteration 
to an accurate snapshot, followed by an accurate reset, 
if necessary. 

Due to the completely asynchronous model, and the 
need for prod messages to avoid deadlock, under the 
assumptions seen here there is no way to bound the 
number of messages used for snapshots. The initiat- 
ing process could generate arbitrarily many prod mes- 
sages before any other process completes its snapshot. 
A more realistic model would use absolute time inter- 
vals and time-outs to control the frequency of snapshots 
and prodding. 

There is also a possible trade-off on the frequency of 
snapshot operations, relative to operations of the basic 
computation. If snapshots are taken frequently, the 
system will self-stabilize when necessary, without wast- 
ing significant basic computation time. In this case, 
the number of steps needed afterwards to keep taking 
snapshots is large relative to the basic computation. 
On the other hand, if snapshots are only taken after 
some large number of basic computation steps, the self- 
stabilization will be slower, but the subsequent cost, will 
be lower. Of course, this assumes that the basic cornpu- 
tation cannot deadlock, even from illegal initial states. 

9 A bounded implementation of 
StableSnap 

In this section we describe a Bounded StableSnap that 
differs from the original in that it eliminates the un- 
bounded growth in value of the Current variables. 
Bounding these values by a constant h4 complicates the 
algorithm because copies of token and report messages 
with identical values are created on different iterations 

99 



(since, modulo M, the values v and v + m ’ M are indis- 
tinguishable for any m > 0). Therefore, care must be 
taken to ensure that, in any state, all token and report 
messages with VAL = v were created on the same iter- 
ation. We achieve this mainly by restricting the condi- 
tions under which a process may send a report message. 
The restriction will result in a bound on the number of 
iterations that a copy of a token or report message may 
remain in the system. Once this bound is exceeded, no 
ambiguity results in having process 0 create a new token 
with an identical VAL field. 

For this section, we retain all of the assumptions of 
the original model but assume an upper bound N on the 
number of messages present in the initial states. Note 
that no bound on the capacities of channels is necessary. 

The following modifications to StableSnap s&ice: 

1. The Current variable of process 0 is incremented 
modulo M (in statement (START)), where M = l+ 
n * (N + 2). 

2. Each process i maintains Recent[Ic], 0 _< k < 2 . n 
as the leth most recent value it has received in the 
VAL field of a token message. 

3. Predicate IsNext is re-defined to recognize only 
values that are different from Recent values: 

2.n-1 

IsNext G ( A v # Recent[Ic]) 
k=O 

4. Predicate Finished is strengthened such that non- 
Current values satisfy the predicate only if identi- 
cal values are received on each incoming channel: 

Finished 4 (v # C urrent A AllEqual( 
V(v = Current A /jk:(E,ijE~ eoc[lc]) 

where 

AllEqual - A 

( 

w = LastProd[k] 

k:(k,i)EE ) 

and variable LastProdb] is maintained by each 
process i as the value of the VAL field of the most 
recent “prod” message received from process j. 

10 Proof of correctness of 
Bounded StableSnap 

We briefly sketch the main ideas behind the proof. Most 
of the work is in establishing a bound on the values 
that variables and VAL fields may have in any system 
state. As a convenience, define the start of an iteration 

to be the state in which a (S?+ART) statement is exe- 
cuted, the end of an itepation QO be the first successor 
state in which reported[b] is true for all Ic, and the “it- 
eration number” to be the number of times process 0 
has executed a (START) statement (which is equal to its 
Current variable, assuming w.1.a.g. that it begins at 0). 
We start by defining a relationship between messages. 

Definition 6 Message m’ is a,n immediate copy of 
message m if 

l m’ is sent by some process i as part of the action 
that it executes upon receiving message m, and 

l m’ is identical to m except that the PATH of m’ is 
the concatenation ofi to the PATH of m. 

“Copy” is the reflexive, transitive closure of the ‘Tim- 
mediate copy” relation. 

We first show that in every execution sequence, all 
messages are eventually copies of ones actually sent. 
States with this property are called purged. Recall that 
the initial state may have messages in the channels; 
purged states exclude copies of such messages. 

Lemma 4 (Eventuality of a Purged State) In ev- 
ery execution sequence, there is a P < M such that a 
purged state occurs by the end of iteration P. 

Proof An iteration that begins in a non-purged state 
may end only when process 0 receives a report from 
each process. By analyzing the conditions under which 
a report may be received, and by the FIFO channel 
assumption, it is easy to show that some process receives 
a copy of a message that existed in the initial state. 
Because a message may be copied at most n times, and 
by assumption there are at most N messages in any 
initial state, a purged state occurs by iteration n*N. 1 

Next we show that no message may forever remain in 
a channel; it must eventually be received (and perhaps 
copied). 

Lemma 5 (Aging of Tokens) In every execution se- 
quence, at the end of each iteration after iteration num- 
ber P, there are no token OT report messages that were 
present at the beginning of the iteration. (Although 
copies of these messages may be present.) 

Proof Let cx be the start of iteration number v > P 
and assume (for the moment) that immediately prior 
to LY, no report or token message with VAL = (v mod 
M) exists. Then, by construction of the protocol, the 
end of the iteration cannot occur unless each process i 
has received from each j (such that (j, i) E E) at least 
one copy of a token created after LY. Since channels 
are FIFO, i must first receive (and perhaps copy) any 
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message that was already present in channel (j,i) in 
cr. IIence, the claim will follow once the assumption is 
proved. 

The assumption is proved by induction on v. As a 
basis, consider iterations numbered v, where P < v 5 

P + 2 n, The claim holds trivially since for iterations 
numbered P < v < M, no message with VAL = v 
can exist until the start of iteration v. For iterations 
v > P + 2 TI, assume the claim holds inductively for all 
lesser numbered iterations and suppose, to the contrary, 
that a report or token message with VAL = (v mod 
M) existed in 01. By construction of the protocol, this 
message could have been created no later than iteration 
v-M. But, by the inductive hypothesis there have been 
at least 2 . n iterations since iteration v - M in which 
every message in each channel has been copied. Since a 
message may be copied no more than n times, the claim 
follows. 1 

With this result, we can bound the values of the VAL 
fields of messages and the contents of the Recent vari- 
ables. Then good states can be shown to repeatedly 
occur, and accurate snapshots to be eventually taken, 
as in the previous proof. 
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