
Atomic Data Access in Content Addressable Networks

A Position Paper

Nancy Lynch, Dahlia Malkhi, David Ratajczak
(lynch@theory.lcs.mit.edu, dalia@cs.huji.ac.il, dratajcz@yahoo.com)

Abstract

While recent proposals for content addressable
networks address the crucial issues of communi-
cation efficiency and load balancing in dynamic
networks, they do not guarantee strong seman-
tics of concurrent data accesses. Given that
many of these proposals involve aggressive data
replication without a strategy for concurrency
control, they admit the possibility of returning
stale data, or falsely reporting certain data as
unavailable, if certain sequences of joins, leaves,
and updates/lookups occur. While it is well
known that guaranteeing availability and consis-
tency in an asynchronous and failure prone net-
work is impossible, we believe that guarantee-
ing atomic semantics is crucial for establishing
CANs as a robust middleware service, and this
property should not depend on the timing of the
underlying system.
In this paper, we describe a simple CAN algo-

rithm that maintains the atomicity property re-
gardless of timing, failures, or concurrency in the
system. The liveness of the algorithm, while not
dependent on the order of operations in the sys-
tem, does require that node failures are masked
(through state machine replication or through re-
covery from persistent storage) and that the net-
work eventually delivers all messages to intended
recipients.

1 Introduction

Several groups have proposed content address-
able networks [RFH+01] as a building block for
large-scale distributed systems, sometimes under
the alias of distributed data structures [GBH+00,

LNS96], resource lookup services [SMK+01], or
peer-to-peer routing services [ZKJ01]. CANs are
composed of nodes that are allowed to join and
leave the system and that share the burden of
implementing a distributed hash table of data ob-
jects. For large networks, only limited portions
of the data set and/or membership set might be
known to any particular node; thus it is possible
that accesses to the data structure are forwarded
between nodes until an appropriate handler of
that data object is found. CAN proposals are
generally distinguished by the way in which the
data set is partitioned and sparse routing infor-
mation is maintained.

The design of efficient CANs is confounded by
opposing design goals. First, the set of nodes is
assumed to be large, dynamic, and vulnerable to
failure, so it is imperative not only to manage
joins and leaves to the network efficiently while
maintaining short lookup path lengths and elim-
inating bottlenecks, but also to replicate data
and routing information to increase availability.
Most CAN proposals focus primarily on these
objectives. However, another design goal, and
one which is essential for maintaining the illu-
sion of a single-system image to clients, is to
ensure the atomicity of operations on the data
objects in the system. Stated simply, submis-
sions and responses to and from objects (values)
in the CAN should be consistent with an execu-
tion in which there is only one copy of the object
accessed serially [Lyn96]. Because of the com-
plexity of dynamic systems, and because many
CANs assume an environment in which leaves
and failures are equivalent, most proposals focus
on the first design goal and are designed to make
a “best effort” with respect to atomicity. They

1



violate the atomicity guarantee by allowing stale
copies of data to be returned, or skirt around the
problem by allowing only write-once semantics.
It is well-known that simultaneously guaran-

teeing availability (liveness) and atomicity in
failure-prone networks is impossible. Therefore,
we assume a system in which the network is
asynchronous but reliable (messages are even-
tually delivered) and where servers do not fail.
They can, however, initiate a join or leave rou-
tine at any time, thus admitting possible con-
current modifications along with concurrent data
accesses. We feel that this model is not incom-
patible with the “real world” because network
outages are typically repaired, and crashed ma-
chines typically recover (and can retrieve com-
mitted information from stable storage), or are
actively replicated so that partial crashes are not
visible externally. Therefore the appropriate use
of transactional storage, reliable message queues,
and server redundancy at the system level can
vastly simplify the environment seen at the algo-
rithmic level. This also allows such mechanisms
to be removed when the CAN algorithm is de-
ployed in settings with stronger environmental
assumptions. It should be noted that developing
an atomic CAN in this model does not preclude
the system from returning stale data if this is
useful to the application when the system is un-
responsive.
Given these strong assumptions, we seek an al-

gorithm that yields atomic access to data when
there is only one copy of each piece of data in
the system. The challenge will be to ensure that
as data migrates (when nodes join and leave),
requests do not access a residual copy nor do
they arrive at the destination before the data is
transferred and mistakenly think the data does
not exist. Another challenge is to ensure that
once a request has been initiated by a node, a
result is eventually returned. Because we have
assumed an asynchronous network, we must en-
sure that requests are not forwarded to machines
that have left the system (and thus will never re-
spond). Furthermore, we must ensure that rout-
ing information is maintained so that requests
eventually reach their targets as long as there is
some active node.

2 Guarantees

The goal of a CAN is to support three opera-
tions: join, leave and data update. Joins and
leaves are initiated by nodes when they enter
and leave the service. An update is a targeted
request initiated at a node, and is forwarded to-
ward its target by a series of update-step requests
between nodes.

join(m): This operation is initiated by a node
wishing to join the network, and includes as
an argument the physical machine address of a
currently active node.

leave(): This operation is initiated by an
active node wishing to leave the network.

update(op,x): This operation is initiated
by an active node wishing to perform a data
operation, op, on a value in the CAN that is
stored under the logical identifier x.

As far as liveness is concerned, we are primar-
ily interested in the behavior of the algorithm
when the system is quiescent (when only a small
number of concurrent joins and leaves are occur-
ing during a sufficiently long period and not all
nodes have tried to leave the system).
Stated informally, we require that the system

guarantee the following properties:

Atomicity: Updates to and the corresponding
values read from data objects must be con-
sistent with a sequential execution at one
copy of the object.

Termination: If after some point no new join or
leave operation is initiated, then all pending
join and leave operations must eventually
terminate and all updates eventually ter-
minate (including those initiated after that
point).

Stabilization: If after some point no new join
or leave operation is initiated, then the data
and link information at each node should
eventually be the same as that prescribed
by the chosen hashing and routing schemes,

2



with the expected lookup/update perfor-
mance.

It should be noted that these conditional guar-
antees could be refined to include some no-
tion of spatial independence that would highlight
the fact that many CAN algorithms, including
the one we propose here, allow for concurrent
progress of updates even while join and leave
operations make some data temporarily unavail-
able. However it can be seen that the above defi-
nitions do not readily admit trivial solutions, and
therefore suffice for this paper.

3 Algorithm

In this section we describe an algorithm that im-
plements the guarantees described above. Here
we focus on a particular implementation that
stems from Chord [SMK+01]. In this imple-
mentation, objects and nodes are assigned logical
identifiers from the unit ring, [0, 1), and objects
are assigned to nodes based on the successor re-
lationship which compares object and node iden-
tifiers. Moreover, nodes maintain “edge” infor-
mation that enables communication (e.g., IP ad-
dresses) to some of the other nodes. Specifically,
nodes maintain edges to their successor and pre-
decessor along the ring (they can also keep track
of other long-range contacts with only a simple
modification to the algorithm). We augment the
basic ring construction of Chord to include sup-
port for atomic operations on the data objects,
even in the face of concurrent joins and leaves.
Each node, n, keeps track of its own status

(such as joining, active, leaving, etc.), and its
identifier. Every node maintains a table of phys-
ical and logical identifiers corresponding to its
“in-links” and “out-links.” In-links are nodes
from which requests are allowed to be entered
into the input queue. Out-links are nodes to
which a connection has been established and re-
quests can be forwarded. The data objects con-
trolled by the node are kept in a local data struc-
ture, data. Each node accumulates incoming re-
quests and messages in a FIFO queue, InQ. Re-
quests in the InQ include all action-enabling re-
quests, including self-generated leave and join re-

quests, other nodes’ requests involved with their
joining or leaving, and data update requests.
Figure 1 illustrates a single node with its local
data structures.

InLinks

Status

InLinks OutLinks

Id Data

InQ OutQ

Thread
Pool

State Machine

OutLinks

Figure 1: In our node model, requests are performed in a

serial manner at each node, with its execution determined

entirely by the order in which external events are received.

Each node has a simple dispatch loop, which
takes a message off the InQ and runs the appro-
priate procedure for that message, awakens any
suspended procedure waiting for that message,
and checks if any suspended procedures can be
run due to a change of status. Thus each proce-
dure will be initiated from some message arriving
on the InQ, may produce outgoing messages be-
tween waiting points — when control is returned
to the dispatch loop — and will eventually ter-
minate. Only a single procedure has control at
any time.
We now describe the algorithm at a high level.

(The appendix provides a psuedocode descrip-
tion of the actions performed by each machine.)
We assume that the system is initialized with
one or more nodes with an initial set of edges
and data objects. We will describe the leave,
join, and update-step operations in order be-
low.
When a node wishes to leave, it first changes

its status to transferring, and stops handling
pending requests; incoming requests meanwhile
accumulate in the input pending queue. The
node then atomically transfers its data to its suc-
cessor in a nice big message. From this point on,
it changes its status to leaving, so that all re-
quests that would be meant for the current node
will be forwarded along to the successor. After

3



transferring the data, the node sends a “leaving”
message to its in-links (predecessor and any oth-
ers) informing that it is going away. These nodes
will route “connecting” requests on the network
to add an edge to their new closest active ma-
chines as a replacement for the leaving edge.
When the “connecting” request finally reaches
the closest active successor, it is processed, a
“connecting” acknowledgment is returned, and
once processed, the new edge is added. When the
new edge is added, the leaving node receives an
acknowledgment that the edge to it is removed,
so that no more requests will be forwarded along
this edge. When the leaving node has collected
“leaving” acknowledgments from all in-links, and
it has no more pending requests requiring a re-
sponse, then it can drop out of the system. This
operation is illustrated in Figure 2.

(a) (b)

(c)

(1
)(2

)(3
)

(d)

Figure 2: For a leave operation (a) the leaving node

transfers its state to its successor (b) it tells its prede-

cessor to find its new active successor [1], which the suc-

cessor does by submitting a targeted request [2] that is

forwarded until a response [3] from an active node is re-

turned, (c) an edge is added, and the leaving node is in-

formed that its in-edges are flushed, and (d) it drops out.

A joining node will attempt to send a join re-
quest to a node for which it has a priori knowl-
edge.1 The request, if the node has not left,

1Because this information may be stale, a node might
never succeed in joining. However, if the joining node has
knowledge of some active node, joins will complete, and

will be acknowledged and atomically put on the
queue with the rest of the requests. The join
message, similar to other targeted requests, will
be routed around the system until the closest ac-
tive target processes the message. At this time,
the target node will separate its data, modify
its bucket, and send a big message to the join-
ing node that it is processing. It will also not
be allowed to leave or handle other joins un-
til the entire join procedure has completed. It
creates a surrogate pointer to the joining node
so that all requests for the new joining node
are forwarded along this link during this period.
It then contacts each of its in-neighbors telling
them to update their pointers to the new node.
Each of them sends a “connecting” message to
the new node, updates its out-neighbors table,
then sends an acknowledgment to the host node
after removing the host from its out-neighbors
table. When the host node collects acknowledg-
ments from all of the neighbors in question, it
can remove its surrogate pointer and start enter-
taining more join requests. This is illustrated in
Figure 3.
When an update-step is invoked on a node,

it is either forwarded or processed locally de-
pending on its target identifier. When a response
is generated, it is sent back to the return address
specified in the request. All other targeted re-
quests are either forwarded or processed locally
depending on their target identifier.

4 Discussion

Certain aspects of our algorithm are worth
mentioning. First, the particular choice of a
ring structure as the underlying routing/hashing
scheme was somewhat arbitrary. The presented
algorithm is readily adaptable to other rout-
ing schemes, such as the d-dimensional torii de-
scribed in [RFH+01] (of which the connected
ring is a special case). They are also adapt-
able to ring-based routing schemes that include
different long-range edges from Chord such as
in [MNR02].

in any case they will not disrupt the safety properties of
the system.

4



(a) (b)

(c) (d)

Figure 3: For a join operation (a) the joining node ini-

tiates a targeted request to the successor, where (b) a

response is returned to the joining node including the rel-

evant state and the predecessor is notified of a new node.

At this point the joining node has a surrogate edge point-

ing to it. After this, (c) the predecessor will contact the

joining node to add an edge, it will remove an edge to

the old successor, and the surrogate edge will then be

removed (d).

Another aspect is that we have modeled each
node as a state machine dependent only on the
order of its inputs. This means that we can em-
ploy well understood state machine replication
algorithms to produce a fault-tolerant version of
our algorithm where the abstract nodes of the
algorithm are implemented by a replicated set of
machines. The details of a full implementation
remain to be fully worked out.

References

[GBH+00] S. D. Gribble, E. A. Brewer, J.
M. Hellerstein, and D. Culler.
“Scalable, distributed data struc-
tures for Internet service con-
struction. In the Fourth Sympo-
sium on Operating System De-
sign and Implementation (OSDI
2000), October 2000.

[Lam79] L. Lamport. How to make a

multiprocessor computer that
correctly executes multiproces-
sor programs. IEEE Transactions
on Computers, C-28(9):690–691,
1979.

[LNS96] W. Litwin, M.A. Neimat, D. A.
Schneider. “LH*-A scalable, dis-
tributed data structure”. ACM
Transactions on Database Sys-
tems, Vol. 21, No. 4, pp 480-525,
1996.

[Lyn96] Lynch, N. Distributed Algo-
rithms, Morgan Kaufmann, San
Francisco, CA 1996.

[MNR02] D. Malkhi, M. Naor and D. Rata-
jczak. “Viceroy: A Scalable and
Dynamic Lookup Scheme”. Sub-
mitted for publication.

[RFH+01] S. Ratnasamy, P. Francis, M.
Handley, R. Karp and S. Shenker.
“A scalable content-addressable
network”. In Proceedings of the
ACM SIGCOMM 2001 Technical
Conference. August 2001.

[SMK+01] I. Stoica, R. Morris, D. Karger,
M. F. Kaashoek, and H. Balakr-
ishnan. “Chord: A scalable peer-
to-peer lookup service for Inter-
net applications”. In Proceedings
of the SIGCOMM 2001, August
2001.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz
and A. D. Joseph. “Tapestry: An
infrastructure for fault-tolerant
wide-area location and routing”.
U. C. Berkeley Technical Report
UCB/CSD-01-1141, April, 2001.

5



A Pseudocode

local data:
ID = {id, addr}, id ∈ R randomly chosen, addr is a physical address
InLinks and OutLinks, set of {id, addr} logical/physical address pairs, initially empty
data, set of named data objects, initially empty
myrange = (low, high) ∈ R×R, initially (ID.id, ID.id)
InQ and OutQ, FIFO queues containing requests/msgs. InQ initially contains join(someAddr)
status ∈ {inactive, joining, active, transferring, leaving}, initially inactive

definitions:
successor = closest(OutLinks) ;clockwise closest on ring
“(msg,ID)” a message of type msg from a machine with logical/physical address of ID

main program:
do forever

if a (data-trans-ack,*) is on InQ then dispatch any procedure waiting for it
else if there is any waiting procedure that may resume, dispatch one of them
else

remove head request from InQ
if status is leaving then forward request to successor
else

dispatch the first procedure waiting for that message (if any)
else dispatch a new procedure to handle request

leave(): ; handle self leaving
wait until status is active ; yield
status ← transferring
send ((data-trans,data),ID) to successor
myrange ← (ID, ID)
wait for (data-trans-ack,successor) ; yield
status ← leaving
send (leaving,ID) to all machines in InLinks
wait for (leaving-ack,m) from all machines in InLinks ; yield
forward all update-step requests in InQ to successor
status ← inactive

join(someAddr): ; handle join to machine with someAddr
wait until status is inactive ; yield
status ← joining
send (joining,ID) to the machine denoted by someAddr
wait for ((join-ack-and-data-trans,datainfo),surrogate) ; yield
send (data-trans-ack,ID) to surrogate
include surrogate in OutLinks
set data and myrange based on datainfo
wait for (join-complete,surrogate)
status ← active

update-step(x, op)retaddress:
if x is in myrange (contained within [low, high) on the unit ring) then perform op on x and send result to retaddress
else forward to successor

receive-msg T :
if T is (data-trans,m)

if status is leaving forward message to successor
else

merge data and myrange with incoming data and range information by taking the union
send (data-trans-ack,ID) to m

6



else if T is (joining,m)
if m is in myrange

oldstatus ← status
status ← transferring
group data and modify range between m and ID into datainfo msg
send ((join-ack-and-data-trans,datainfo),ID) to m
wait for (data-trans-ack,m) ; yield
status ← oldstatus
include m in OutLinks ; surrogate pointer
send ((notify-of-new,m),ID) to all machines in InLinks
wait for (new-ack,m′) from all machines in InLinks ; yield
remove those machines from InLinks
remove m from OutLinks ; remove surrogate pointer

else forward request to successor

else if T is (leaving,m)
send ((connect,m),ID) to successor
wait for (connecting-ack,substitute) ; may differ from successor if it is leaving
replace m in OutLinks with substitute′

send (leaving-ack,ID) to m

else if T is ((connect,x),m)
if x is in myrange

add m to InLinks
send (connecting-ack,ID) to m

else forward to successor

else if T is ((notify-of-new,x),m)
send ((connect,x),ID) to closest link in OutLinks
wait for (connecting-ack,new)
replace m with new in OutLinks
send (new-ack,ID) to m

7


