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AbstractÐA Global Data is a vector with one entry per process. Each entry must be filled with an appropriate value provided by the

corresponding process. Several distributed computing problems amount to compute a function on a global data. This paper proposes

a protocol to solve such problems in the context of asynchronous distributed systems where processes may fail by crashing. The

main problem that has to be solved lies in computing the global data and in providing each noncrashed process with a copy of it,

despite the possible crash of some processes. To be consistent, the global data must contain, at least, all the values provided by the

processes that do not crash. This defines the Global Data Computation (GDC) problem. To solve this problem, processes execute a

sequence of asynchronous rounds during which they construct, in a decentralized way, the value of the global data and eventually

each process gets a copy of it. To cope with process crashes, the protocol uses a perfect failure detector. The proposed protocol has

been designed to be time efficient: it allows early decision. Let t be the maximum number of processes that may crash, t < n where n

is the total number of processes, and f be the actual number of process crashes (f � t). In the worst case, the protocol terminates in

min�2f � 2; t� 1� rounds. Moreover, the protocol does not require processes to exchange information on their perception of crashes.

The message size depends only on the size of the global data.

Index TermsÐAsynchronous distributed computation, global data, global function computation, perfect failure detector, problem

reduction, process crash.
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1 INTRODUCTION

IN a distributed computation, a Global Data is a vector with
one entry per process, each entry being filled with an

appropriate value provided by the corresponding process.
Global Function computation [11], [15] constitutes a key
component for solving many distributed computing pro-
blems. It consists of: 1) requiring processes to define a
global data; 2) computing a deterministic function of this
data; and 3) providing each process with the corresponding
result [2], [12]. The Atomic Commitment problem [3]
constitutes a relevant example of a global function
computation. According to its local computation, each
process votes YES or NO. The set of all votes constitutes
the global data. The result of the function is COMMIT if all
votes are YES, otherwise the result is ABORT. Finally,
according to the result (same for all processes), each process
commits or invalidates the local computation it has
previously done. More generally, some problems require
repeated computations of a global function [11]. The
Distributed Termination Detection problem is an example of
problem that can be solved by two successive global
function computations [15], [20], [27].

Computing a global function is relatively easy in reliable

asynchronous distributed systems. In this context, two main

approaches have been investigated. The centralized ap-

proach, also named ªasymmetricº approach, consists in the

following message exchange pattern: First, a predetermined

process p gathers all the local data and computes the

appropriate function of this global data. Then, the process p

disseminates the result to each process. Assuming there is a

channel connecting each pair of processes, this approach

basically requires the exchange of 2�nÿ 1� messages where

n is the number of processes and costs two time units,

assuming each message transfer costs one time unit and

processing times are negligible. The second approach that

has been studied is the distributed, or ªsymmetric,º

approach. Each process sends its data to all processes and,

consequently, each process can build a copy of the global

data. Then, each process computes the same deterministic

function on the same global data and, thus, obtains the

same result. With the previous assumptions, this approach

costs n�nÿ 1� messages and only one time unit.
In this paper, we are interested in investigating the

decentralized approach to compute global functions in
distributed systems where processes can crash. Let t be the
maximum number of processes that may crash (t < n) and f
be the number of actual crashes (f � t). When the
distributed system is synchronous, it is relatively easy to
compute a global function in a decentralized way by
requiring processes to execute a sequence of rounds. In
that context, it has been shown that min�t� 1; f � 2� is a
lowest bound on the number of rounds [8]. Asynchronous
distributed systems are characterized by the fact that it is
impossible to distinguish a very slow process from a
crashed process. This makes the computation of a global

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000 897

. The authors are with IRISA, Campus de Beaulieu, 35042 Rennes Cedex,
France. E-mail: {helary, hurfin, mostefao, raynal, ftronel}@irisa.fr

Manuscript received 23 Nov. 1999; accepted 25 May 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110988.

1045-9219/00/$10.00 ß 2000 IEEE



function more difficult to solve. One of the main problems
created by process crashes concerns the fact that all
noncrashed processes must get identical copies of the
global data. To illustrate this issue let us consider the
following scenario. It involves three processes p1, p2, and p3.
Processes p1 and p2 do not crash and broadcast their initial
data and process p3 sends its data to p1 and crashes before
sending it to p2. Eventually, process p2 detects the crash of
p3 and considers a global data without an entry from p3. On
the other hand, process p1 has received values from p2 and
p3 and considers global data with an entry from p3. Thus, p1

and p2 do not have the same view of the global data. So, a
crucial issue is to ensure that processes eventually get the
same value for each entry of the global data. Let p be one of
the processes. If p does not crash, its entry of the global data
must be its initial data. If p has crashed before starting the
protocol, its initial data is unavailable and, consequently, its
entry will contain a default value denoted ?. But if p
crashes during the execution of the protocol, as p3 in the
previous example, what will be the value of its entry in the
global data, the initial value of p or the default value?

To cope with process crashes, this paper follows the
approach advocated by Chandra and Toueg [5]. Each
process p is equipped with a failure detector module. The
module associated with p can be seen as an oracle that
provides p with the list of processes it suspects to have
crashed. Formally, a failure detector module is defined by
two properties, a completeness property and an accuracy
property. Of course, the implementation of a failure
detector is based on the use of timers and time-out values,
but those are implementation mechanisms that are not
made visible outside the failure detector module. Hiding
all time-dependent aspects in a black box (the failure
detector), allows the design of time-free protocols, i.e.,
protocols in which no statement involves physical time.
As a consequence, a protocol based on a failure detector can
be used without modification in any system where the
assumed failure detector can be implemented. This not only
makes easier the portability of the protocol, but also makes
its proof independent on any particular timing mechanism.

The problem of computing a global data and providing
each noncrashed process with a copy of it, is identified as
the Global Data Computation (GDC) problem.1 In asynchro-
nous distributed systems subject to crash failures and
equipped with perfect failure detectors, it is possible to
solve the Global Data Computation Problem by executing n
parallel instances (one for each process) of the Terminating
Reliable Broadcast problem [14]. For each instance of the
Terminating Reliable Broadcast problem (an instance is
defined with respect to a specific sender process), a value v
is delivered to each process. If v � ?, then the sender has
necessarily crashed. If v 6� ?, then v is the initial value of the
sender process. Solving an instance of the Terminating
Reliable Broadcast problem requires �t� 1� rounds [14]. So,
this approach for solving the Global Data Computation
problem provides a solution requiring at least �t� 1�

rounds. In this paper, we are interested in the design of a
protocol that allows early decision. This means that the
resulting protocol must involve a number of rounds that
depend on f (the actual number of crashes), this number
never being greater than �t� 1�. Based on perfect failure
detectors, the proposed protocol achieves the following
time performances. If t � 0, i.e., when the system is reliable,
the protocol requires a single round. When t > 0, it
terminates in two rounds, in the best case. In the worst
case, it terminates in min�2f � 2; t� 1) rounds. Given that
one round of a synchronous system can be simulated by
two rounds of an asynchronous system (see the discussion
in Section 2.3), this time performance is likely to be optimal.
However, the proof of this optimality issue remains an open
question. So, to our knowledge, this is the first early decision
protocol solving the Global Data Computation problem in
asynchronous distributed systems prone to process crash
failures. Other interesting features of the protocol are the
following:

1. It adopts a ªbest effortº strategy, doing its best to fill
each entry of the global data with the initial value of
the corresponding process. This allows for a global
data containing as much meaningful values as
possible.

2. It does not require processes to exchange informa-
tion on their perception of crashes. In addition to its
identity, a message has only to carry an estimate of
the global data value.

The paper is composed of eight sections. Section 2
presents the distributed system model. Section 3 specifies
the Global Data Computation problem. Section 4 presents the
protocol that solves this problem: Sections 4.1 and 4.2
describe the protocol and Section 4.4 proves the protocol
correction and determines an upper bound for the number
of rounds. Section 5 shows a simple, but interesting
theoretical result, namely, the problem of building a perfect
failure detector, problem P , and the GDC problem are
ªequivalentº in the sense that any solution to one of them
can be transformed to solve the other [5], [10], [14]. Section 6
investigates a consensus-based approach to solve the GDC
problem and compares it with the proposed approach.
Then, Section 7 uses the protocol to solve two problems in
asynchronous distributed systems with process crashes,
namely, the Atomic Commit problem and the Distributed
Termination Detection problem. Finally, Section 8 concludes
the paper.

2 DISTRIBUTED SYSTEM MODEL

2.1 Asynchronous Distributed System

The system consists of a finite set of n processes,
� � fp1; . . . ; png. Processes cooperate and synchronize by
exchanging messages through a communication network,
there is no shared memory. There is a communication
channel connecting each pair of processes. Channels are
reliable, i.e., no spurious messages, no loss, and no
corruption. They are not required to be FIFO. Moreover,
process speeds and communication delays are arbitrary. So,
the system model perceived by the upper layer applications
is the classical time-free asynchronous distributed system model.
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The communication primitives will be denoted in the
following way: When executed by pi, the primitive ªsend m
to pjº entails the sending of the message m by pi to pj. When
pi executes ªreceive�m�º, it is blocked until a message sent
to it has arrived; then, the message is deposited in m and
made available to pi which continues its execution.

2.2 Process Failure Model and Failure Detection

Process Failure Model. A process may fail by crashing. It
behaves correctly, i.e., it executes its program text, until it
possibly crashes. When a process crashes, it definitively
stops its activity. So, the failure model we consider is the
Crash/no Recovery model. A process that does not crash is
called a correct process. Otherwise, it is a faulty process.
Recall that t �< n� denote the maximum number of
processes that may crash and f �� t� denote the actual
number of process crashes.
Process Crash Detection. Each process pi is equipped with
a failure detector module FDi. This module provides pi
with a set variable (suspectedi) that contains the identities of
the processes that FDi guesses to have crashed. The
process pi can only read this variable, which is continuously
updated by FDi. According to the quality of guesses made
by failure detector modules, several classes of failure
detectors can be defined [5]. Here we consider perfect
failure detector modules: no guess is mistaken. More
precisely, these failure detectors are defined by the
following two properties (when pj 2 suspectedi, we say that
ªpi suspects pjº) [5]:

. Completeness: Eventually, every process that crashes
is suspected by every correct process.

. Accuracy: No process is suspected before it crashes.

An important issue is the implementation of such failure
detectors modules. Some networks have a notion of
privileged, high priority channels satisfying strong timing
assumptions [4], [23], [28] (e.g., field buses such as FIP or
CAN [25]). Such channels can be dedicated to the
implementation of perfect failure detector modules. So, at
the application level, the computation model we actually
consider is the time-free asynchronous distributed system model
augmented with perfect failure detectors [5], [18]. This means
that privileged, high priority channels are hidden to system
applications. These channels are visible and known only by
the underlying layer which implements the failure detector
modules. This layer uses ªI am aliveº messages sent on
privileged channels and timeout values to detect process
crashes.

2.3 Asynchronous Systems with Perfect Failure
Detectors vs. Synchronous Systems

Most agreement protocols that have been designed so far
obey a regular communication pattern, based on the notion

of round [1], [5], [8], [9], [15], [18], [27]. More precisely, each
correct process pi owns a variable ri whose values are
natural integers. As soon as ri � r, we say that process
reaches round r. Then, until ri � r� 1, process pi is said to be
in round r [7]. While in its round r, each process executes
sequentially the following steps: 1) It sends a round r
message to the other processes, 2) it waits for a round r
message from each process,2 and 3) it executes local
computations.

It is important to remark that, when we consider
round-based protocols, synchronous distributed systems
are more constrained than asynchronous distributed
systems equipped with perfect failure detectors. This is
due to the following observation: Let us consider two
processes, pi and pj. Assume that, during round r, pi has
crashed after sending its round r message, namely m, to pj.

. In a synchronous distributed system, the synchrony
assumption ensures that all messages are received in
the round they have been sent. So, pj receives m
before ending its round r. Consequently, pj cannot
detect the crash of pi before executing in round r� 1.

. In an asynchronous distributed system, it is possible
that pi has started executing round r while pj is
executing round rÿ 1, r, or r� 1. So, if pi crashes
during r, pj learns it, due to the underlying perfect
failure detector,

- while it is in round r� 1 (in that case the last
message received by pj from pi is its round r
message),

- while it is in round r (in that case, the last
message received by pj from pi is its round rÿ 1
message or its round r message), or

- while it is executing round rÿ 1 (in that case,
the last message received by pj from pi is its
round rÿ 2 message or its round rÿ 1
message).

Consequently, in such a system, the crash of pi
during r, is known by pj while it is at round rÿ 1, r,
or r� 1 (first uncertainty). Moreover, the crash of pi
can be known by pj after or before having received
pi's round r message, or even before having received
pi's round rÿ 1 message (second uncertainty).

The three situations that give rise to the uncertainty from
pj's point of view, on the round number at which pi
crashed, are described in the Fig. 1 (F �i� denotes the
notification of the failure of pi). The situations due to the
second uncertainty (has pi sent a round r or rÿ 1 message?)
are described in Fig. 2. So, for round-based protocols, an
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asynchronous distributed system, equipped with a perfect
failure detector, is not equivalent to a synchronous
distributed system.

It follows that round-based protocols are more difficult

to design in asynchronous distributed systems equipped

with a perfect failure detector than in synchronous

systems.3

3 THE GDC PROBLEM: CONSTRUCTING LOCAL

COPIES OF A GLOBAL DATA

3.1 Distributed Computation of a Global Function

Let GD�1::n� be a vector of data with one entry per process,

the ith entry being associated with pi, and let F be a

deterministic function of GD. Moreover, let vi denote the

value provided by pi to fill its entry of the global data.

The computation of the global function is described in

Fig. 3. The function Global_data returns the value of GD

that is locally saved by pi in its local variable GDi. The local

variable termi is a Boolean (initialized to false) that takes

the value true when and only when, pi has got its copy of

GD. Then, each process can locally compute the value

of F �GD�.
3.2 The Global Data Computation Problem

As indicated in the Introduction, the crucial issue consists in

building GD and providing a copy of it to each process. As

defined previously, GDi is the local variable of pi intended

to contain the local copy of GD. The problem of providing

the same copy of GD to each process is formally specified

by a set of four properties. These properties have to be

satisfied by any protocol that claims to solve the problem.

Let ? be a default value that will be used instead of the

value vj when the corresponding process pj crashes

prematurely. These properties are:

. Termination. The Boolean flag termi of every correct
process pi eventually becomes true: pi correct
) �termi.

. Validity. No spurious initial value: 8i : �termi )
�8j : GDi�j� 2 fvj;?g��.

. Agreement. No two processes decide different
G l o b a l D a t a : 8i; j : ��termi ^ termj� ) �8k :
�GDi�k� � GDj�k����.

. Obligation. If a process terminates, its initial value
belongs to the Global Data: 8i : �termi )
�GDi�i� � vi��.

The Termination property is a Nonblocking property

(i.e., a Liveness property). It states that at least all correct

processes must terminate despite the crash of other

processes. The next three properties are Safety properties.

The Validity property defines the value domain of each

global data entry. The Agreement property indicates that all

the processes that terminate get the same copy of the global

data. Finally, the Obligation property states that if pi
terminates, then its entry of the global data cannot be the

default value.

It is important to note that the Global Data Computation

problem is harder than the Consensus problem [5], [9]. In

the Consensus problem, processes propose values, and all

correct processes have to agree on one of the proposed

values. Here, the values ªproposedº by, at least, all correct

processes have to be pieced together to define the global

data: The value ªproposedº by a correct process can not be

ªmissed.º This informally explains why perfect failure

detectors are needed: A correct process cannot be mis-

takenly suspected, as this could entail the absence of its

value in the global data. Section 5 will provide a more

formal treatment of this issue.

4 A PROTOCOL THAT BUILDS CONSISTENT COPIES

OF A GLOBAL DATA

As indicated in the introduction, our aim is the design of a

distributed round-based protocol solving the GDC pro-

blem, that allows early decision. Moreover, differently from

other protocols based on perfect failure detectors [18], we

are interested in a protocol that does not require processes

to exchange lists of suspects. Messages are allowed to carry

only a control data (the identity of the message4) and an

estimate of the value of the global data. Allowing messages

to carry lists of suspects would give rise to more costly

protocol.

4.1 The Protocol

The protocol that computes the global data and provides

processes with the same copy of it is described in Fig. 4.

Each process pi calls the function Global_data�vi� which

returns a consistent copy of the global data. This function is

made of two concurrent tasks T1 and T2.

Task T1. This is the main task: Its aim is to construct

consistent local copies of the global data. To attain this goal,

each process pi has a local variable gdi that contains its

current estimate of the global data. Initially, gdi contains
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only vi, the value provided by pi to fill its entry of the global

data (line 1). Processes execute a sequence of asynchronous

rounds to construct the global data. During round r they

exchange their current estimates of the value of the global

data, in order to improve their estimate value. The local

variable ri, initialized to zero, defines the current round

number of pi.

Let part�i; j; r� denote the predicate: ªduring its

execution of round r, pi has received and taken

into account a round r estimate from pj.º In other

words, from pi's point of view, pj has participated in

round r. By convention, 8r � 0; 8i; 8j; part�i; j; r� � true.
The local set variables prev expectedi, cur expectedi, and

next expectedi are used by pi to keep track of round

participants. They have the following meaning at the end of

any round r � 1:

prev expectedi � fjjpart�i; j; rÿ 2�g. This set contains the
processes from which pi has received a round rÿ 2
message during its execution of round rÿ 2. Hence, it is
the set of processes that were expected by pi to
participate in rÿ 1.

cur expectedi � fjjpart�i; j; rÿ 1�g. This set contains the
processes from which pi has received a round rÿ 1
message during its execution of round rÿ 1. Hence, it is
the set of processes that are expected by pi to participate
in the current round r.

next expectedi � fjjpart�i; j; r�g. This set contains the pro-
cesses from which pi has received a a round r message
during its execution of r. Hence, it is the set of processes
that are expected by pi to participate in the next round
r� 1. Let xri be the value of the set variable xi at the end
of round r. From these definitions, we have:

prev expectedri � cur expectedri � next expectedri ;
and:

�prev expectedr�1
i � cur expectedri �

^ �cur expectedr�1
i � next expectedri �:

A round r is made of two parts: a communication phase

followed by a computation phase. More precisely, a process

pi does the following actions:

. Estimate exchange:

- First, pi starts its participation in the round by
incrementing ri, updating prev expectedi and
cur expectedi (line 4). It also sends its current

estimate of the global data (gdi) to the processes
of cur expectedi (line 5). (Note that pi always
belongs to cur expectedi.)

- Then, pi waits until, for each pj 2 cur expectedi,
either it receives the round r estimate of pj
(rec gdj), or it suspects pj to have crashed (line 6).

. Local computation:

- According to the set of estimates it has received,
pi computes next expectedi (line 7) and updates
its current estimate gdi (lines 8-12).

- Finally, pi tests line 13, a Termination Condition
(see next paragraph), to know whether it has got
the final value of the global data. There are two
cases. If the answer is negative, pi proceeds to
the next round (line 3). If the answer is positive,
then pi sends its current value of the global data,
namely gdi, to all the nonsuspected processes5

(message decide�i; gdi� sent at line 14) and
returns gdi as the result of the call to
Global_data�vi� (return statement, line 14).

Task T2. This task is associated with the processing of a

decide�k; rec gdk� message. If, during the execution of

Global_data�vi�, such a message is received, pi also

forwards the final value of the global data, namely

rec gdk, and locally returns it as the result of the call to

Global_data�vi� (return statement, line 18). The decide

messages actually implement a Reliable Broadcast [14] that

disseminates the termination.

4.2 The Termination Condition

The Termination Condition (line 13) constitutes the core of

the protocol. During a round, no local variable is updated

after line 12. So, as far as the values of variables are

concerned, the end of a round occurs at line 13.

A process pi stops executing rounds when it knows that

ªits current estimate gdi contains no more and no

less non? values than the other estimates.º When

this occurs, the estimates of all noncrashed processes are

equal and, consequently, pi's current estimate can no longer

be improved; this value, then, defines the global data.

Moreover, as the processes have then the same estimate

value, if a process pj terminates during a subsequent round,

it will necessarily return the same value of the global data.

The termination condition is the disjunction of two

conditions, denoted C1 and C2. The first one, namely C1, is

on the number of rounds that have been executed: It

actually defines an upper bound on the maximal number of

rounds to be executed before reaching agreement. The

second, namely C2, allows early termination by detecting a

ªstable stateº reached by the set of processes. This second

condition is a conjunction of two predicates; C2:1 and C2:2.
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4.2.1 Condition C1: r � t� 1

At the beginning of each round, every process broadcasts

the initial values it has received during the previous rounds

(line 5). This behavior is similar to the one of a reliable

broadcast protocol [14]. Such a protocol ensures that after

t� 1 rounds, every initial value is known either by every

noncrashed process, or by none of them.6 This observation

will be used to conclude that, after t� 1 rounds, the set of

noncrashed processes agrees on the global data, and thus

can terminate.

4.2.2 Condition C2 : �prev expectedi � next expectedi� ^
�8j 2 next expectedi : �gdi � rec gdj��:

The aim of this condition is to allow early termination.

When this conjunction of predicates, evaluated by a process

pi, holds at the end of a round r, it guarantees that all

processes that have completed round rÿ 1 have the same

estimate value. This condition is actually a predicate that

detects ªa stability propertyº on the last two rounds.

. Subcondition C2:1: prev expectedi � next expectedi
This condition can be restated as: prev expectedi �
cur expectedi � next expectedi. When it is satisfied
at the end of r, pi knows that all the processes it
assumed to participate in round rÿ 1, processes of
prev expectedi, have actually participated in rounds
rÿ 1 and r. In other words, pi knows that each
process that started round rÿ 1 has completed this
round. If the system was synchronous, we could
conclude that all the processes that have terminated
round rÿ 1 have the same global data estimate.7 But,

due to the asynchrony in crash suspicion (see the
discussion of Section 2.3), there can be some
processes that crash while executing r and that are
suspected by other processes while those are
executing rÿ 1. Because of these suspicions, C2:1

alone cannot allow pi to safely terminate.
. Subc ond i t ion C2:2: 8j 2 next expectedi : �gdi �

rec gdj�: When this condition is true, all the
processes that, to pi's knowledge, have terminated
rÿ 1 have the same estimate, which is equal to its
current estimate, namely gdi. But, as before, due to
the asynchrony in crash suspicion, there may be
processes that have completed rÿ 1 and, having
crashed while executing r, do not belong to
next expectedi. Hence, this condition alone does
not allow pi to conclude that all processes that have
completed rÿ 1 have the same estimate.

While each subcondition is not sufficient to allow pi to
safely terminate, it appears (as shown by the proof) that
their conjunction, C2:1 ^ C2:2, allows pi to safely terminate:
When they are satisfied at the end of r, all the estimates
were equal at the end of rÿ 1 and, consequently, ªgdi
contains no more and no less non? values than the

other estimates.º

In the worst case, C2 holds during the round 2f � 2.
Combined with C1, it will allow to conclude that min�t� 1;

2f � 2� is an upper bound for the number of rounds.

Remark. The protocol presented in Fig. 4 has some
similarities with the Sÿbased consensus protocol intro-
duced in [5] (let CTS be this protocol). S is a class of
failure detectors weaker than the class P of perfect
failure detectors. In both the proposed protocol and CTS ,
each process computes an array; the protocols ensure
that eventually these arrays are equal. The main
difference between the proposed protocol and CTS lies
in the introduction of the sets prev expectedi,
cur expectedi, and next expectedi, and in the associated
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Fig. 4. The Global Data Computation protocol.

6. Indeed, the worst case occurs when an initial value is known by only
one process at the beginning of each of the t first rounds. During a given
round, the process which is aware of the value transmits it to a single
process before crashing.

7. This would follow from the fact that the noncrashed processes have
received an estimate from each other, and from the fact there is no suspicion
during rÿ 1.



early termination predicate. It is important to note that,

even when executed with a perfect failure detector, CTS :

1) requires t� 1 rounds and 2) does not implement a best

effort strategy as the proposed protocol does: When there

is a conflict between ? and vk for determining the final

value of gdi�k�, the second phase of CTS always imposes

the value ? (let us note that this second phase of CTS is

necessary for the processes to have the same final array).

Differently, the proposed protocol does its best to have as

many entries of gdi different from ? as possible (see line

10). More details on relations between consensus and

GDC problems are given in Section 6.

4.3 Improvements

The test �gdi�k� � ?� ^ �rec gdj�k� 6� ?� (line 10) can be

simplified into rec gdj�k� 6� ?. We have chosen to consider

the extended test to clearly show the situation where pi

ªlearnsº new data.

Moreover, the sending of decide messages at line 14 is not

necessary in the particular case where ri � t� 1. In the

general case (ri < t� 1), this statement is required to get the

termination property. At the end of a round, the C2

condition, which allows early termination, can be true for

a correct process pj, while it is false for another correct

process pi. If this occurs, pj stops executing the protocol,

while pi proceeds to r� 1. As pi does not suspect pj and pj

does not participate in r� 1, it follows that pi will remain

blocked forever at line 6. The decide messages prevent such

a blocking.
The two above improvements are not considered in the

proof that follows.

4.4 Correctness Proof

Recall that a round is an execution of the loop (lines 3-16).

The first two lines of the protocol correspond to a fictitious

round r � 0. In the rest of the proof, we denote, by xri , the

value of a variable x at the end of round r for the process pi.

4.4.1 Synchronization

Lemma 1. When a process completes the execution of the wait

statement of a round r, any noncrashed process has already

completed the execution of the round rÿ 1.

Proof. Let us consider a process pi which completes the

execution of the wait statement of a round r. Due to the

Accuracy property of the failure detector, pi cannot

suspect a process that is not crashed. Thus, pi has

necessarily received an estimate message timestamped

with the round number r from all processes that have not

crashed. Those messages have been sent at the beginning

of the round r. Consequently, any noncrashed process

previously has completed the execution of the

round rÿ 1. tu
Corollary 1. At any time, any two noncrashed processes execute

either the same round or consecutive rounds.

4.4.2 Agreement Property

Lemma 2. If all the noncrashed processes complete a round r with
the same global data value, then any process pi that completes
a round � r also has the same global data value.

Proof. Obviously, Lemma 2 is satisfied when r � r0. Let us
assume that Lemma 2 is satisfied for a round r0 � r. In
other words, all the processes which complete the round
r0 have a global data equal to gd at the end of r0. We now
demonstrate, by contradiction, that a process pi, which
ends the round r0 � 1, also has a global data equal to gd at
the end of this round. At the beginning of round r0, the
value of gdi is equal to gd by assumption. Thus, if this is
not the case at the end of the round, it means that pi has
received a message from a process pj which contained a
global data rec gdj not equal to gd (the test of line 10 has
hold at least once.). Yet, as the value rec gdj has also been
computed at the end of the round r0, this value cannot be
different from gd. tu

Lemma 3. Let r be a round such that some processes learn new
initial values during this round. In particular, let pi be such a
process and vk, the initial value of process pk, be one of the
values learned by pi. Then, there exists a sequence of r� 1
processes �p��0� � pk; . . . ; p��r� � pi�, such that:

1. 8l > 1 �gdl��l� � vk� ^ �gdlÿ1
��l� � ?�,

2. The first rÿ 1 processes are faulty and crash before
round r� 1.

Proof. The proof is by induction on the number of rounds.

1. Base case r � 1. The first part of the lemma holds
with p��0� � pk and p��1� � pi. The second part of
the lemma trivially holds.

2. Induction. Suppose that the lemma holds for
rÿ 1 �r � 2�.
a. First part. Let pi � p��r� be a process learn±

ing vk during round r, i.e., gdr��r��k� �
vk ^ gdrÿ1

��r��k� � ?. From line 10, there exists

at least one process, let us denote it p��rÿ1�,
such that: part���r�; ��rÿ 1�; r� ^ gdrÿ1

��rÿ1��k�
� vk. We now show (by contradiction) that

p��rÿ1� has learned the value vk during round

rÿ 1. If it was not case, one would have: 1)

gdrÿ2
��rÿ1��k� � vk. Since part���r�; ��rÿ 1�; r�,

then p��rÿ1� was not crashed at the beginning

of round rÿ 1. Thus, 2) part���r�; ��rÿ 1��;
rÿ 1�. 1) and 2) implies that: gdrÿ1

��r��k� � vk, a

contradiction. Thus, p��rÿ1� satisfies the as-

sumptions of the lemma for rÿ 1, from which

we conclude the first part of the result for

round r.
b. Second part. Let us consider three con-

secutive processes in this sequence, namely

p��lÿ2�; p��lÿ1� and p��l�. From gdlÿ2
��lÿ2� � vk and

gdlÿ1
��l� � ?, one concludes :part���l�; ��lÿ

2�; lÿ 1� and, thus, p��l� has suspected p��lÿ2�
before round l. Thus, by Lemma 1, p��lÿ2� has

crashed during round lÿ 1, or round l.

Consequently, the first rÿ 1 processes of the
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sequence are faulty and have crashed before

round r� 1. tu

Lemma 4. The processes that terminate the round t� 1 share the
same global data.

Proof. Let r be a round during which a process learns a new
initial value vk. We show that r � t� 1. From Lemma 3,
there exists a sequence of r� 1 processes �p��0�; . . . ; p��r��,
such that the first rÿ 1 processes are faulty and crash
before round r� 1. Two cases have to be considered.

1. t � nÿ 1. In the worst case, all the processes of
the system are included in the sequence. Hence,
r� 1 � n. This means that r� 1 � n � t� 1, i.e.,
r � t. The sequence becomes �p��0�; . . . ; p��r� �
�p��0�; . . . ; p��nÿ2�; p��nÿ1��. From Lemma 3, only
p��nÿ2� and p��nÿ1� are noncrashed during round
n � r� 1 and both have learned vk by the end of
round nÿ 1 � t. It follows that every noncrashed
process has learned vk by the end of round t.

2. t < nÿ 1. Since there are at most t crashes, we
have rÿ 1 � t, i.e., r � t� 1. In the worst case,
r � t� 1 and the first t processes are faulty. Thus,
p��t�, which is necessarily a correct process, has
learned vk during round t and has broadcasted it
during round t� 1. It follows that every correct
processes has the same global data at the end of
round t� 1. tu

Lemma 5. Let r be the first round, during which at least one

process (pi) decides at line 14. Then, all the processes that have

completed the round rÿ 1 belong to the set prev expectedri :

Proof. The proof is a case analysis.

. r � 1. prev expected1
i � cur expected0

i � � (line 2)
. r � 2. Any process pk that terminates the round

rÿ 1 has obviously completed the wait statement
of round rÿ 1. At this time denoted t, due to
Lemma 1, any noncrashed process, in particular
pi, has also completed the round rÿ 2. Moreover,
at time t, pk is not crashed and, thus, no process
can have suspected pk before t. Consequently, pi
has not suspected pk during a round � rÿ 2.

1. r � 2. One has prev expected2
i � cur expected1

i

� next expected0
i � �ÿ suspected0

i . As pi has
not suspected pk during round 0, pk 62
prev expected2

i .
2. r > 2. As process pi has reached round r, it

has obviously received a message send by pk
during round rÿ 2. In other words
part�i; k; rÿ 2� and, thus,

pk 2 next expectedrÿ2
i � cur expectedrÿ1

i

� prev expectedri �line 4�: ut

Lemma 6. Let pi and pj be any two processes that have

terminated the execution of Global_data. We have

GDi � GDj, (where GDi-resp. GDj- is the last value of
gdi-resp., gdj).

Proof. If a process pi has returned from the execution of
Global_data, it has either executed line 14 or line 18. In
the first case, the decision value is the value of the local
global data gdi. In the last case, it decides on the value
carried by a decide message. This message has been sent
by a process, either at line 14 or at line 18, to forward a
decision value (this value, launched by a process
deciding at line 14, has been possibly relayed by several
processes before arriving at pi.). Thus, if processes decide
on different values for the global data, it means that at
least two processes have decided different values at
line 14.8 We prove that this scenario is impossible. Let r
be the first round during which a process decides at line
14 and let pi be a process that decides during this round.
At the end of r, the termination condition is satisfied for
pi. Two cases have to be considered:

. C1�r � t� 1� is satisfied. Due to Lemma 4, all
processes share the same global data at the end of
round r.

. C2 i s sat is f ied. In that case , le t X �
prev expectedri � next expectedri . During r, pi has
received a message from each process pj 2 X.
From Lemma 1 and Lemma 5, we conclude that
X contains all the processes that were not crashed
at the end of rÿ 1. The second part of the test
guarantees that all these processes have the same
global data value at the end of rÿ 1. Due to
Lemma 2, any process that completes a round � r
has also the same global data value. In particular,
this global data value is decided by any process
which executes line 14 during any round � r. This
ensures there is a single decided global data
value. tu

4.4.3 Obligation Property

Theorem 2. If a process pi completes the execution of
Global_data, then the value of the returned global data
contains its own initial value (i.e., gdi�i� � vi).

Proof. Due to the initialization (line 1), gdi�i� is equal to vi at
the beginning of round one. Moreover, gdi�i� is never
subsequently updated, because the test of line 10 never
holds (gdi�i� 6� ?). Let us consider the two following
cases:

. pi decides at line 14. Its global data necessarily
contains its own value.

. pi decides at line 18. As already indicated, in the
proof of Theorem 1, the global data decided by pi
has been previously decided by a process pj at
line 14. Let us assume that pj started the execution
of line 14 at time t. Obviously, pi was not crashed
at that time, because pi has later received the
global data value forwarded by pj. Moreover, pj
has executed at least one round; so, it has
completed, at some time t0 � t, the wait statement
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of its first round. Hence, it is impossible for pj to
have suspected pi before t0. Consequently, pj has
received the value �?; � � � ; vi; � � � ;?� sent by pi
during the first round and it has updated gdj�i�
accordingly during its first round (line 10). This
update has occurred before t. As the value of
gdj�i� remains equal to vi (later, the test concern-
ing gdj�i� at line 10 never holds), it follows that the
global data value decided by pj, and later by pi,
contains the value vi. tu

4.4.4 Validity Property

Theorem 3. If a process pi completes the execution of the
Global_data function, then 8j, gdi�j� contains vj or ?.

Proof. The proof follows directly from the initialization
(line 1), the update of the gdi�j� (line 10), and the channel
reliability (no message alteration, no spurious
message). tu

4.4.5 Termination Property

Theorem 4. All correct processes decide.

Proof. We first show that at least one correct process
decides. Indeed, let us assume that no correct process
decides. Due to the termination condition, this occurs if
no correct process ever reaches the end of round t� 1.
The proof is by contradiction. Let r < t� 1 be the
smallest round in which some correct process pi remains
blocked forever at the wait statement. As far as correct
processes are concerned, by assumption, none of them
can remain blocked in a previous round, thus, each of
them will broadcast a message to pi at the beginning of
round r. As channels are reliable, pi will receive all these
messages. As far as faulty processes are concerned, there
exists a time t after which every faulty process has
actually crashed and due to the completeness property of
the underlying failure detector, they will be suspected by
pi. This shows that pi eventually completes round r, a
contradiction. Moreover, if at least one process decides
(at line 14 or line 18), it must have sent a decide message
to all processes. Due to the channel reliability assump-
tion and to task T2, the theorem follows. tu

4.4.6 Upper Bound on the Number of Rounds

Theorem 5. In the worst case, the protocol converges in
min�2f � 2; t� 1� rounds.

Proof. Let m1, m2:1, and m2:2 be the maximal number of
rounds for conditions C1; C2:1, and C2:2 to be satisfied,
respectively. Since the termination condition is
C1 _ �C2:1 ^ C2:2�, one knows that the protocol converges
in min�m1;max�m2:1;m2:2��. Trivially, m1 � t� 1.

Let us now consider C2. If at least one process learns a
new initial value during round r, Lemma 3 tells us that at
least rÿ 1 crashes actually occur before r� 1. Since there
are exactly f crashes, one knows that, in the worst case,
the round f � 1 is the last round during which a process
can learn a new initial value. It follows that all the
processes will have the same global data value at the
round of f � 1, even if they are not aware of this fact.

Due to Lemma 2, all values exchanged in rounds > r are
equal. Consequently, the condition C2:2 holds at the end
of any round r � f � 2. Hence, m2:2 � f � 2.

The condition C2:1 is a local test, for each process pi,
about the absence of new suspicions over two consecu-
tive rounds. In the worst case, this property can not be
satisfied as long as exactly one new suspicion is learned
by pi during every pair of consecutive rounds. Since
there are at most f crashes, this situation cannot last
more than 2f rounds. Thus, the condition C2:1 holds after
at most 2f � 2 rounds.

It follows that the protocol terminates after, at most,
min�t� 1;max�2f � 2; f � 2�� rounds. tu

5 HARDNESS OF THE GDC PROBLEM

5.1 Problem Reduction

This section considers the hardness of a problem with
respect to the difficulty of solving it in the presence of
process crashes: A problem is easy if it can be solved despite
many arbitrary process crashes, it is hard if it requires
additional assumptions to be solved in the presence of
process crashes [10], [14]. To address this issue, Chandra,
Hadzilacos, and Toueg [5], [14] have extended the notion of
problem reduction to asynchronous distributed systems with
process crashes.

A problem P2 reduces to a problem P1 (denoted
P1 � P2) if there exists a protocol AP1!P2 that transforms
any protocol solving P1 into a protocol solving P2. P1 � P2
means that P1 is at least as hard to solve as P2: All the
assumptions, and maybe more, required to solve P2 are
necessary to solve P1; the situation can even be worseÐit is
possible that P2 can be solved while P1 cannot. If P1 � P2
and P2 � P1, then P1 and P2 are equivalent. This is denoted
P1 ' P2.

5.2 A New Reduction

P � GDC. Let P be the problem of constructing a
perfect failure detector (i.e., a failure detector satisfying the
Completeness and Accuracy properties defined in
Section 2.2).

Assuming a solution to P , the protocol designed in
Section 4.1 solves GCD. Consequently, this protocol is a
reduction transforming any protocol solving P into a
protocol solving GCD. Hence, we have P � GDC.

GCD � P. We give here a simple protocol that, given a
solution to the GDC problem, solves P . This protocol is
described in Fig. 5. For each process pi, the protocol is made
of two tasks.
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The task T2 realizes the interface with the upper layer.
The variable suspectedi contains the set of processes
currently suspected by pi. So, when the upper layer calls
QUERY_P, the task T2 returns the current value of this set.

The task T1 manages the variable suspectedi. It is made
of an infinite loop. Each iteration is a call to the function
Global_data(vi), where the value provided by pi is distinct
from ?. Then, when T1 has got the result of the current call
to Global_data, it computes the new value of suspectedi.
This value includes all processes pj that were crashed before
this global data computation (note that suspectedi can also
include processes that have crashed during this
computation).

It is relatively easy to show that this protocol constructs a
perfect failure detector. Here we sketch such a proof. First
of all, a correct process pi participates in all instances of the
GDC problem (successive calls to Global_data) and never
provides vi � ?. Due to the properties of the GDC problem,
it follows that, 8j and for all instances of the GDC problem,
pj always gets GDj�i� 6� ?. So, if pi is correct, it is never
suspected. More generally, if pi, correct or not, has not
crashed when the result of the kth instance of the GDC
problem is delivered to pj, then GDj�i� � vi 6� ? and pi is
not added to suspectedi during the kth instance of the GDC
problem. If pi has crashed before the kth instance of the
GDC problem, then it cannot provide a value vi and,
consequently, pj will get GDj�i� � ? and will add pi to
suspectedi. So, crashed processes are eventually suspected
(Completeness) and no process is suspected before it
crashes (Accuracy property).

5.3 GDC is a Hard Problem

Let us consider the following two distributed computing
problems: NBAC, the Nonblocking Atomic Commitment
problem [3] and, TRB, the Terminating Reliable Broadcast
problem [14].9 Combined with previous results on the
classification of problems in asynchronous systems prone to
process crashes [5], [10], [13], [14], we have the following
problem equivalence:

P ' NBAC ' TRB ' GDC:
So, according to the problem classes defined in [10], GDC
belongs to the class, called NFC, which contains the hardest
problems to solve in presence of process crashes.

6 A CONSENSUS-BASED APPROACH

This section first presents a consensus-based approach to
solve the GDC problem. Then, it compares this approach
with the approach developed in Section 4.

6.1 A Consensus-Based GDC Protocol

The consensus problem can be defined informally in the
following way. Each noncrashed process proposes a value
and all correct processes have to decide a value (termination
property) such that: 1) no two correct processes decide
different value (agreement property) and 2) the decided
value is a proposed value (validity property). (See [5], [9],
[10] for a formal introduction to the consensus problem).

The protocol described in Fig. 6 provides a consensus-
based solution to the GDC problem. It assumes a perfect
failure detector and works as follows: First, each process
sends its initial data to the other processes (line 1). Then,
each process pi constructs a local view of the global data
(lines 2-3). Finally, the processes use the consensus routine
to impose one of these local views as the decided global
data (line 4). Due to the consensus termination property,
every correct process decides. Due to the consensus
agreement, all correct processes decide the same array
and due to the validity property, they decide a global data
proposed by a process. Moreover, due to the use of a perfect
failure detector at line 2, the view built by a process at line 3
includes the initial value of all the correct processes.

6.2 Discussion

The previous protocol uses a perfect failure detector (line 2)
in order that the local view of a process does not miss the
initial values of correct processes. Its cost is one commu-
nication round, to construct the local views, plus the cost of
the underlying consensus routine.

Any consensus protocol that uses a failure detector
belonging to a failure detector class defined in [5] works
when the underlying failure detector is perfect, but the
consensus problem does not require a perfect failure
detector. It can be solved with failure detectors of weaker
classes [5], [6]. When equipped with a perfect failure
detector, the most efficient in terms of communication
steps, failure detector-based consensus protocols currently
known [5], [16], [21], [26] require at least 2�f � 1� commu-
nication steps. Hence, the consensus-based protocol de-
scribed in Fig. 6 is less efficient than the protocol described
in Section 4.

This is not counterintuitive. It has been shown in
Section 5 that P ' NBAC ' TRB ' GDC. Let CONS
denote the consensus problem. It has been shown [14] that
TRB > CONS in asynchronous distributed systems.
Hence, we have GDC > CONS. This means that, although
the consensus problem can be solved with a perfect failure
detector, the consensus alone is not sufficient to solve the
GDC problem. Intuitively, this means that the lines 1-2 of
Fig. 6 cannot be suppressed: Whatever the underlying
consensus protocol, a perfect failure detector is required to
construct consistent local views of the global data, thereby
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ensuring that the decided view satisfies the Obligation
property defined in Section 3.2.

7 EXAMPLES OF GLOBAL FUNCTION COMPUTATION

The solution to several distributed computing problems
amounts to compute a global function [12], [15]. This section
shows how the previous framework allows solving those
problems in the context of asynchronous distributed
systems with process crashes. To this end, two problems
are briefly examined.

7.1 Nonblocking Atomic Commitment

This well-known problem is mainly encountered in data
management systems [3]. It has been sketched in the
introduction.

The local variable vi contains the YES or NO vote of pi.
After its computation, the global data contains the votes of,
at least, all correct processes. Some of its entries can contain
the ? value: If GDi�j� � ?, then pj has crashed before the
end of the global data computation, but an entry associated
with a process that has crashed can contain ? or its vote,
depending on the crash pattern and on the estimate
exchange pattern. Finally, the function F delivers the result
COMMIT if and only if all the entries of the global data
contain a YES vote, this is the all-or-nothing Atomic
Commitment problem. We can see that a ? value in the
global data is implicitly interpreted as a NO vote.

It is important to note that the the assumption used by
the protocol is consistent with Guerraoui's theoretical
result, namely, ªThe Atomic Commitment problem can be
solved in asynchronous distributed systems prone to
process crashes, only if the underlying failure detector
modules are perfectº [13]. It is also important to note that
the NBAC protocols described in [13], [17], [24] solve a weak
version of the NBAC problem. In this weaker version, the
ªprocess crashº notion is replaced by a weaker notion,
namely the ªprocess crash suspicionº notion. See [13], [24]
for more details.

7.2 Distributed Termination Detection

This problem is a well-known paradigm of reliable
distributed computing. We assume the reader is familiar
with it. An application is terminated when it has entered a
state from which its processes will remain passive forever
(this requires there is no message in transit between
processes). A lot of protocols have been proposed to detect
distributed termination [15], [20], [27].

In our context a distributed computation is terminated if
it has entered a state from which each of its noncrashed
processes remains passive forever or crashes. A way to cope
with arbitrary transfer delays of messages sent by crashed
processes, they sent them before crashing, consists in
allowing a process pi to stop receiving messages from
processes it perceives crashed. This can be done by
providing processes with a variable NC containing the set
of processes perceived as noncrashed. Its value is obtained
as the result of a global function computation (i.e., all the
processes have the same value for NC). Initially, NC � �.

Here we extend a variant of a protocol, denoted M,

proposed by Mattern [20] for crash-free systems. M requires

each process pi to maintain the following arrays of control

variables: senti�k� which counts the number of messages

that pi has sent to pk and reci�k� which counts the number of

messages that pi has received from pk. As in M, the

proposed extension requires a process be passive in order to

participate in a global data computation; so, if it is active, it

waits until it becomes passive. It also requires two

consecutive global data computations, called GD1 and

GD2, respectively. They are built from the following initial

values:

. For GD1: vi � �reci; suspectedi�.

. For GD2: vi � �senti; suspectedi�.
So, when a global data GD1 (resp. GD2)10 has been
computed, some of its entries contain a counter array
plus a set of processes, while the others contain the
default value ?. Note, that if a process has crashed
before the computation of GD1 (resp. GD2), then its
corresponding entry in GD1 (resp. GD2) is equal to ?.
After having obtained the values of GD1 (resp. GD2), a
process pi computes NC1 � �ÿ crashed1 (resp. NC2 �
�ÿ crashed2), where crashed1 (resp. crashed2) is the
union of the sets suspectedj that are in GD1 (resp. GD2).
Moreover, NC is updated to NC1 (resp. NC2). Then, pi
compares NC1 and NC2 (note that NC1 � NC2).

. If NC1 6� NC2, pi cannot claim termination. It starts
new successive global data computations to get two
new global data GD1 and GD2.

. If NC1 � NC2, then process pi computes:

- R1 �Pj;k2NC2;recj2GD1 recj�k�. This value repre-
sents the number of messages received by
processes in NC2 from processes in NC2, as
perceived by the first computed global
data GD1.

- S2 �Pj;k2NC2;sentk2GD2 sentk�j�. This value repre-
sents the number of messages sent by processes
in NC2 to processes in NC2, as perceived by the
second computed global data GD2.

If R1 � S2, then, with respect to the set of processes
perceived as noncrashed, the number of messages
counted as received by GD1 is equal to the number
of messages counted as sent by GD2. If this is true, pi
claims termination. Otherwise it starts a new
computation to get two new global data GD1
and GD2.

This extended protocol allows process crashes to be
coped with. It is possible to show that if the application
terminates, then the protocol will eventually claim it
(liveness of the detection); if the protocol claims termina-
tion, then the application has actually terminated (safety of
the detection). Informally, from NC1 � NC2 we can
conclude the following two points: 1) Any process pi that
is perceived crashed by GD1 cannot belong to NC2.
Consequently, messages sent or received by this process
pi are counted neither in R1 nor in S2, and 2) If a process pi
crashes during GD2, it does belong to NC1 and, hence, to
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NC2. So, messages sent or received by such a process pi
appear in R1 and S2.

8 CONCLUSION

This paper has addressed the computation of a global data
function in asynchronous distributed systems where pro-
cesses may fail by crashing. A Global Data is an array of
values with one entry per process. A particular global
function is defined by the type of the value each process has
to provide and by the function that has to be computed.
This paper has proposed a protocol to solve such problems
in the context of asynchronous distributed systems where
processes may fail by crashing.

The main problem that has to be solved lies in computing
the global data and providing each noncrashed process
with a copy of it, despite the possible crash of some
processes. To be consistent, the global data must contain, at
least, all the values provided by the processes that do not
crash. This is the Global Data Computation (GDC) problem. It
has been shown that GDC belongs to the class of problems
that are the hardest to solve, with respect to the assumptions
they require, in the presence of process crashes (GDC is
actually equivalent to the problem of building a perfect
failure detector). To solve the GDC problem, the proposed
protocol requires processes to execute a sequence of
asynchronous rounds during which they construct, in a
decentralized way, the value of the global data, in such a
way that eventually each process gets a copy of it.

The proposed protocol was designed to allow early
decision. In the best case, it terminates in two rounds, when
t > 1. Moreover, processes never exchange information on
crashes. The message size depends only on the round
number and on the size of the global data: In addition to its
identity, a message carries only an estimate of the global
data value. Let us also note that, when communication
channels are FIFO, round numbers can be implemented
mod2. In that case, messages carry only bounded values.

In the worst case, the proposed protocol requires
min�2f � 2; t� 1� rounds. There is a problem ([8], Section
5, p. 740), similar to the Global Data Computation problem,
that can be solved in a synchronous distributed system in
min�2f � 2; t� 1� rounds, which has been shown to be
lower bound [8] in such systems. So, an interesting open
question is the following: ªIn asynchronous distributed
systems equipped with perfect failure detectors, is min�2f �
2; t� 1� a lower bound for the maximal number of rounds
of any protocol, in which processes do not exchange lists of
suspects, solving the Global Data Computation problem?º
Another interesting open problem is to design a reliable
synchronizer able to interpret synchronous protocols on top
of an asynchronous system, where processes can crash,
equipped with a perfect failure detector.
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