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Abstract

The Paxos part-time parliament protocol of Lamport provides a very practical way to implement a fault-tolerant
deterministic service by replicating it over a distributed message passing system. The contribution of this paper is
a faithful deconstruction of Paxos that preserves its efficiency in terms of forced logs, messages and communication
steps. The key to our faithful deconstruction is the factorisation of the fundamental algorithmic principles of Paxos
within two abstractions: weak leader election and round-based consensus, itself based on a round-based register
abstraction. Using those abstractions, we show how to reconstruct, in a modular manner, known and new variants of
Paxos. In particular, we show how to (1) alleviate the need for forced logs if some processes remain up for sufficiently
long, (2) augment the resilience of the algorithm against unstable processes, (3) enable single process decision with
shared commodity disks, and (4) reduce the number of communication steps during stable periods of the system.
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*The Island of Paxos used to host a great civilisation, which was unfortunately destroyed by a foreign invasion. A famous archaeologist reported
on interesting parts of the history of Paxons and particularly described their sophisticated part-time parliament [11]. Paxos legislatoesimaintai
consistent copies of the parliamentary records, despite their frequent forays from the chamber and the forgetfulness of their messengers. Although
recent studies explored the use of powerful tools to reason about the correctness of the parliament protocol [12, 16], our desire to better understand
the Paxon civilisation motivated us to revisit the Island and spend some time deciphering the ancient manuscripts of the legislative system. We
discovered that Paxons had precisely codified various aspects of their parliament protocol which enabled them easily adapt the protocol to specific
functioning modes throughout the seasons. In particular, during winter, the parliament was heated and some legislators did never leave the chamber:
their guaranteed presence helped alleviate the need for expensive writing of decrees on ledgers. This was easy to obtain precisely because the
subprotocol used to “store and lock” decrees was precisely codified. In spring, and with the blooming days coming, some legislators could not stop
leaving and entering the parliament and their indiscipline prevented progress in the protocol. However, because the election subprotocol used to
choose the parliament president was factored out and precisely codified, the protocol could easily be adapted to cope with indisciplined legislators
During summer, very few legislators were in the parliament and it was hardly possible to pass any decree because of the lack of the necessary
majority. Fortunately, it was easy to modify the subprotocol used to store and lock decrees and devise a powerful technique where a single legislator
could pass decrees by directly accessing the ledgers of other legislators. Fall was a protest period and citizens wanted a faster procedure to pass
decrees. Paxons noticed that, in most periods, messengers did not loose messages and legislators replied in time. They could devise a variant of the
protocol that reduced the number of communication steps needed to pass decrees during those periods. This powerful optimisation was obtained

through a simple refinement of the subprotocol used to propose new decrees.
This work was partially supported by the Swiss National Fund grant No. 510 207.



1 Introduction
The Paxos Algorithm

The Paxos part-time parliament algorithm of Lamport [11] provides a very powerful way to implement a highly-
available deterministic service by replicating it over a system of non-malicious processes communicating through
message passing. Replicas follow ttete-machine pattern (also calledctive replication) [19]. Each correct replica
computes every request and returns the result to the corresponding client which selects the first returned result. Paxos
maintains replica consistency by ensuring total order delivery of requests. It does so even during unstable periods of
the system, e.g., even if messages are delayed or lost and processes crash and recover. During stable periods, Paxos
rapidly achieves progressAs pointed out in [12, 16] however, Paxos is rather tricky and it is difficult to factor out
the abstractions that comprise the algorithm. Deconstructing the algorithm and identifying those abstractions is an
appealing objective towards specific reconstructions and practical implementations of it.

In[12, 16], Lampson, De Prisco and Lynch focused on the key issue in the Paxos algorithm used to agree on a total
order for delivering client requests to the replicas. This agreement aspect, factored out within a consensus abstraction,
is deconstructed into a storage and a register part. As pointed out in [12, 16], one can indeed obtain a pedagogically
appealing state machine replication algorithm as a straightforward sequence of consensus instances, but faithfully
preserving the efficiency of the original Paxos algorithm goes through opening the consensus box and combining
some of its underlying algorithmic principles with non-trivial techniques such as log piggy-backing and leasing. The
aim of our paper is to describe a faithful deconstruction top to bottom, of the entire Paxos replication algorithm. Our
deconstruction is faithful in the sense that it relies on abstractions that do no need to be opened in order to preserve
the efficiency of the original Paxos replication scheme.

The Faithful Deconstr uction

A key to our faithful deconstruction is the identification of the new notioroahd-based consensus, which is in a
sense, finer-grained than consen$(Ehis new abstraction is precisely what allows us to preserve efficiency without
sacrificing modularity. Our deconstruction of theerall Paxos state machine replication algorithm is modular, and
yet it preserves the efficiency of the original algorithm in terms of forced logs, messages and communication steps.
We use round-based consensus in conjunction with a leader election abstraction, both as first class citizens at the level
of the replication algorithm. Round-based consensus allows us to expose the notion of round up to the replication
scheme, as in the original Paxos replication algorithm (but in a more modular manner) and merge all forced logs of the
round at the lowest level of abstraction. Round-based consensus also allows a process to propose more than once (e.g.,
after a crash and a recovery) without implying a forced log. Having the notion of leader as a first class abstraction at

1In fact, the liveness of the algorithm relies on partial synchrony assumptions whereas safety does not: Paxos is “indulgent” in the sense of [6].
In a stable period where the leader communicates in a timely manner with a majority of the processes (most frequent periods in practice), two
communication steps (four if the client process is not leader) and one forced log at a majority of the processes are enough to perform a request and
return a reply.

2The round-based consensus is actually strictly weaker than consensus: it can be implemented with a majority of correct processes and does
not fall within the FLP impossibility, yet it has a meaningful liveness property. Roughly speaking, round-based consensus is the abstraction that we
obtain after extracting the leader election from consensus.



the level of the replication algorithm (and not hidden by a consensus box) enables the client to send its request directly
to the leader, which can process several requests in a row.

Effective Reconstructions

Not only do our abstractions of leader election and round-based consensus help faithfully deconstruct the original
Paxos replication algorithm, they also enable us to straightforwardly reconstruct known and new variants of it by only
modifying the implementation of one of our abstractions. For example, we show how to easily obtain a modularisation
of the so-called Disk Paxos replication algorithm [5], where progress is ensured with a single correct process and a
majority of correct disks, by simply modifying a component in round-based consensus (its round-based regigter).
also show how to cleanly obtain the “Fast” Paxos variant by integrating the “lease-based” tricky optimisation, sketched
in [11] and pointed out in [12]. This optimisation makes it possible in stable periods of the system (where “enough”
processes communicate in a timely manner) for any leader to determine the order for a request in a single round-trip
communication step.

We also construct two new variants of Paxos. The first one is more resilient than the original one in the sense that
it copes with unstable processes, i.e., processes that keep on crashing and recovering forever. (The original Paxos
replication algorithm might not achieve progress in the presence of such processes.) Our second variant alleviates
the need for stable storage and relies instead on some processes being always up. This variant is more efficient
than the original one (stable storage is usually considered a major source of overhead) and intuitively reflects the
practical assumption that only part of the total system can be down at any point in time, or indirectly, that the system
configuration has a “large” number of replichsWe point out that further variants can be obtained by mixing the
variants we present in the paper, e.g., a Fast Disk Paxos algorithm or a Fast Paxos algorithm than handles unstable
processes.

Thanks to our modular approach, we could implement Paxos and its variants as a framework. We give here practical
implementation measures of the various replication algorithms in this framework.

Roadmap

The rest of the paper is organised as follows. Section 2 describes the model and the problem specification. Section 3
gives the specification of our abstractions. We show how to implement these specifications in a crash-stop model in
Section 4, and how to transpose the implementation in a more general crash—recovery model in Section 5. Section 6
describes four interesting variants of the algorithm. Section 7 discusses related work. Appendix A gives some perfor-
mance measurements of our framework implementation. Appendix B gives an implementation of the failure detector

Q in a crash-recovery model with partial asynchrony assumptions.

3This typically makes sense if we have shared hard disks (some parallel database systems use this approach for fail-over when they mount each
others disks) or if we have some notion of network-attached storage.

4Note that such a configuration does not preclude the possibility of process crash-recovery. There is here a trade-off that reflects the real-world
setting: fewer processes + forced logs vs more processes without forced logs.



2 Modd
2.1 Processes

We consider a set of procesdés= {p1,p2, ..., p }. At @any given time, a process is eithgy or down. When it is
up, a process progresses at its own speed behaving according to its specificatibngrrectly executes its program).
Note that we do not make here any assumption on the relative speed of processes. While being up, a process can fail
by crashing; it then stops executing its program and becaows. A process that is down can later recover; it then
becomes up again and restarts by executing a recovery procedure. The occurrea@sto{r@sp. recovery) event
makes a process transit from up to down (resp. from down to up). A prpgasanstableif it crashes and recovers
infinitely many times. We define amways-up process as a process that never crashes. We say that a preégess
correct if there is a time after which the process is permanently dpprocess idaulty if it is not correct, i.e., either
eventually always-down or unstable.

A process is equipped with two local memories: a volatile memory and a stable storage. The pratutieesd
retrieve allow a process that is up to access its stable storage. When it crashes, a process loses the content of its
volatile memory; the content of its stable storage is however not affected by the crash and can be retrieved by the

process upon recovery.
2.2 Link Properties

Processes exchange information and synchronisergyng andreceiving messages through channels. We assume
the existence of a bidirectional channel between every pair of processes. We assume that everyrmiessades
the following fields: the identity of its sender, denotedder(m), and a local identification number, denoieim).
These fields make every message unique throughout the whole life of the process, i.e., a message cannot have the
same id even after the crash and recovery of a process. Channels can lose or drop messages and there is no upper
bound on message transmission delays. We assume channels that ensure the following properties between every pair
of processep; andp;:

No creation: If p; receives a message from p; at timet, thenp; sentm to p; before timet.

Fair loss: If p; sends a message to p; an infinite number of times and; is correct, therp; receivesn from p;
an infinite number of times.
These properties characterise the links between processes and are independent of the process failure pattern occurring
in the execution. The last property is sometimes calegk loss, e.g., in [14]. It reflects the usefulness of the com-
munication channel. Without the weak loss property, any interesting distributed problem would be trivially impossible
to solve. By introducing the notion of correct process intoftiel oss property, we define the conditions under which
a message is delivered to its recipient process. Indeed, the delivery of a message requires the recipient process to be
running at the time the channel attempts to deliver it, and therefore depends on the failure pattern occurring in the
execution. Thdair loss property indicates that a message can be lost, either because the channel may not attempt to

5In practice, a process is required to stay up long enough for the computation to terminate. In asynchronous systems however, characterising the
notion of “long enough” is impossible.



deliver the message or because the recipient process may be down when the channel attempts to deliver the message
to it. In both cases, the channel is said to commib@ission failure.

We assume the presence of a discrete global clock whose rangétiskihe set of natural numbers. This clock
is used to simplify presentation and not to introduce time synchrony, since processes cannot access the global clock.
We will indeed introduce some partial synchrony assumptions (otherwise, fault-tolerant agreement and total order are
impossible [4]), but these assumptions will be encapsulated insidsealti eader election abstraction and used only
to ensure progress (liveness). We give the implementation (with some details on the partial synchrony model) of the
failure detector on which is based our weak leader election in Appendix B. Finally, we defat#eperiod when (i)
the weak leader election returns the same proggasall processes, (ii) there is a majority of processes that remains
up, and (iii) no process or link crashes or recovers. Otherwise, we say that the systemusstablie period.

3 Abstractions. Specifications

Our deconstruction of Paxos is based on two main abstractiomsakal eader election and around-based consen-
sus, itself based on @aound-based register (sub)abstraction. These “shared memory” abstractions export operations
that are invoked by the processes implementing the replicated service. As in [10], we say that an operation invocation
inwvq follows (is subsequent to) an operation invocatioinv, if inv, was called afteinv; has returned. Otherwise,
the invocations areoncurrent.

Roughly speaking, Paxos ensures that all processes deliver messages in the same order. The round-based consensus
encapsulates the subprotocol used to “agree” on the order; the round-based register encapsulates the subprotocol
used (within round-based consensus) to “store” and “lock” the agreement value (i.e., the order); and the weak leader
election encapsulates the subprotocol used to eventually choose a unique leader that succeeds in storing and locking a
final decision value in the register. We give here the specifications of these abstractions, together with the specification
of the problem we solve using these abstractions, i.e., total order delivery. (Implementations are given in the next
sections.) The specifications rely on the notion of process correctness: we assume that processes fail only by crashing,
and a process is correct if there is a time after which the process is always-up (i.e., not cPashed).

3.1 Round-Based Register

Like a standard registerraund-based register is a shared register that has two operatioasd(k) andwrite(k, v).
These operations are invoked by the processes in the system. Unlike a standard register, the operation invocations of a
round-based register (1) take as a parameter an intggjer, a round number), and (2) may commit or abort. Note that
the notion of round is the same for round-based register and round-based consensus: it corresponds to the notion of
ballots in the original Paxos. The commit/abort outcome reflects the success or the failure of the operation. More pre-
cisely, theread(k) operation takes as input an integelt returns a paif status, v) wherestatus € {commit, abort}
andv € V represents the set of possible values for the regidter} is the initial value of the register. Head(k)
returns(commit, v) (resp.(abort, v)), we say thatead(k) commits (resp.aborts) with v. Thewrite(k, v) operation

SNote that the validity period of this definition is the duration of a protocol execution, i.e., in practice, a process is correct if it eventually remain
up long enough for the protocol to terminate.



takes as input an integérand a valuey € V. It returnsstatus € {commit, abort}. If write(k,v) returnscommit
(resp.abort), we say thatorite(k,v) commits (resp.aborts).” Intuitively, when aread() invocation aborts, it gives
information about what the process itself has done in the past (e.g., before it crashed and recovered), whereas when
awrite() invocation aborts, it gives to the process information about what other processes are doing. A round-based
register satisfies the following properties:

e Read-abort: If read(k) aborts, then some operatioend(k’) or write(k’, ) was invoked withk’ > k.
e Write-abort: If write(k, ) aborts, then some operatioead(k’) or write(k’, ) was invoked withk’ > k.

e Read-write-commit: If read(k) orwrite(k, ) commits, then no subsequemrt:d(k’) can commit withk’ < k
and no subsequentrite(k”, ) can commit withk” < k.8

e Read-commit: If read(k) commits withv andv #.1, then some operatiomrite(k’,v) was invoked with
E <k.

e Write-commit: If write(k,v) commits and no subsequentite(k’,v’) is invoked withk’ > k andv’ # v,
then anyread(k’) that commits, commits with if &” > k.

These properties define the conditions under which the operatiorzdort or commit. Indirectly, these conditions
relate the values read and written on the register. We first describe the condition under which an incanatimmnt.
Roughly speaking, an operation invocation aborts only if therecanéicting invocation. Like in [11], the notion of
“conflict” is defined here in terms of round numbers associated with the operations. Intuitivedy]@ that commits
returns the value written by a “previousirite(), or the initial valueL if no write() has been invoked. Avrite()
that commits forces a subsequeatd() to return the value written, unless this value has been overwritten.
The read-abort and write-abort conditions capture the intuition thatd(k) (resp. awrite(k,v)) conflicts with
any other operatiornvéad(k’) or write(k’,v)) made withk’ > k (resp.k’ > k). The read-write commit condition
expresses the fact that, to commit an operation, a process must use a round number that is higher than any round
number of an already committed invocation. The read-commit condition captures the intuition that no value can be
read unless it has been “previously” written. If there has not been any such write, then the initial valteturned.
The write-commit condition captures the intuition that, if a value is (successfully) written, then, unless there is a
subsequent write, every subsequent successfully read must return that value. Informally, the two conditions (read-
commit, write-commit) ensure that the value read is the “last” value written.

To illustrate the behaviour of a round-based register, consider the example of Figure 1. Three ppogessasd
ps access the same round-based register. Prggeswokeswrite(1, X') before any process invokes any operation
on the register: operationrite(1, X) commits and the value of the registerXs p, getscommit as a return value.
Later, p» invokesread(2) on the register: the operation commits andgets(commit, X) as a return value. Ips
later invokeswrite(1,Y), then the operation aborts: the return valuebisrt (because 2 has invoked-ead(2)). The
register value remainX. If p3 later invokeswrite(3,Y"), the operation commits: the new register value is thien

“Note that even if avrite() aborts, its value might be subsequently read, i.e.uthéte() operation is noatomic.
8Note that we deliberately do not restrict the case where different processes perform invocations with the same round number. Paxos indeed
assumes round number uniqueness as we will see in Section 4.
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Figure 1. Round-based register example

3.2 Round-Based Consensus

We introduce below our round-based consensus abstraction. This abstraction captures the subprotocol used in
Paxos to agree on a total order. Our consensus notion corresponds to a single instance of total order, i.e., one batch of
messages. To differentiate between consensus instances, i.e., batch of messages, we index the consensus instances with
an integer [L). We represent our consensus notion in the form of a shared object with one operadjere(k, v) [9].

This operation takes as input an integér.e., a round number which is the same one used in the round-based register)
and an initial value in a domainl’ (i.e., a proposition for the consensus). It retursg@us in {commit, abort} and
avalue inV. We say that a procegs proposes a valueinit; for roundk whenp, invokes functiorpropose(k, init;).

We say thap; decides v in roundk (or commits round:) whenp; returns from the functiopropose(k, init;) with
commit andv. If the invocation ofpropose(k, v) returnsabort atp;, we say thap; aborts round:. Round-based
consensus has the following properties:

e Validity: If a process decides a valugthenv was proposed by some process.
e Agreement: No two processes decide differently.

e Termination: If a propose(k,«) aborts, then some operatignopose(k’, x) was invoked withk’ > k; if
propose(k, x) commits, then no operatign-opose(k’, x) can subsequently commit with roud < k.

The agreement and validity properties of our round-based consensus abstraction are similar to those of the traditional
consensus abstraction [9]. Our termination property is however strictly weaker. If processes keep concurrently propos-
ing values with increasing round numbers, then no process might be able to decide any value. In a sense, our notion
of consensus has a conditional termination property. In comparison to [12], the author presents a consensus that does
not ensure any liveness property. As stated by Lampson, the reason for not giving any liveness property is to avoid the
applicability of the impossibility result of [4]. Our round-based consensus specification is weaker than consensus and
does not fall into the impossibility result of [4], but nevertheless includes a liveness property. In the rest of the paper,
when no ambiguity is possible, we shall simply use the term consensus instead of round-based consensus.

In Figure 2, procesg, commits consensus with value Y for round 2. Progesthen triggers consensus by invoking
propose(1, X) but aborts because processproposed with a higher round number and preveratdom committing.
Proces®; then proposes with value X for round 4, and this timecommits. Process; aborts when it proposes with
value Z for round 3.
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Figure 2. Round-based consensus example

3.3 Weak Leader Election

Intuitively, aweak leader election abstraction is a shared object that elects a leader among a set of processes. It
encapsulates the subprotocol used in Paxos to choose a process that decides on the ordering of messages. The weak
leader election object has one operation, nameeder(), which returns a process identifier, denoting the current
leader. When the operation retumms at time¢ and procesg;, we say thap; is leader forp; at timet (or p; elects
p; at timet). We say that a procegs is aneventual perpetual leader if (1) p; is correct, and (2) eventually every
invocation ofleader() returnsp,;. Weak leader election satisfies the following propeByme process is an eventual
perpetual leader.

It is important to notice that the property above does not prevent the case where, for an arbitrary period of time,
various processes are simultaneously leaflekowever, there must be a time after which the processes agree on
some unique correct leader. Figure 3 depicts a scenario where every process electyppramedsherp; crashes;
eventually every process elects then progess

| ead
o1 ea er() I eaFer() %‘:’a/\'\v\;/%

T T
p1 p1

p2 | eafjer() | eafjer() | eaFer() | ea}jer()
P2 p1 P P2
| eader | eader | eader | eader
p3 | 0 | 0 | 0 % 0
pP3 p1 p2 p2

Figure 3. Weak leader election example
3.4 Total Order Delivery

The main problem solved by the actual Paxos protocol is to ensure total order delivery of messages (i.e., requests
broadcast to replicasy. Total order broadcast is defined by two primitivd©-Broadcast and TO-Deliver. We say
that a process TO-Broadcasts a messagehen it invokesTO-Broadcast with m as an input parameter. We say that
a process TO-Delivers a messagavhen it returns from the invocation @D-Deliver with m as an output parameter.
Our total order broadcast protocol has the following properties:

e Termination: If a procesg; TO-Broadcasts a messageand therp; does not crash, thew eventually TO-

Deliversm.

%n this sense our weak leader election specification is strictly weaker then the notion of leader election introduced in [18].
10| fact, Paxos also deals with causal order delivery of messages, but we do not consider that issue here.



e Agreement: If a process TO-Delivers a messagethen every correct process eventually TO-Delivers

e Validity: For any message, (i) every procesp; that TO-Deliversn, TO-Deliversm only if m was previously
TO-Broadcast by some process, and (ii) every prope§€-Deliversm at most once.

e Total order: Letp; andp; be any two processes that TO-Deliver some messag# p; TO-Delivers some

messagen’ beforem, thenp; also TO-Deliversn’ beforem.

Itis important to notice that the total order property we consider here is slightly stronger from the one introduced in [8].
In [8], it is stated that if any processgsandp, both TO-Deliver messages m and m/, thenp; TO-Deliversm before

m’ if and only if p; TO-Deliversm beforem’. With this property, nothing prevents a procesgrom TO-Delivering

the sequence of messages; mo; ms whereas another (faulty) process TO-Delivers; ms without ever delivering

mso. Our specification clearly excludes that scenario and more faithfully captures the (uniform) guarantee offered by
Paxos [11].

4 Abstractions. Implementations

In the following, we give wait-free [9] implementations of our three abstractions and show how they can be used to
implement a simple variant of the Paxos protocol in the particular case of a crash-stop model (following the architecture
of Figure 4). We will show how to step to a crash-recovery model in the next section.

Paxos

Round-Based
Weak Leader Consensus

Election Round-Based
Register

Communication

Figure 4. Architecture
We simply assume here that messages are not lost or duplicated and processes that crash halt their activities and
never recover. We also assume that a majority of the processes never crash and, for the implementation of our weak
leader election abstraction, we assume the failure det@dtaroduced in [2].

4.1 Round-Based Register

The algorithm of Figure 5 implements the abstraction of a round-based register. The algorithm works intuitively
as follows. Every procesgs; has a copy of the register value, denoted)byand initialised tal.. A process reads or
writes a value by accessing a majority of the copies with a round number. According to the actual round number, a
procesg; might “accept” or not the access to its local capy Every procesg; has a variableead; that represents
the highest round number of-aad() “accepted” byp ;, and a variablevrite; that represents the highest round number
of awrite() “accepted” byp,. The algorithm is made up of two proceduresdd() andwrite()) and two tasks that
handleREAD andwRITE messages. Each task is executed in one atomic step to avoid mutual exclusion problems for



1: procedureregister() {Constructor, for each process p;
2: read; — 0 {Highest read() round number accepted by p;
3. write; — 0 {Highest write() round number accepted by p;
4: w— L {p;’s estimate of the register value
5: procedureread(k)

6: send [READK] to all processes

7:  wait until received [ackREADL,*,*] or [nackREADF] from [ 2+ ] processes

8: if received at least one [nackREAE) then

9: return(abort, v) {read() is aborted}
10: dse

11 select the [ackREAD,, k', v] with the highest:”

12: return(commit, v) {read() is committed}

13: procedurewrite(k, v)

14: send [WRITEk, v] to all processes

15:  wait until received [ackWRITE] or [nackWRITEE] from [ 2427 processes

16: if received at least one [nackWRITg then

17: return(abort) {write() is aborted}
18: dse

19: return(commit) {write() is committed}

20: task wait until receive [READE] from p;
21: if write; > kor read; > kthen

22: send [nackREADk] to p;

23: dse

24: read; — k

25: send [ackREAD%, write;, v;] 10 p;
26: task wait until receive [WRITEk, v] from p;
27:. if write; > kor read; > kthen

28: send [nackWRITE] to p;

29 dse
30: write; «— k
31 v — v {Anew value is*“ adopted” }

32: send [ackWRITE] to p;

Figure 5. A wait-free round-based register in a crash-stop model

the common variables. We assume here that a task is implemented as a threa®n Java

Lemma 1. Read-abort: If read(k) aborts, then some operation read(k’) or write(k’, ) was invoked with k" > k.

Proof. Assume that some processinvokes aread(k) that returnsibort (i.e., aborts). By the algorithm of Figure 5,
this can only happen if some processhas a valueead; > k or write; > k, which means that some process has
invokedread(k') or write(k") with k" > k. O

Lemma 2. Write-abort: If write(k, x) aborts, then some operation read(k’) or write(k’, «) was invoked with &’ > k.
Proof. Assume that some processinvokes awrite(k) that returnsibort (i.e., aborts). By the algorithm of Figure 5,
this can only happen if some processhas a value-ead; > k or write; > k, which means that some process has
invokedread(k’) or write(k’") with k' > k. O

Lemma 3. Read-write-commit: If read(k) or write(k,«) commits, then no subsequent read(k’) can commit with
k' < k and no subsequent write(k”, x) can commit with k" < k.

Proof. Let procesw; be any process that commitsad(k) (resp. write(k,*)). This means that a majority of the
processes have “acceptectad(k) (resp. write(k,*)). For a procesp; to commitread(k’) with k' < k (resp.
write(k"”) with ¥ < k), a majority of the processes must “acceptiéd(k’) (resp.write(k”, *)). Hence, at least one
process must “acceptead(k) (resp.write(k,*)) and thenread(k’) with k' < k (resp.write(k”, x) with k' < k)
which is impossible by the algorithm of Figure 5: a contradiction. O

10



Lemma 4. Read-commit: If read(k) commitswith v and v #.L, then some operation write(k’, v) was invoked with
E < k.

Proof. By the algorithm of Figure 5, if some procgss commitsread(k) with v #_L, then (i) some procegs, must
have sent tp; a message [ackREAB,write;, v] and (ii) some process,, must have invokedvrite(k’, v) with
k' < k. Otherwisep; would have sent [nackREAB] or [ackREAD;, 0, 1] Otop;.

Lemma 5. Write-commit: If write(k, v) commits and no subsequent write(k’, v") isinvoked with k' > k and v’ # v,
then any read(k’) that commits, commitswith v if £ > k.

Proof. Assume that some procegs commitswrite(k,v), and assume that no subsequentte(k’,v") has been
invoked withk’ > k andv’ # v, and that for somé” > k some procesg; commitsread(k’) with v'. Assume by
contradiction that # v’. Sinceread(k”) commits withv’, by the read-commit property, some-ite(k”,v") was
invoked before round”. However, this is impossible since we assumed thavnie(k’, v') operation witht” > k
andv’ # v has been invoked, i.eu; remains unchanged o a contradiction. O

Proposition 6. The algorithm of Figure 5 implements a round-based register.
Proof. Directly from lemmata 1, 2, 3, 4 and 5. |

Proposition 7. With a majority of correct processes, the implementation of Figure 5 is wait-free.

Proof. The only wait statements of the protocol are the guard lines that depicts the waiting for a majority of replies.
These are non-blocking since we assume a majority of correct processes. Indeed, a majority of correct processes
always send a message to the requesting process either of type [ackREAD, hackREAD], or of type [ackWRITE, nack-
WRITE]. O

4.2 Round-Based Consensus

The algorithm of Figure 6 implements a round-based consensus object that relies on a wait-free round-based regis-
ter. The basic idea of the algorithm is the following. For a proges® propose a value for a rourtd p; first reads
the value of the register with, and if theread(k) operation commitsp,; invokes awrite(k, v) (or p;'s initial value
instead ofv if no value has been written). If therite(k,v) operation commits, then the process decides the value
written (i.e., returns this value). Otherwigg,aborts and returngbort (line 7).

Lemma 8. Validity: If a process decides a value v, then v was proposed by some process.

Proof. Letp; be a process that decides some valuBy the algorithm of Figure 6, either (a)is the value proposed by
pi, iInwhich case validity is satisfied, or (bhas been read hy; in the register. Consider case (b), by the read-commit
property of the register, some procggsmust have invoked somerite() operation. Lefp; be the the first process
that invokeswrite(ko, *) with ko equal to the smallegt ever invoked forwrite(k, v). By the algorithm of Figure 6,
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. procedure consensus() {Constructor, for each process p; }
v «— L;reg+« new register()
. procedure propose(k, init;)
if regread(k) = (commit, v) then
if (v =1)then v — init;
if (regwrite(k, v) = commit) then return(commit, v)
return(abort, init;)

NogakwnhE

Figure 6. A wait-free round-based consensus using a wait-free round-based register

there are two cases to consider: eithery(@} the value proposed hy;, in which case validity is ensured, or (b)
has been read hy; in the register. For case (b), by the read-commit property of the register, fr readv, some
proces®,, must have invokearite(k’, v) with ¥’ < ko: a contradiction. Therefore, is the value proposed hy;

and validity is ensured. O

Lemma 9. Agreement: No two processes decide differently.

Proof. Assume by contradiction that two procesggsandp; decide two different values andv’. Let p; decides
v after committingpropose(k, v) andp; decidesy” after committingpropose(k’, v"). Assume without loss of gen-
erality thatk’ > k. By the algorithm of Figure 6p; must have committedead (k) before invokingwrite(k’,v’).
By the read-abort property,/ > k and by the write-commit property; commitsread(k’) with v and then invokes
write(k’,v). Even ifwrite(k’,v) aborts,p; tries to writev and notv’ # v. Therefore, the next timg; commits

write(k',v"), them' = v, i.e., decide: a contradiction. 0

Lemma 10. Termination: If a propose(k, ) aborts, then some operation propose(k’, *) was invoked with &' > k; if
propose(k, x) commits, then no operation propose(k’, x) can subsequently commit with round k" < k.

Proof. For the first part, assume that some opergtiampose(k, ) invoked byp ; aborts. By the algorithm of Figure 6,

this means that; abortsread(k) or write(k, ). By the read-abort property, some process must have proposed in a
roundk’ > k. Consider now the second part. Assume that some operatigose(k, ) invoked byp ; commits. By

the algorithm of Figure 6 and the read-write-commit property, no process can subsequently commitighy) with

k' < k’. Hence no process can subsequently commit a rétnd . O

Proposition 11. The algorithm of Figure 6 implements a wait-free round-based consensus.

Proof. Termination, agreement and validity follows from lemmata 8, 9 and 10. The implementation of round-based
consensus is wait-free since it is based on a wait-free round-based register and does not introduce any “wait” statement.
O

4.3 Weak Leader Election

Figure 7 describes a simple implementation of a wait-free weak leader election. The protocol relies on the assump-
tions (i) that at least one process is correct and (i) the existence of failure ded@pr2 outputs (at each process)
atrusted process, i.e., a process that is trusted to be up. Failure defestttisfies the following propertythereisa
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time after which exactly one correct process p; is always trusted by every correct process.*! Our weak leader election
relies on( in the following way. The output of failure detect@rat proces® ; is denoted by2;. The function simply
returns the value a?;.

1: procedure leader () {For each process p; }
2 return(€2;)

Figure 7. A wait-free weak leader election with
Proposition 12. Wth failure detector ©2 and the assumption that at least one process is correct, the algorithm of
Figure 7 implements a wait-free weak leader election.
Proof. Follows from the property of2 [2]. O

44 A Simple Variant of Paxos

The algorithm of Figure 9 can be viewed as a simple and modular version of Paxos in a crash-stop model (whereas
the original Paxos protocol considers a crash-recovery model - see next section). The algorithm uses a series of
consecutive round-based consensus (or simply consensus) instances: each consensus instance being used to agree on
a batch of messages. Every process differentiates consecutive consensus instances by maintaining a loc&):counter (
each value of the counter corresponds to a specific consensus instance and is indexeadpotia¢) operation.
Consensus instances are triggered according to the output of the weak leader election protocol: only leaders trigger
consensus instances.

We give here an intuitive description of the algorithm. When a proge3©-Broadcasts a message p; consults
the weak leader election protocol and send® leaderp ;. Whenp; receivesn, p; triggers a new consensus instance
by proposing all messages that it received (and not yet TO-Delivered) and set the round number to the process id. Note
that in order to decide on a batch of messages, more than one consensus round might be necessary; various invocation
consensus for the same batdh) &re differentiated with round numbker Due to round humber uniqueness, no process
can propose twice for the same round? In fact, p; starts a new tasgropose (L") that keeps on trying to commit
consensus for this batclL), as long ag; remains leader. If consensus commiig,sends the decision to every
process. Otherwise, tagkopose periodically invokes consensus with the same batch of messages but increases its
round number by:, unlessp; stops being leader or some consensus instance for the same batch commitg ;When
elects another processg, p; sends t; every message that received, and not yet TO-Delivered. By the weak leader
election property, eventually every correct process elects the eventual perpetughleadersends its messagesio
By the round-based consensus specification, eventuatigmmits consensus and sends the decision to every process.
Oncep; receives a decision for the! batch of messages; stops taskropose for this batch. Procegs, TO-Delivers
this batch of messages only if it is the next one that was expected, ipg.hds already TO-Delivered messages of

11t was shown in [2] thaf2 is the weakest failure detector to solve consensus and total order broadcast in a crash-stop system model. Failure
detector(2 can be implemented in a message passing system with partial synchrony assumptions [3].

12allowing two processes to propose for the same round could violate agreement. For example,jpiowekespropose(1,v) and commits,
and procesg. invokes propose(1,v’). The termination property of consensus allopsto commit: agreement would indeed be violated.
However, if p; invokes propose(1,v), crashes and recovers, can then invokepropose(1,v) or evenpropose(1,v') without violating the
properties of round-based consensus.
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Figure 8. Execution schemes

batchZ-1. If it is not the casep; waits for the next expected batahektBatch) to respect total order. Within a batch

of messages, processes TO-Deliver messages using a deterministic ordering function.

Note that an array of round-based registers is used in the total order broadcast protocol: each round-based register
corresponds to the “store and lock” of a given consensus instance. Finally, note that a praoetantiates a round-

based register when (j); instantiates a round-based consensus, op (ifeceives for the first time a message for the

L*" consensus, i.eL " register of the array.

Figure 8 depicts four typical execution schemes of the algorithm. We assume for all cases that (i) pfocess
TO-Broadcasts a message (ii) processps is the eventual perpetual leader, and (lii)=1. (prop(x) stands in the
figures forpropose(x).) In Figure 8(a)p elects itself, triggers a new consensus instance by invgkiogose(1, m),
commits, and sends the decision to all. In Figure 8fh)electsps and sendsn to ps. Process then invokes
propose(5,m), commits, then sends the decision to all. In Figure 8{g¢)first electsps and sendsn to ps. In this
case howeveps does not elect itself and therefore does nothing. Lateperglectsp; and then sends: to p;. As
for case (b)ps commits consensus and sends the decision to every process. Notg toald have sent to ps if ps
had electeghs. Finally, in Figure 8(d)p; electsps (which does not elect itself), then electsp,, which elects itself
and invokeropose(2, m) but aborts. Finallyp; electsps, and, as for case (g)s commits consensus and sends the
decision to all.

Precise description. We give here more details about the algorithm of Figure 9. We first describe the main data
structure, and then the main parts of the algorithm. Each processintains a variabldO_delivered that contains
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the messages that were TO-Delivered. Whemeceives a message, p; addsm to the setReceived which keeps

track of all messages that need to be TO-Delivered. Ragsived - TO delivered, denotedlO undelivered, contains

the set of messages that were submitted for total order broadcast, but are not yet TO-Delivered. The batches that have
been decided but not yet TO-Delivered are put in thefsetitingToBeDelivered. The variablenextBatch keeps track

of the next expected batch in order to respect the total order property.

There are four main parts in the protocol: (a) when a process receives some messalgentasitarts'® task
propose if the proces; is leader, or ifp; is not leader, sends the messages it did not yet TO-Delivered to the leader;
(b) taskpropose keeps on starting round-based consensus whiis leader, until a decision is reached; (c) primitive
receive handles received messages, and stopspasgose oncep; receives a decision; and (d) primitideliver TO-
Delivers messages. Each part is described below in more details. Initially, when a pro¢€s8roadcasts a message
m, p; putsm into the seReceived which has the effect of changing the predicate of guard line 15.

¢ Intasklaunch, proces®; triggers the upon case when the 88tundelivered contains new messages or whether
p; elects another leader (line 15). Note that the upon case is executed only once per received message to avoid
multiple consensus instances of the exact same batch of messages. If the upon case is triggered by a leader
change,p; jumps directly to line 26 and sends to the leader all the messages it did not yet TO-Delivered.
Otherwise, before starting a new consensus instancérst verifies at line 16 if (i) it already received the
decision for this batch of messages, or (ii) it already TO-Delivered this batch of messages. Promsifies
thenifitis aleader, and if s@, increments the batch number to initiate a consensus for a new batch of messages
(L+1), i.e.,p; starts taslpropose with TO_undelivered as the batch of messages and the round number set to the
id of p;. If p; is not leader, thep,; sends the messages it did not yet TO-Delivered to the leader.

e Intaskpropose, a proces®; periodically invokes consensus (proposeg);ifs leader. By the property of weak
leader election, one of the correct procesge} Will be the eventual perpetual leader. Ongeis elected by
every correct procesg, receives all batches of messages from every correct process, proposes and commits
consensus (line 31) and then sends the decision to all (line 34). Note that in this primjtpreposes the same
batch of messages but with an increasing round number.

¢ Inthe primitivereceive, when procesg; receives the decision of consensus (line g6first stops taskroposey :
p; does not stop other batches (tgsopose) - i.e., this could influence the result of some other consensus
instances (line 37). Proceps then verifies that the decision received is the next decision that was expected
(nextBatch). Otherwise, there are two cases to considerp {ils ahead, or (iip; is lagging. For case (i), ip;
is ahead (i.e., receives a decision from a lower bagchjends tg; anuUPDATE message for each batch thgt
is missing (line 40). For case (ii), {f; receives a future batch, buffers the messages of the batch in the set
AwaitingToBeDelivered andp; also sends tp; anUPDATE message witmextBatch-1 in order forp ; to update
itself (p;) whenp; receives this “on purpose lagging” message. Propesgits until it gets the next expected
batch in order to satisfy the total order property.

13when we say that a new task is started, we mean a new instance of the task with its own variables (since there can be more than one batch of
messages being treated at the same time). Moreover, the varaldelivered means the union of all arrayQ delivered[L].
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¢ In the primitivedeliver, process; TO-Delivers only the messages that were not already TO-Delivered (line 9
or 12) following the same deterministic order. We assumegtha¢moves all messages that appear twice in the
same batch of messages.

We assume here a system model where messages keep being broadcast indefinitely. This assumptions is precisely
what enables us to ensure the uniformity of agreement without additional forced logs and communication steps.

Lemma 13. If the eventual perpetual leader proposes a batch of messages, it eventually decides.

Proof. Assume by contradiction that processis the eventual perpetual leader that proposes a batch of messages and
never decides. By the algorithm of Figurei,keeps incrementing round numbe(line 33). Letk be the smallest

round number reached Ipy such that no process else tharever invokes any operation. By the algorithm of Figure 9,

such round number exists because, unless it is leader, no other process invokes any operation on the consensus. By the
termination property of consensus and since the implementation of consensus is wait-f@emitspropose(ko, *),

which means that; decides a value: a contradiction. O

Lemma 14. Termination: If a process p; TO-Broadcasts a message m and then p; does not crash, then p; eventually
TO-Deliversm.

Proof. Suppose by contradiction that a procgs§ O-Broadcasts a messagebut never TO-Deliversn. Remember
that every timep; elects a new procesg; sendsm to this new leader. By the weak leader property, eventyally
elects the eventual perpetual leader progessidp; sendsn to p;. By lemma 13p; proposes, decides and sends the
decision to all processes. There are now two cases to considgg:dags not crash, or (lp), crashes. For case (a), by
the properties of the channels,receives the decision from and TO-Deliversn: a contradiction. For case (b),f
crashesp; was not an eventual perpetual leader: a contradiction. O

Lemma 15. Agreement: |f a process TO-Delivers a message m, then every correct process eventually TO-Deliversm.

Proof. Suppose by contradiction that a processTO-Deliversm and letp; be any correct process that does not
TO-Deliverm. Proces®; must have received the decision from some proges&;, could bep;). There are two

cases to consider: (@), is a correct process, or (b). is a faulty process. For case (a), singeTO-Deliveredm, by

the reliable properties of the channels, every correct process receives the decision and TOsRefveatradiction.

For case (b), since we assume that new messages keep coming, the eventual perpetwal T€xdzliversm and

therefore sends at some time the decision to every correct process: a contradiction. As explained earlier, due to round
number uniqueness, no two processes can propose for the same round, therefore every correct process decides the

same value for consensus. O

Lemma 16. Validity: For any message m, (i) every process p; that TO-Delivers m, TO-Delivers m only if m was
previously TO-Broadcast by some process, and (ii) every process p; TO-Delivers m at most once.

Proof. For the first part (i), suppose by contradiction that some progedgO-Delivers a message that was not
TO-Broadcast by any process. For a messade be TO-Delivered, by the algorithm of Figures8,must be decided
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through round-based consensus. By the validity property of consenduss to be proposed (line 24). In order to be
proposedin has to be in the s&iO_undelivered (line 20); then to be in the s&D undelivered, m has to be in the set
Received (line 46). Finally, form to be in seReceived, m has to be TO-Broadcast or sent (lines 6 & 26). Ultimately,

for m to be senty;n must be TO-Broadcast: a contradiction. For the second parp {igannot TO-Deliver more than

once a message. This is impossible since line 8 removes all the messages that have been already TO-Delivered. Of
course, we assume thatdistinguishes all messages that appear twice in the vaniakbie et. |

Lemma 17. Total order: Let p; and p; be any two processes that TO-Deliver some message m. If p; TO-Delivers
some message m’ before m, then p; also TO-Delivers m’ before m.

Proof. Suppose by contradiction that TO-Delivers a message before a message’ andp; TO-Deliversm’ before
m. There are two cases to consider:aandm’ are in the same message set, and:i{lgndm’ are in different mes-
sage sets. For case (a), since every process delivers messages following the same deterministicsatdivered
beforem’ on both processes: a contradiction. For case (b), suppose:tisapart ofmsgSet L andm’ € msgSet:’
whereL < L’. Form to be TO-DeliveredinsgSet” has to be received asECIDE or UPDATE message (line 36).
If p; TO-Deliversm beforem’, thenp; cannot TO-Delivern’ beforem since the predicate of guard line 38 forbids
p; to TO-Deliver batches of messages out of order: a contradiction. Neverthejessyld receive the.'*" batch of
messages before ttig" batch of messages, but the batch would be put in thavgaitingtoBeDelivered. O

Proposition 18. The algorithm of Figure 9 satisfies the termination, agreement, validity and total order properties.
Proof. Directly from the lemmata 14, 15, 16 and 17. O

5 A Faithful Deconstruction of Paxos

This section describesfaithful andmodular deconstruction of Paxos [11]. It isodular in the sense that it builds
upon our abstractions: the specifications of these are not changed, only their implementations are slightly modified. It
is faithful in the sense that it captures the practical spirit of the original Paxos protocol: it preserves the efficiency of
Paxos and tolerates temporary crashes of links and processes. Just like with the original Paxos protocol, we preclude
the possibility ofunstable processes: either processes are correct (eventually always-up), or they eventually crash and
never recover. We will come back to this assumption in the next section.

To step from a crash-stop model to a crash-recovery model, we mainly adapt the round-based register and slightly
modify the global protocol to deal with recovery (in shade in Figure 10(a), therefore we only present these abstractions
in this section). Every process performs some forced logs so that it can consistently retrieve its state when it recovers.
To cope with temporary link failures, we build upometransmission module, associated with two primitivessend
ands-receive: if a proces®; s-sendsa message to a correct procpssindp; does not crash, the message is eventually
s-received.
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For each process; :
procedur e initialisation:
Received[] — 0; TO_delivered[] — 0; start task{launch}
TO_undelivered < 0; AwaitingToBeDelivered[] < 0; K < 1; nextBatch « 1
procedure TO-Broadcastf:)
Recelved < Received U m
procedur e deliver(msgSet)
TO_delivered[nextBatch] < msgSet - TO_delivered
atomically deliver all messages TO_delivered[nextBatch] in some deterministic order
nextBatch «— nextBatch 41
while AwaitingToBeDelivered[nextBatch] # @ do
TO_delivered[nextBatch] < AwaitingToBeDelivered[nextBatch]- TO_delivered; atomically deliverTO_delivered[nextBatch]
nextBatch < nextBatch+1
! task launch
upon Received - TO_delivered # () or leader has changetb
while AwaitingToBeDelivered[ K +1] 7 () or TO_delivered[ K+1] # () do
K — K+1
if K = nextBatch and AwaitingToBeDelivered[ K] # 0 and TO_delivered[ K] = () then
deliver(AwaitingToBeDelivered[ K])
TO_undelivered «— Received — TO_delivered
if leader()=p; then
while proposex isactive do
K — K+1
start task proposes (K, i, TO_undelivered); K «+— K+1
else
send{"O-undelivered) to leader()
. task proposel, I, msgSet)
committed«— false; consensus < new consensus()
while not committeddo
if leader()=p, then
if consensus.proposel, msgSet) = (commit, returned M sgSet) then
committed«<— true
| — l+n
sendPECISION,L, returned M sgSet) to all processes
. upon receive m from p; do

if m = (DECISIONNextBatch,msgSet 73 ) or m = (UPDATE, K, ; , TO delivered[ K5, ;]) then
if task propose;(pj isactive then stop task propose;(pj
if Kp; # nextBatchthen
if Kp; < nextBatchthen

for all L such thatf(,,; < L < nextBatch: send(PDATE,L,TO_delivered[L]) to p;
else
AwaitingToBeDelivered[ K pj] = msgSetK”i ; send(JPDATE,nextBatch-1,TO_delivered[nextBatch-1]) to p;
else X
delivermsgSet PJ)
else

Received < Received U msgSetTo_undelivered

{TO-Deliver}

{Upon case executed only once per received message
{If upon triggered by a leader change, jump to line 26

{Keep on proposing until consensus commits}

{p; isahead or behind}
{p; isbehind}

{Ifpj # pi}
{lfp; # pi}

{Consensus messages are added to the consensus box}

Figure 9. A modular crash-stop variant of Paxos
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Figure 10. The impact of a crash-recovery model
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5.1 Retransmission Module

We describe here a retransmission module that encapsulates retransmissions issues to deal with temporary crashes
of communication links. The primitives of the retransmission module (s-send and s-receive) preserve the no creation
and fair loss properties of the underlying channels, and ensures the following prdpetrgy; be any process that
s-sends a message m to a process p;, and then p; does not crash. If p; is correct, then p; eventually s-receives m.

Figure 11 gives the algorithm of the retransmission module. All messages that need to be retransmitted are put in the
variablexmitmsg. Messages ixmitmsg are erased but the Paxos layer stops retransmitting messages except for the
DECISIONOr UPDATE messages once a decision has been reached. The no creation and fair loss properties are trivially

satisfied.

1: for each procesg;:
2: procedureinitialisation:
xmitmsg[] < 0; start task {retransmi}
procedure s-sendfn) {Tossend mtop; }
if m ¢ xmitmsg then {Ensure that mis not added to xmitmsg more than once}
Xmitmsg «— xmitmsg U m
if Pj # p; then
send m to p;
9. dse
10: simulates-receive m from p;
11: upon receive(m) from p; do
12:  sreceive(m)
13: task retransmit {Retransmit all messages received and sent}
14: whiletruedo
15: for all m € xmitmsg do
16: s-sendfn)

NG hw

Figure 11. Retransmission module

Proposition 19. Let p; be any process that s-sends a messade a procesg ;, and therp; does not crash. If; is
correct, therp; eventually s-receives:.

Proof. Suppose that; s-sends a messageto a procesg; and then does not crash. Assume by contradictiorythat
is correct, yep; does not s-receiver. There are two cases to consider: gg)does not crash, or (Ip); crashes and
eventually recovers and remains always-up. For case (a), by the fair loss properties of the;lirdcgives and then
s-receivesn: a contradiction. For case (b), since proces&eeps on sending: to p;, there is a time after which;
sendsn to p; and none of them crash afterwards. As for case (a), by the fair loss property of theljrdsgentually

receivesn, then s-receives:. a contradiction. O

5.2 Round-Based Register

We give in Figure 12 the implementation of a round-based register in a crash-recovery model. The main differ-
ences with our crash-stop implementation given in the previous section are the following. As shown in Figure 10(b),
a process logs the variablesad;, write; andv;, in order to be able to recover consistently its precedent state after a
crash. A recovery procedure re-initialises the process and retrieves all variables. The send (resp. receive) primitive is
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1: procedureregister() {Constructor, for each process p; }
2: read; — 0

3. write; «— 0

4: v — L

5: procedureread(k)

6: s-send [READK] to all processes

7:  wait until s-received [ackREAD,,*,*] or [nackREADE] from [ 2417 processes
8: if s-received at least one [nackREADDthen

9: return(abort, v)

10: dse

11: select the [ackREAD,, k', v] with the highest:”

12: return(commit, v)

13: procedurewrite(k, v)

14: s-send [WRITEk, v] to all processes

15:  wait until s-received [ackWRITE] or [nackWRITEE] from [ 2427 processes
16: if s-received at least one [nackWRIFKEthen

17: return(abort)
18: dse
19: return(commit)

20: task wait until s-receive [READ] from p;
21: if write; > kor read; > kthen

22: s-send [nackREAD] to p;
23: dse
24: read; «— k; store{read;} {Modified from Figure 5}

25: s-send [ackREAD, write;, v;] 0 p;
26: task wait until s-receive [WRITEE, v] from p;
27:. if write; > kor read; > kthen

28: s-send [nackWRITE] to p;

29 dse

30: write; «— k

31: v; « v; store{write;, v; } {Modified from Figure 5}
32: s-send [ackWRITHs] to p;

33: upon recovery do {Added procedure to Figure 5}

34: initialisation
35:  retrieve{write;, read;, v; }

Figure 12. A wait-free round-based register in a crash-recovery model

also replaced by the s-send (resp. s-receive) primitive.

Proposition 20. With a majority of correct processes, the algorithm of Figure 12 implements a wait-free round-based
register.
Lemma 21. Read-abort: If read(k) aborts, then some operation read(k’) or write(k’, x) was invoked with k" > k.
Lemma 22. Write-abort: If write(k, ) aborts, then some operation read(k’) or write(k’, *) was invoked with
kK > k.
Lemma 23. Read-write-commit: If read(k) or write(k, ) commits, then no subsequent read(k’) can commit with
k" < k and no subsequent write(k”, x) can commit with &” < k.
Lemma 24. Read-commit: If read(k) commitswith v and v # L, then some operation write(k’, v) was invoked with
E < k.
Lemma 25. Write-commit: If write(k, v) commitsand no subsequent write(k’,v") isinvokedwith & > k and v’ # v,
then any read(k’) that commits, commitswith v if £ > k.
The proofs for lemmata 21 through 25 are similar to those of lemmata 1 through 5 since: {&)\ibkes aread()
or awrite() operation and then does not crash, by the property of the retransmission modkéeps on sending
messages (e.g., READ messages forthel() operation) until it gets a majority of replies (e.g., ackREAD or nack-
READ); (b) since all variables are logged before sending any positive acknowledgement messages, a process does
not behave differently if it crashes and recovers. If a process crashes and recovers, it recovers its precedent state and
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therefore acts as if it did not crash.

5.3 Weak Leader Election

The implementation of the weak leader election does not change in a crash-recovery model. However, the failure
detector() has only been defined in a crash-stop model [2]. Interestingly, its definttiere(s a time after which
exactly one correct process p; is always trusted by every correct process) does not change in a crash-recovery model
(the notion of correctness changes though). We give in Appendix B an implementation of the failure defactor
crash-recovery model with partial synchrony assumptions.

54 Modular Paxos

Figure 10(b) shows that compared to a crash-stop version, the total order broadcast protocol adds (i) a recovery
procedure, and (ii) one forced log to store the®etdelivered and the variableextBatch. We now say that a process
TO-Delivers a message when the process loga. In a stable period, a process can TO-Deliver a message after
three forced logs and two round trip communication steps (if the leader is the process that broadcasts the message).
Section 6.4 introduces a powerful optimisation that requires only one forced log at a majority of processes and one
round-trip communication step (if the requesting process is leader).

Proposition 26. Wth a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of
Figure 13 ensures the termination, agreement, validity and total order propertiesin a crash-recovery model without
unstable processes.
Lemma 27. Termination: If a process p; TO-Broadcasts a message m and then p; does not crash, then p; eventually
TO-Deliversm.
Lemma 28. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Deliversm.
Lemma 29. Validity: For any message m, (i) every process p; that TO-Delivers m, TO-Delivers m only if m was
previously TO-Broadcast by some process, and (ii) every process p; TO-Delivers m at most once.
Lemma 30. Total order: Let p; and p; be any two processes that TO-Deliver some message m. If p; TO-Delivers
some message m’ before m then p; also TO-Delivers m’ before m.

The proofs for lemmata 27 through 30 are identical to those of from lemmata 14 to 17 since:;(&0fBroadcasts
m and then does not crash; by the property of the retransmission mpdeeps on sending: to the leader, therefore
the predicate at line 17 of Figure 13 beconteg at the eventual perpetual leader; (b) by the weak leader election
property, one of the correct processes will be an eventual perpetual leadleat decides; by its definitiory; is
eventually always-up, and then eventually keeps on sending the decision to all processes, therefore all correct processes
s-receive the decision (even those that crash and recover); (c) the implementation is build on a wait-free round-based
register and on a wait-free round-based consensus that are tolerant to crash-recovery (without unstable processes); (d)
when a process crashes and recovers, it retrieves its precedent state by réffedaiiyered andnextBatch; (e) when
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1: For each process;:

2: procedureinitialisation:

3. Received[] < 0; TO.delivered[] < 0; start task{launch}

4 TO_undelivered[] < (; AwaitingToBeDelivered[] «— (; K « 1; nextBatch « 1

5: procedure TO-Broadcastf:)

6: Received — Received U m

7: procedure deliver(mnsgSet)

8:  TO_delivered[nextBatch] «— msgSet - TO_delivered;

9: atomically deliver all messages TO_delivered[nextBatch] in some deterministic order

10:  store{TO_delivered,nextBatch} {TO-Deliver, added to Figure 9}
11: nextBatch « nextBatch +1 {Sop retransmission module V messages of nextBatch-1 except DECIDE Or UPDATE}
12:  while AwaitingToBeDelivered[nextBatch] # () do

13: TO_delivered[nextBatch] < AwaitingToBeDelivered[nextBatch]- TO_delivered; atomically deliverTO_delivered[nextBatch]

14: store{ TO_delivered,nextBatch} {Stop retransmission module V messages of nextBatch except DECIDE or UPDATE}
15: nextBatch < nextBatch+1

16: task launch {Upon case executed only once per received nessage
17:  upon Received - TO_delivered # (@ or leader has changetb {If upon triggered by a leader change, jump to line 28
18: while AwaitingToBeDelivered[ K +1] 7 () or TO_delivered[ K+1] # () do

19: K «— K+1

20: if K = nextBatch and AwaitingToBeDelivered[ K] # () and TO_delivered[ K] = () then

21: deliver(@waitingToBeDelivered[ K1)

22: TO_undelivered «+ Received — TO_delivered

23: if leader()=p, then

24. while proposey isactive do

25: K — K+1

26: start task proposec (K, i, TO-undelivered); K «— K+1

27: ese

28: s-send{"O_undelivered) to leader()

29: task proposel, I, msgSet) {Keep on proposing until consensus commits}

30: committed« false; consensus < new consensus()
31: whilenot committeddo

32: if leader()=p, then

33: if consensus.proposel, msgSet) = (commit, returned M sgSet) then
34: committed«— true

35: I —l+n

36: s-sendpECISION,L, returned M sgSet) to all processes
37: upon sreceive m from p; do

38: if m = (DECISIONNextBatchmsgSet’ i ) or m = (UPDATE, K, ; ,TOdelivered[ K, ]) then

39: if task propose,, isactive then stop task Proposer,,

40: if K, # nextBatch then {p; isahead or behind}
41: if Kp; < nextBatchthen {p; is behind}
42: for all L such thats,,; < L < nextBatch: s-send(PDATE, L, TO_delivered[L]) to p; {Ifp; # pi}
43: else

44: AwaitingToBeDelivered[ ;] = msgSethi ; s-send(PDATE,nextBatch-1, TO_delivered[nextBatch-1]) to p; {Ifp; # pi}
45: else X

46: delivermsgSet PJ)

47: dse

48: Received «— Received U msgSetTo_undelivered {Consensus messages are treated in the consensus box
49: upon recoverydo {Added procedure to Figure 9

50: initialisation
51: retrieve{TO_delivered, nextBatch}; K «— nextBatch; nextBatch < nextBatch+1; Received «— TO_delivered

Figure 13. A modularisation of Paxos
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recoveringReceived is set toTO _delivered otherwise the predicate of line 17 would neverfélee and would keep on
proposing messages; and (f) since processes keep on broadcasting messages, the leader process eventually updates a

process that has crashed and recovered with all lagging messages.

6 TheFour Seasons

This section presents four interesting variants of the Paxos protocol. Subsection 6.1 describes a variant of the
protocol that alleviates the need for stable storage under the assumption that some processes never crash. This is
obtained mainly by modifying the implementation of our round-based register. Subsection 6.2 describes a variant of
the protocol that copes with unstable processes through a modification of our weak leader election implementation.
Subsection 6.3 describes a variant of the protocol that guarantees progress even if only one process is correct. This
is obtained through an implementation of our round-based register that assumes a decoupling between disks and
processes, along the lines of [5]. Subsection 6.4 describes an optimised variant (Fast Paxos) of the protocol that is
very efficient in stable periods. These variants are orthogonal, except 6.1 and 6.3 (because of their contradictory

assumptions).
Paxos East Paxos
Paxos Paxos
Y P! = Switch from regular to.
Round-Based Round-Based
Consensus Weak Leader Round-Based Consensus Fast Round-Based
Election Consensus Consensus
Round-Based Weak Leader Round-Based
3 - i - fastpropose() operation:
Weak Leader Register  Exchangs of state of Election Register Weak Leader
Election Failure Detector i i & Election
~Some processes. ever ‘Betwieen processes Round-Based Pmmgﬂ is Fast'Round-Based
crash “Needs  majority to Register ~ Majority of correct Register
+No need for stable storage: U proces:
“ ! ity i e sttt opration
Retransmission module Retransmission module Retransmission module Retransmission module
Communication Communication Communication Communication
(a) Winter (b) Spring (c) Summer (d) Fall

Figure 14. Modified (in shade) modules from a crash-recovery variant

6.1 Winter: Avoiding Stable Storage

Basically, we assume here that some of the processes never crash and, instead of stable storage, we store the crucial
information of the register inside “enough” processes (in main memory). The protocol assumes that the number of pro-
cesses that never crash,j is strictly greater than the number of faulty processes’* As depicted by Figure 14(a),
the weak leader election and the round-based consensus remain unchanged. We mainly change the round-based regis-
ter implementation and we add to the Paxos protocol a recovery procedure that relies on initialisation messages instead
of stable storage. Basically, a recovered progesssks all other processes to return the set of messages that they have

TO-Delivered angb; initialises its state using those messages.

Round-Based Register. The trick in the round-based register implementation is to ensure that the register’s value is
“locked” in at least one process that never crashes. Intuitivelyra@y() or write() uses a threshold that guarantees

14Note thatn, is not known whilen  is.
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this property, as we explain below. (The idea is inspired by [1].) When a process recovers, it stops participating in
the protocol, except that it periodically broadcastez OvVEREDMessage. When a procgssreceives such message
from a procesg;, p; addsp; to a setR; of processes (known to have recovered). This scheme allows any process to
count the number afecovered processes. While collecting ackREAD or ackWRITE messaggs,detects that a new
procesgy has recovered; # PrevR;), p; restarts the whole procedure of reading or writing. fFpto commit a

read() (resp.write()) invocation),p, must receive max{y+1, n-n s-|R;|) ackREAD (resp. ackWRITE) messages.

1: seqrd (respsequwr) distinguishes the phases whenhas restarted to s-send READ (resp. WRITE) messages begauseeived &RECOVERED message
2: procedureregister() {Constructor, for each process p; }
3: read; — 0

4.  write; — 0

5. w;— L

6: R; «— 0; PrevR; — 0 {Added to Figure 5%
7. seqrdy, «— 0; sequrp, — 0 {Variable use to distinguish retrial, added to Figure 5

8: procedureread(k)

9:  repeat {Added to Figure 5}
10: PrevR; «— Ry; seqrdy, «— seqrdp, + 1

11: s-send [READk, seqrd,,, ] to all processes

12: wait until s-received [ackREAD, seqrd,, ,*,*] or [NackREADE, seqrd,,; | from max(n s +1, n-n s-| R;[)processes

13:  until R; = PrevR; {Added to Figure 5}
14: if s-received at least one [nackREAD seqrd,,, ] then

15: return(abort, v)

16: dse

17: select the [ackREAD, seqrd,,, , k', v] with the highest’

18: return(commit, v)

19: procedurewrite(k, v)

20:  repeat {Added to Figure 5}
21: PrevR; «— Ri; seqwep; «— sequrp, + 1

22: s-send [WRITEk, seqwry,, , v] to all processes

23: wait until s-received [ackWRITE:;, sequwrp,] or [NackWRITEL, seqwry,; ] from max(n ¢ +1, n-ns-| R;|)processes

24:  until R; = PrevR; {Added to Figure 5}
25:  if s-received at least one [nackWRIRE seqwrp,, ] then

26: return(abort)

27 ese

28: return(commit)

29: task wait until s-receive [READk, seqrdy ;] from p;
30: if write; > kor read; > k then

31: s-send [nackREAD;, seqrdp; Jtop;
32: dse
33: read; «— k

34: s-send [ackREAD;, seqrdyp; , write;, v;] 10 p;
35: task wait until s-receive [WRITE, sequrp; , v] from p;
36: if write; > kor read; > kthen

37: s-send [nackWRITE;, sequry ;] to p;

38: dse

39: write; «— k

40: v — v

41: s-send [ackWRITE;, sequrp; Jtop;

42: upon s-receive RECOVEREDfrom p; do {Added procedures to Figure 5}

43: R; — R; U Pj

44: upon recovery do

45: initialisation;read; « oo; write; + oo {Do not reply to READ or WRITE msg}
46: s-sencRECOVERED'O all processes

Figure 15. A wait-free round-based register in a crash-recovery model without stable storage
Proposition 31. The algorithm of Figure 15 implements a wait-free round-based register in a crash-recovery model
without stable storage assuming that n, > ny.
Lemma 32. Read-abort: If read(k) aborts, then some operation read(k’) or write(k’, x) was invoked with k" > k.
Lemma 33. Write-abort: If write(k, ) aborts, then some operation read(k’) or write(k’, ) was invoked with
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k' > k.

Lemma 34. Read-write-commit: If read(k) or write(k, *) commits, then no subsequent read(k’) can commit with
k' < k and no subsequent write(k”, x) can commit with " < k.

Lemma 35. Read-commit: If read(k) commitswith v and v #_L, then some operation write(k’, v) was invoked with
kK < k.

Lemma 36. Write-commit: If write(k, v) commitsand no subsequent write(k’, v') isinvokedwith &’ > kand v’ # v,
then any read(k’) that commits, commitswith v if £ > k.

The proofs for lemmata 32 through 36 are identical to those of lemmata 21 through 25. They are based on the
following aspects: (a) we assume that > ny; (b) when a process crashes and recovers, it keeps on serEling
COVEREDMessages which ensures that a recovered process is never considered correct; and (¢) since a process waits
for the maximum betweem;+1 andn-n ;-| R;|, the register’s value is always locked into at leastameys-up process.

The Paxos Variant. Figure 16 presents a Paxos variant for a crash-recovery model without stable storage.

Proposition 37. Wth a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of
Figure 16 ensures the termination, agreement, validity and total order propertiesin a crash-recovery model (without
any stable storage) assuming that n, > ny.
Lemma 38. Termination: If a process p; TO-Broadcasts a message m and then p; does not crash, then p; eventually
TO-Deliversm.
Lemma 39. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Deliversm.
Lemma 40. Validity: For any message m, (i) every process p; that TO-Delivers m, TO-Delivers m only if m was
previously TO-Broadcast by some process, and (ii) every process p; TO-Delivers m at most once.
Lemma 41. Total order: Let p; and p; be any two processes that TO-Deliver some message m. If p; TO-Delivers
some message m’ before m, then p; also TO-Delivers m’ before m.

The proofs for lemmata 38 through 41 are identical to those of lemmata 27 through 30 since the recovery procedure
requests every participant to s-send back their state when they s-reeeig@aeREDMessage. A process that crashes
and recovers receives the “latest state” from at leasibmays-up process.

6.2 Spring: Copingwith Unstable Processes

We discuss here a Paxos variant that copes with unstable processes, i.e., processes that keep crashing and recovering
forever. We adapt our modular protocol by simply changing the implementation of our weak leader election protocol
as depicted in Figure 14(b). All our other modules remain unchanged.

Intuitively, the issue with unstable processes is the following. Consider an unstable ppodgss, p; keeps
on crashing and recovering), and suppose tha®itsnodule permanently outputs, whereas the correct processes
permanently consider some other correct proggsas leader. This is possible sinfe“only” guarantees that some
correct process is always trusted by eveoyrect process. For instance, an unstable process is free to permanently
elect itself. The presence of two concurrent leaders can prevent the commitment of any consensus decision and hence
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1:

For each process; :

2: procedureinitialisation:

3. Received[] < 0; TO.delivered[] < 0; start task{launch}

4:  TO.undelivered[] < 0; AwaitingToBeDelivered[] < @; K « 1; k < 0; nextBatch « 1
5: procedure TO-Broadcastf:)

6: Received < Received U m

7: procedure deliver(msgSet)

8:  TO_delivered[nextBatch] «— msgSet - TO_delivered;

9: atomically deliver all messages TO-delivered[nextBatch] in some deterministic order {TO-DeIiver}
10:  nextBatch «— nextBatch +1 {Sop retransmission module V messages of nextBatch-1 except DECIDE Or UPDATE}
11:  while AwaitingToBeDelivered[nextBatch] # () do
12: TO_delivered[nextBatch] < AwaitingToBeDelivered[nextBatch]- TO_delivered; atomically deliverTO_delivered[nextBatch]

13: nextBatch «— nextBatch+1 {Stop retransmission module V messages of nextBatch-1 except DECIDE Or UPDATE}
14: task launch {Upon case executed only once per received message

15:  upon Received - TO_delivered # L or leader has changetb {If upon triggered by a leader change, jump to line 26
16: while AwaitingToBeDelivered[ K +1] 7 () or TO_delivered[ K+1] # () do
17: K — K+1
18: if K = nextBatch and AwaitingToBeDelivered[ K] # () and TO_delivered[ K] = () then
19: deliver(@waitingToBeDelivered[ K1)

20: TO_undelivered < Received — TO_delivered
21: if leader()=p, then
22: while proposey isactive do
23: K — K+1
24. start task proposec (K, i, TO-undelivered); K «— K+1
25: else
26: s-send{"O_undelivered) to leader()

27: task proposel., I, msgSet) {Keep on proposing until consensus commits}
28: committed« false; consensugs < new consensus()

29:  whilenot committeddo
30: if leader()=p, then
31: if consensus.proposel, msgSet) = (commit, returned M sgSet) then
32: committed«— true
33: l — l+n
34: s-sendpECISION,L, returned M sgSet) to all processes
35: upon sreceive m from p; do
36: if m = (DECISIONNextBatchmsgSet’ 3 ) or m = (UPDATE, K, ; ,TOdelivered[ K, ]) then
37: if task proposey is active then stop task proposex
38: if Kp; # nextBatch then {p; isahead or behind}
39: if Kp; < nextBatch then {p; is behind}
40: for all L such thats,,; < L < nextBatch: s-send(PDATE, L, TO_delivered[L]) to p; {Ifp; # pi}
41: else
42: AwaitingToBeDelivered[ ;] = msgSethi ; s-send(PDATE,nextBatch-1, TO_delivered[nextBatch-1]) to p; {Ifp; # pi}
43: else X
44: delivermsgSet PJ)

45: dse
46: Received «— Received U msgSetTo_undelivered {Consensus messages are treated in the consensus box
47: upon recoverydo {Added procedure to Figure 9
48: initialisation; s-send{PDATE,0,{}) to all processes

Figure 16. A variant of Paxos in a crash-recovery model without stable storage
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prevent progress. We basically need to prevent unstable processes from being leaders after some time. We modify
our new leader election protocol as follows: (a) every progessexchanges the output value of fis, with all other
processes, and (b) the functibruder() returnsp; only when a majority of processes thinks thatis leader. The

latter step is required to avoid the following case. Imagine an unstable pyogdisat invokedeader() which returns

pu, then crashes, recovers and keeps on doing the same scheme forever. fPy@tesys trusts itself which violates

the (2 property. By waiting for a majority of processes, we ensure that the valugf at least one correct process
belongs to the se&®[]. Thereforep,, cannot trusts itself forever (or any unstable processes) since its epoch number is
eventually greater than any correct process. This idea, inspired by [7], assumes a majority of correct processes. Note
that this assumption is now needed both in the implementation of the register and in the implementation of the leader
election protocol.

We give the implementation of this new weak leader election in Figure 17 and it is easy to verify that the imple-
mentation is wait-free under the assumption that a majority of processes are correct. Now, the weak leader election
exchanges the output 6 between every process. However, this exchange phase can be piggy-backed-on the
AM-ALIVE messages in the implementationf(see Appendix B). Thus, the exchange phase does not add any

communication steps.

1: initialisation: Q] « L; start task EXCHANGE

2: procedureleader () {Modified from Figure 7, for each process p; }
3:  waituntil p € [2FL] Q[k]

4:  return(p;)

5: task exchange {Added task to Figure 7}

6: periodically sendQ2,,, to all processes
7: upon receiveQ, ; from p; do
8. Q[j] — Qp;

Figure 17. A wait-free weak leader election with and unstable processes

Proposition 42. The algorithm of Figure 17 ensures that some process is an eventual perpetual leader.

Proof. Suppose, by contradiction, there are more than one eventual perpetual leader or there is no eventual perpetual
leader. Consider the first case, suppose that there are forever two eventual perpetual leaders. This contradicts the
definition of an eventual perpetual leader. Now, consider the second case where there is no eventual perpetual leader.
By the property ofQ2 failure detector, eventually all correct processes trust only one correct proge8y line 3

of Figure 17, it is impossible for any process to elect forever a process othep thaie leader () function is non-

blocking since there is a majority of correct processes. So eventually the invocatieedef() at every process

returns in a bounded time (or the process crashes) and always rgtuststhere is one eventual perpetual leager

a contradiction. m]

6.3 Summer: Decoupling Disks and Processes

The Paxos protocol ensures progress only if there is a time after which a majority of the processes are correct.
The need for this majority is due to the fact that a process cannot decide on a given order for any two messages,
unless this information is “stored and locked” at a majority of the processes. If disks and processes can be decoupled,
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which is considered a very reasonable assumption in some practical systems [5], a process might be able to decide on
some order as long as it can “store and lock” that information within a majority of the disks. We simply modify the
implementation of our round-based register (Figure 14(c)) to obtain a variant of Paxos that exploits that underlying
configuration.

In this Paxos variant, we assume that disks can be directly (and remotely) accessed by processes, and failures
of disks and processes are separated. Every process has an assigned block on each disk, and maintains a record
dblock[p;] that contains three elementsead,;, write; andv;; disk[d;][px] denotes the block on disk; in which
proces writes dblock[py]. We denote by-ead,() (resp. writeq()) the operation of reading (resp. writing) on a
disk. As in [5], we assume that every disk ensures that (i) an operatidm ;(k, *) cannot overwrite a value of an
earlier roundt’ < k, and (ii) a process must wait for acknowledgements when performingi ,() operation, and
(i) writeq() andreadq() are atomic operations.

The round-based register protocol works as follows. Fortag() operation, a procegs; tries to writg; on each
disk p; its dblock[p;] (Vp; disk[p;|[p:]). After writing, p; readsg for anyp; and anypy: disk[p;][ps]. If p; readg
a block with a round that is lower than the round of the higheste ;, theread() operation aborts. Otherwise, the
read() commits and returns the value associated with the highege;. A similar scheme is used for therite()
operation. Note that the round-based register implementation is simpler than the previous round-based register due to

the usage of disks.

1: procedureregister() {Constructor, for each process p; }
2: The operationurite, () stores the whole block into disk. For presentation clarity, we have put as a parameter the value that is actually modified.

3: procedurereadg)

4: writeq(k) {read; =k}
5. readgq() {Wait for a majority of disk block}
6: if (received a block withread; > k or write; > k) then return(abort, init;)

7. choOSev,,q. from the block with highestvrite;; return(commit, vmax) {Vmaz =L ifwrite; = 0}
8: procedurewrite(k, v)

9:  writeq(k,v) {write; = k,v; = v}
10:  readq() {Wait for a majority of disk block}

11: if (received a block withread; > k or write; > k) then return(abort, v) elsereturn commit, v)

12: upon recovery do

13:  readq();read; — MAX(readreceived); write; «— MAX(writercceived) {Read all blocks
14:  wv; — dblock[].vwrite; {Take v from the block with the highest v;

Figure 18. A wait-free round-based register built on commodity disks
Lemma 43. Read-abort: If read(k) aborts, then some operation read(k’) or write(k’, x) was invoked with k" > k.
Proof. Assume that some procgssinvokes aread(k) that returnsibort (i.e., aborts). By the algorithm of Figure 18,
this can only happen if some processhas a valueead; > k orwrite; > k (line 6), which means that some process
has invoked-ead(k’) or write(k") with k' > k. O

Lemma 44. Write-abort: If write(k, ) aborts, then some operation read(k’) or write(k’, ) was invoked with
kK > k.

Proof. Assume that some process invokes awrite(k, ) that returnsibort (i.e., aborts). By the algorithm of Fig-
ure 18, this can only happen if some proceshas a valueead; > k orwrite; > k (line 11), which means that some
process has invoketkad(k') or write(k') with &' > k. 0

28



Lemma 45. Read-write-commit: If read(k) or write(k, *) commits, then no subsequent read(k’) can commit with

k' < k and no subsequent write(k”, x) can commit with " < k.

Proof. Remember that we assume that@ate ;(k’, x) cannot overwritg awriteq(k, *) with k' < k. In the algorithm
of Figure 18,p; invokeswrite,() in both procedures, therefoge cannot commitread(k’) with &* < k (line 6) or
commitwrite(k’, «) with &’ < k (line 11). O

Lemma 46. Read-commit: If read(k) commitswith v and v #_L, then some operation write(k’, v) was invoked with
kK < k.

Proof. By the algorithm of Figure 18, if some procgss commitsread(k) with v #.L, then some procegs must
have writg; to some disk since; is only modified in thevrite() operation. Otherwise, ., would be equal.. O

Lemma47. Write-commit: If write(k, v) commitsand no subsequent write(k’,v") isinvokedwith & > k and v’ # v,
then any read(k’) that commits, commitswith v if & > k.

Proof. Assume that some procegs commitswrite(k, v), and assume that no subsequentte(k’,v") has been
invoked withk’ > k andv’ # v, and that for somé” > k some procesg; commitsread(k”) with v'. Assume by
contradiction that # v’. Sinceread(k”) commits withv’, by the read-commit property, some-ite(k”,v") was
invoked before or at the same rouhtl. However, this is impossible since we assumed thatnide(k’, v') operation
with ¥’ > k andv’ # v has been invoked, i.eu; remains unchanged to a contradiction. O

Proposition 48. The algorithm of Figure 18 implements a wait-free round-based register.
Proof. Directly from lemmata 43, 44, 45, 46 and 47 and the fact that we assume a majority of correct disksC

6.4 Fall: Fast Paxos

In Paxos, when a proceps TO-Broadcasts a message p; sendsn to the leader process. Whenp, receives
m, p; triggers a new round-based consensus instance by proposing a batch of messages. A round-based consensus is
made up of two phasesyaad phase and arite phase. Theecad phase figures out if some value was already written,
while thewrite phase either writes a new value (if the register contaihedr rewrites the last written value. In the
specific case of = 1 (i.e., the first round)p, can safely invoke therite(1, x) operation without reading: indeed, if
any other process has read or written any valueuthie(1, ) invocation ofp; aborts. In this case, consensus (if it
commits) can be reached significantly faster than in a “regular” scenario.
Interestingly, this optimisation can actually be applied whenever the system stabilises (even if processes do not know
when that occurs). Indeed, the key idea behind that optimisation i® thiahows that writing directly at round is
safe because in case of any other wrjtgs write would be automatically aborted. In fact, once a leader gets elected
and commits a value, the leader can send a new message to all processes indicating that, for the subsequent consensus
instances, only this process can try to directly write onto the register. This new message can be piggy-backed onto the
messages of therite() primitive, thus avoiding any additional communication steps. Moreover, the last decision is
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piggy-backed onto the next consensus invocation, thus saving one more communication step.

Hence, the optimised protocol goes through two modes. Whenever a feademmits consensus (in the initial
regular mode), it switches to tiiast mode and tries to directly impose its value for next consensus. If the system is sta-
ble,p; succeeds and hence needs only one forced log and one communication round trip. We introduce here a specific
fastpropose() operation that invokesrite() directly and ensures that only one process can inyakgpropose()
per consensus, i.e., per batch of messages (independently of the round numpesyp@opose() invokeswrite()
with a round number range betwekandn, while for propose(), i.e., regulatwrite(), the round number range starts
atn+1. This way, a process can differentiategite() from apropose() or a fastpropose(). If the fastpropose()
does not succeeg; goes back to theegular mode. We implement this mode switching by refining our round-based
consensus and round-based register abstractions. We give here the intuition.

Fast
p;l i's | eader TO Deliver m Round- Based
prop(1, m _ Round- Based nsensus , fastprop(1,m) Consensus
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Figure 19. Communication steps for a regular followed by a fast communication pattern

Basically, we change the initialisations of our round-based consensus and round-based register abstractions. We
use, in their constructors, a boolean variafalg that is set tarue (resp. false) to distinguish the two cases. We
add one specific operatigfustpropose() to the interface of round-based consensus. Our modular Paxos protocol is
also slightly modified to invoke thé¢astpropose() operation. Figure 19 depicts the different communication steps
schemes; for clarity, we omit forced logs. Procgssexecutes a regular communication pattern for messagad
then a fast communication pattern for the next consensus (messagEirst, p; electsp; and sendsn to p;. When
p1 commits consensus for batéhand with the permission to allow the next batch to be performed in a fast mode,
p1 switches to the fast mode for batéi-1. Whenp; TO-Broadcastsn’, p; electsp; and sendsn’ to p;. Process
p1 then imposes the decision for batEk1 and piggy-backs the last decisiab) (on the same consensus invocation
(L+1). TheL+1 batch of messages is decided but will be TO-Delivered only with the next batch of messaggs (

Fast Round-Based Register. The fast round-based register has similezd() andwrite() operations than a regular
round-based register. A varialpermission is added to the returned values of theite() primitive: permission is set

to true if the variablev from the current and the next consensus are empty, otherwise it is feidetoThe variable
permission indicates to the upper layer that the process can directly invoke Fast Paxos for the next consensus. If a
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process; receives a nackWRITE message, it returiis(t,false). If p; gathers only ackWRITE message, then it
returns tommit,true) only if p; received only ackWRITE messages witlrmission set totrue, otherwisep; returns
(commit,false). Note that ifv; is modified and stored aft@ermission is set, indeed only one process can perform a

Fast Paxos per consensus. Fast round-based register has a different constructor since it extracts (if there is any) the
decision that is piggy-backed from the invocation and simulates the receptionefiae message. Note also that

line 32 of Figure 20 prevents the violation of the agreement propérty.

1: procedureregister() {Constructor, for each process p; }
2: read; < 0

3:  write; — 0

4: v — L

5:  if any, extractmsgSet and K, ; and simulate the receive of a messageqIDE, K ; MsgSet) {Added from Figure 12}
6: permission — false {Added from Figure 12}
7: procedureread(k)

8: s-send [READK] to all processes

9.  wait until received [ackREAD;,**] or [nackREADF] from [ =3 L7 processes

10: if received at least one [nackREAE) then

11: return(abort, v)

12: dse

13: select the [ackREAD, k', v] with the highest:”

14 return(commit, v)

15: procedurewrite(k, v) {Modified from Figure 12}

16: s-send[WRITEL, v] to all processes
17:  wait until received [ackWRITE,*] or [nackWRITEK] from [ =3 17 processes
18: if received at least one [nackWRITg then

19: return(abort false)
20: dse
21: if received at least one [ackWRITH#se] then return(commit,false) elsereturn (commit,true)

22: task wait until receive [READE] from p;
23.  if write; > kor read; > kthen
24: s-send [nackREAD] to p;

25: dse

26: read; < k; store{read;}

27: s-send [ackREAD, write;, v;] t0 p;

28: task wait until received [WRITEE, v] from p; {Modified from Figure 12}

29: if write; > kor read; > kthen
30: s-send [nackWRITE] to p;

31: dse

32: if K < nthenwrite; — n+3 elsewrite; — k
33: permission < ((v; = L)and (v;41 = 1))

34: v; «— v; store{write;, v; }

35: s-send [ackWRITH;,permission] to p ;
36: upon recovery do

37: initialisation

38: retrieve{write;, read;, v;}

Figure 20. Wait-free fast round-based register
Fast Round-Based Consensus. Fast round-based consensus has a parameterised constfastandicates if the
mode is fast or not, and the new constructor instantiates a new register usfag fierameter. Fast round-based con-
sensus exports the primitigeopose() of a regular round-based consensus (augmented with the returmesibast).
The variablenextFast is a boolean that indicates if the next batch of messages can be executed in a fast manner. Its
value is set to the return value of the fast round-based regamicsion). Moreover,nextFast is set in such way
that for a particular batcli, it returnstrue only once independantly of the number of invocatiorpeépose() or
fastpropose(). A procesw; can perform Fast Paxos for batth1 only if p, commits consensus (either pyopose()
or fastpropose()) for batchL with nextFast set totrue. The fast round-based consensus also exports a new primitive

BSvariablewrite; is set to a value betweenandn + 1. If set ton + 1, the invocation ofvrite(n + 1) would abort and hence require an added
round. Ifwrite is set ton, then the agreement property can be violated since two fast write can occuwig.(1), write(n).
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fastpropose() that takes as input an integer and an initial valiee., a proposition for the fast consensus). It returns
a status in {commit, abort}, a valuev’ and a boolean valueextFast. The fastpropose() primitive is apropose()
primitive that satisfies the validity and agreement properties of the regtdgaose() primitive plus the followingrast
Termination property if fastpropose() is invoked only with round number > k£ > 1:

e Fast Termination: If some operatiorf astpropose(x, x) aborts, then some operatignstpropose(—, —) was
invoked,; if fastpropose(x, ) commits then no different operatigfastpropose(—, —) can commit.

In fact, the fastpropose() primitive is straightforward to implement since it only invokes theite() primitive
with round number betweehandn of the fast round-based register.

: procedure consensusf{ast) {Constructor, for each process p;, modified from Figure 6
v« L;reg« new register()writeRes < abort; nextFast — false {Initialisation,modified from Figure 6
. procedure propose(k, init;)
if regread(k) = (commit, v) then
if (v =1)then v — init;
(writeRes,nextFast) < regwrite(k, v)
if writeResscommiit then return(commit, v,nextFast) elsereturn(abort, init; ,nextFast)
return(abort, init, false)
9: procedure fastpropose(k, init;) {Added from Figure 6}
10:  (writeResnextFast) < regwrite(k, init;)
11:  if writeResscommiit then return(commit, init; ,nextFast) elsereturn(abort, init,; ,nextFast)

oNRWNE

Figure 21. Wait-free fast round-based consensus

Lemma 49. Fast Termination: |f some operation fastpropose(x, ) aborts, then some operation fastpropose(—, —)

was invoked; if fastpropose(x, ) commits then no different operation fastpropose(—, —) can commit.

Proof. We assume here that processes invfietpropose() only with round number. > k£ > 1. There are two

cases to consider: (i) two different processes invpke&propose() for the same consensus, or (i) a process invokes
fastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that two different pro-
cessegp; andp, invoke fastpropose(). Assume moreover that returns fromf astpropose(), by line 32 of Figure 20,
whenp; tries to invokefastpropose(), by the algorithm of Figure 2¢;; cannot succeed sineerite; is already set

to n+%: a contradiction. Now consider case (ii). Assume thainvokes fastpropose() twice for the same consen-

sus number, sincerite; is storedp; cannot commit twicef astpropose() with nextFast set totrue: a contradictior

Proposition 50. If fastpropose() is invoked only once, then Figure 21 implements a wait-free fast round-based

consensusin a crash-recovery model.
Proof (sketch). The proof is based on lemma 49 and the fact that the proofs of the validity and agreement properties

are similar to the proofs of lemmata 8 and 9. O

Fast Paxos. Intuitively, once a procegs; returns fronpropose() or fastpropose() with nextFast set totrue for batch
L, itimplies that a process has the permission to execute a fast consensus, i.e.fimstgkepose() for batchL+1.
We slightly modify the Paxos algorithm by adding an arfayst[] that is set tofalse initially. When a proces9 ;
decides for batct (in the regular mode);; sends the decision to every process and sets the vaféatjle+1] to true
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if fastpropose() or propose() returns withnextFast set totrue (changes from a regular to a fast mode for the next

consensus). The next time invokes a new consensuag[L] is true), p; (i) piggy-backs the last decision (if there

is any) to the new instantiation of consensus, and (ii) invgkespropose(). This invocation has a different impact

on the round-based register as explained earlier. WWherommits fastpropose(), p; (a) does not need to send the

decision to every process since the decision is piggy-backed onto the next consensus invocation, anidgbdfsets

the next consensus true so thatp; can perform again a Fast Paxos. Wherbortsf astpropose(), p; setsfast back

to false sincep; cannot force the decision for this consensus, i.e., the communication pattern becomes regular again.
Note that it is necessary in the fast mode that the last decision (if there is any) to be piggy-backed onto the invocation

of the constructor of our round-based register. Otherwise, the process that creates the round-based register will not be

able to TO-Deliver the last decision. Since there can be concurrent executions of consensus, when a process commits a

regular consensus for batéh the next fast consensus will not always be bdteti. Consider the following example,

if a process; starts three consensus for batch numbet,2, and 3; whep,; commits batch numbel=1, p; sets

fast to true for batch number 2 and not 4 (only the subsequent batch numberso$et totrue and not the last batch

number started). Note also that the last decision piggy-backe@ ideliver[ L-1] but it can be empty. In this case,

the last decision piggy-backed is the latest decisionghétas, e.gAwaitingToBeDdlivered[latestDecisionReceived)]

or TO_delivered[lastestTODelivered]. Note that we assume here that lines 24 and 25 are executed atomically.

Lemma 51. There can be only oneinvocation of fastpropose() per consensus.

Proof. By the algorithm of Figure 22, processes invgkestpropose() only with round numben, > k > 1. There

are two cases to consider: (i) two different processes inyakepropose() for the same consensus, or (ii) a pro-
cess invokes astpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that
two different processes; andp, invoke fastpropose() for consensus numbér+1. For both processes, to invoke
fastpropose() for consensud +1, fast[ L+1] must be set tarue, which requires a process to perform a successful
propose() (or fastpropose()) which returnsiextFast astrue for consensué. Assume thap, returns fronpropose()

(or fastpropose()) with nextFast to true: a majority of processes have returned wptnmission set totrue (hence

vy, = L at a majority of processes) and no process has returnedpaithission set tofalse. Whenp ; invokes
propose() or fastpropose(), by the algorithm of Figure 2@ ; has to return witmextFast to false since two majori-

ties will always intersect: a contradiction. Now consider case (ii). Assumepthiavokes fastpropose() twice for

the same consensus numiderl, by the algorithm of Figure 22,; must have crashed and recovered between the two
invocations off astpropose(). Whenp, recoversfast] L+1] is reset tdfalse (initialisation). To invokef astpropose()

after having recoveredy; has to perform a successfutopose() (or fastpropose()) with nextFast set totrue for
consensug. This is impossible because a majority of processes have already their L : a contradiction. O

Proposition 52. Wth a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of
Figure 22 ensures the termination, agreement, validity and total order propertiesin a crash-recovery model.

Lemma 53. Termination: If a process p; TO-Broadcasts a message m and then p; does not crash, then p; eventually
TO-Deliversm.

Lemma 54. Agreement: |f a process TO-Delivers a message m, then every correct process eventually TO-Deliversm.

33



1: For each process;:

2: procedureinitialisation:

3:  Received]] < 0; TO_delivered]] < 0; fast[] « {false,..} {Modified from Figure 13}
4:  TO_.undelivered — (); AwaitingToBeDelivered[] < (; K « 1; nextBatch « 1; start task{launch}

5: procedure TO-Broadcastf:)

6: Received — Received U m

7: procedure deliver(msgSet)

8:  TO_delivered[nextBatch] «— msgSet - TO_delivered;

9: atomically deliver all messages TO-delivered[nextBatch] in some deterministic order

10:  store{TO_delivered,nextBatch}

11: nextBatch « nextBatch +1 {Sop retransmission module V messages of nextBatch-1 except DECIDE Or UPDATE}
12:  while AwaitingToBeDelivered[nextBatch] # () do

13: TO_delivered[nextBatch] < AwaitingToBeDelivered[nextBatch]- TO_delivered; atomically deliverTO_delivered[nextBatch]

14: store{ TO_delivered,nextBatch}

15: nextBatch < nextBatch+1 {Sop retransmission module V messages of nextBatch-1 except DECIDE Or UPDATE
16: task launch {Upon case executed only once per received message
17:  upon Received - TO_delivered # ( or leader has changetb {If upon triggered by a leader change, jump to line 28
18: while AwaitingToBeDelivered[ K +1] 7 () or TO_delivered[ K+1] # () do

19: K — K+1

20: if K = nextBatch and AwaitingToBeDelivered[ K] # 0 and TO_delivered[ K] = () then

21: deliver@waitingToBeDelivered[ K1)

22: TO_undelivered + Received — TO_delivered

23: if leader()=p, then

24. while proposey isactive do

25: K — K+1

26: start task propose (K, i, TO_undelivered); K «— K+1

27: else

28: s-send{’O_undelivered) to leader()

29: task proposel., I, msgSet) {Modified from Figure 13}
30: committed«— false

31: iffast[L] then {Added from Figure 13}
32: piggy-backTO_delivered[L-1] (if not empty) otherwise latest decision onto next instantiation and invocation of consensus

33: CoNsensus «— new consensuse)

34: if consensus.fastproposé( msgSet) = (commit, returned M sgSet,nextFast) then

35: if L = nextBatch then deliver(returned M sgSet) else AwaitingToBeDelivered[ L] = returned M sgSet; committed < true

36: fast[ L] « false; fast[ L+1] « nextFast

37: if consensus = L then consensus < new consensuf]se)
38:  while not committeddo
39: l—1l+n

40: if leader()=p, then

41: if consensus.proposel, msgSet) = (commit, returned M sgSet,nextFast) then

42: committed«— true; s-sendPECISION, L, returnedM sgSet) to all processedast] L+1] < nextFast
43: else

44: fast[ L+1] «+ false

45: upon s-receive m from p; do
46: if m = (DECISIONNextBatchmsgSet’ i ) or m = (UPDATE, K, ; , TO delivered[ K5, ;]) then

47: if task propose,, isactive then stop task Proposer,,

48: if Kp; # nextBatch then {p; isahead or behind}
49: if Kp; < nextBatchthen {p; is behind}
50: for all L such thats,,; < L < nextBatch: s-send(PDATE, L, TO_delivered[L]) to p; {Ifp; # pi}
51: else

52: AwaitingToBeDelivered[ ;] = msgSetK”i ; s-send(PDATE,nextBatch-1, TO_delivered[nextBatch-1]) to p; {Ifp; # pi}
53: else X

54: deliver(msgSet™ ¥4)

55: dse

56: Received «— Received U msgSetTo_undelivered {Consensus messages are treated in the consensus box}

57: upon recovery do
58: initialisation
59: retrieve{TO_delivered, nextBatch}; K «— nextBatch; nextBatch < nextBatch+1; Received «— TO_delivered

Figure 22. Fast Paxos in a crash-recovery model
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Lemma 55. Validity: For any message m, (i) every process p; that TO-Delivers m, TO-Delivers m only if m was
previously TO-Broadcast by some process, and (ii) every process p; TO-Delivers m at most once.

Lemma 56. Total order: Let p; and p; be any two processes that TO-Deliver some message m. If p; TO-Delivers
some message m’ before m, then p; also TO-Delivers m’ before m.

By lemma 51, the proofs for lemmata 53 through 56 are identical to those of lemmata 27 through 30 since (a) the
properties of thefastpropose() primitive are more restrictive than theopose() primitive; and (b) the properties of
the regulapropose() remain the same.

7 Related Work

The contribution of this paper isfaithful deconstruction of the Paxos replication algorithm. Our deconstruction
is faithful in the sense that it preserves the efficiency of the original Paxos algorithm. This promotes the implemen-
tation of the algorithm in a modular manner, and the reconstruction of variants of it that are customised for specific
environments.

In [12, 16], the authors focused on the consensus part of Paxos with the aim of either explaining the algorithm and
emphasising its importance [12] or proving its correctness [16]. In [12, 16], the authors discussed how a state machine
replication algorithm can be constructed as a sequence of consensus instances. As they pointed out however, that
might not be the most efficient way to obtain a replication scheme. Indeed, compared to the original Paxos protocol,
additional messages and forced logs are required when relying on a consensus box. This is in particular because the
very nature of traditional consensus requires every process to start consensus, i.e, adds messages compared to Paxos,
and, in a crash-recovery model, every process needs to log its initial value. Considering a finer-grained and round-
based consensus abstraction, separated from a leader election abstraction, is the key to our faithful deconstruction
of the Paxos replication algorithm. Our round-based consensus allows a process to propose more than once without
implying a forced log, and allows us to merge all logs at the lowest abstraction level while exporting the round number
up to the total order broadcast layer.

Our round-based consensus abstraction is somehow similar to the “weak” consensus abstraction identified by Lamp-
sonin [12]. There are two fundamental differences. “Weak” consensus does not ensure any liveness property. As stated
by Lampson, the reason for not giving any liveness property is to avoid the applicability of the impossibility result of
[4]. Our round-based consensus specification is weaker than consensus and does not fall into the impossibility result
of [4], but nevertheless includes a liveness property. The termination property of our round-based consensus coupled
with our leader election property is precisely what allows us to ensure progress at the level of total order broadcast.

In [5], a variant of Paxos, called Disk Paxos, decouples processes and stable storage. A crash-recovery model is
assumed and progress requires only one process to be up and a majority of functioning disks. Thanks again to our
modular approach, we implement Disk Paxos by only modifying the implementation of our round-based register. The
algorithm of Section 6.3 is faithful to Disk Paxos in that both have the same number of forced logs, messages and
communication step¥ Note that our leader election implementation that copes with unstable processes can be used

18variablesbal, mbal andinp in [5] correspond tavrite;, read; andv; in our case, while a ballot number in [5] corresponds to a round number
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with Disk Paxos to improve its resilience.

Independently of Paxos, [15] presented a replication protocol that also ensures fast progress in stable periods of the
system: our Fast Paxos variant can be viewed as a modular version of that protocol. In [13], a new failure detector,
<O, is introduced. This failure detector, which is shown to be equivalefit @dds to the failure detection capabil-
ity of &S [3] an eventual leader election flavour. Informally, this flavour allows every correct process to eventually
choose the same correct process as leader and eventually ensure fast progress. We have shoan bigadlirectly
used for that purpose, and we have done so in a more general crash-recovery model. Finally, [17] have given a total
order broadcast in a crash-recovery model based on a consensus box [3]. As we pointed out, by using consensus as
a black box, all processes need to propose an initial value which, in a crash-recovery model, means that they all need
a specific forced log for that (this issue was also pointed in [17]). Precisely because of our round-based consensus
abstraction, we are able to alleviate the need for this forced log.

Acknowledgements. We are very grateful to Marcos Aguilera and Sam Toueg for their helpful comments on the
specification of our register abstraction. We would also like to thank the anonymous reviewers for their very helpful

comments.
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A Optional Appendix. Performance measurements

We have implemented our abstractions on a network of Java machines as a library of distributed shared objects. We
give here some performance measurements of our modular Paxos implementation in different configurations. These
measurements were made on a LAN interconnected by Fast Ethernet (100Mb/s) on a normal working day. The LAN
consisted of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.7, and
our implementation was running on Solaris Java Hot3p@alient VM (build 1.3.001, mixed mode). The effective
message size was of 1Kb and the performance tests consider only cases where as many broadcasts as possible are
executed. In all tests, we considered stable periods where progesss the leader and one process was running per

machine.
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(a) Fast Paxos vs Regular Paxos (b) Varying the number of broadcasters (Fast Paxos)

Figure 23. Broadcast performance

Figure 23(a) depicts the throughput difference between Regular Paxos and Fast Paxos. Not surprisingly, Fast Paxos
has a higher throughput. The overall performance of both algorithms decreases since the leader has to send and receive
messages from an increasing number of processes.

Figure 23(b) depicts the performance of Fast Paxos when the number of broadcasting processes increases. We
considered four cases, (i) only the leader broadcasts, (ii) one process other than the leader broadcasts, (iii) all processes
except the leader broadcast, and (iv) all processes broadcast. Distributing the load of the broadcasting processes to a
larger number of processes improves the average throughput. As expected, the throughput is lower when the leader
is the unique broadcasting process, since it is the most overloaded. Case (iii) has a better throughput than case (iv)
after 12 processes since the leader does not broadcast and can allow more processing power than case (iv). This shows
that broadcasting messages slows down a process, and this is also verified by the increased throughput when another
process than the leader (case ii) is broadcasting.

Figure 24 compares Fast Paxos in two different modes: (i) concurrent consensus instances are started, and (ii)
only consecutive consensus instances are launched. Not to overwhelm the process with context switching, Paxos is
implemented using a thread pool that is limited to ten, i.e., at most ten concurrent consensus run at each process. The

1"When increasing the number of processes, the performances come close to each other because the capacity of Paxos is reached.
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39

250

300



throughput in both modes decreases as the number of protocol instances increases. At first, the concurrent version
gives better performance, but this diminishes as the number of broadcast increases. In fact, the increasing computation
needed (in the tadlaunch) impedes the performance of the concurrent version, i.e., performance degrades. The results
show that the more process a system has, the less difference there is in throughput between consecutive and concurrent
executions, i.e, when there are more processes in the system, there are less consensus instances that are launched.
Figure 25 depicts the broadcast rate at which the best throughput can be achieved from 4 to 10 processes. For
all cases, the throughput increases (approximately) linearly until a certain point, e.g., up to 10 broadcast/sec/process
for a six processes system and then the throughput falls suddenly linearly. Above the breakpoint, the leader again
becomes the bottleneck, its taskeive is overwhelmed by the number of broadcasts it has to handle, thus delaying

new protocol instances.
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Figure 25. Best throughput (Fast Paxos)
Figure 26(a) depicts the impact of forced logs for the Fast Paxos algorithm. When forced logs are removed, the
increased performance is minimal since the algorithm is fine-tuned and waits for a certain number of broadcast mes-
sages before launching a consensus. The TO-Delivery rate is by far better when a consensus is launched for a certain
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number of messages rather than starting a consensus for each single broadcast message. The number of consensus

becomes too big and slows down the algorithm. Due to this optimisation, there are few instances of consensus per

second and hence few stable storage access per second. Therefore, upon removal of stable storage, the performance

improvement is not drastic as one might think. This result shows that the winter season protocol is not really useful

for a practical systen® However, Figure 26(b) shows that forced logs have an impact on performance. If Fast Paxos

launches a large number of consensus per second, i.e., a consensus is started consecutively for each single broadcast

message. (There are no other consensus instance running in parallel, but there can be many consensus instances per

second.) In this case, the impact of forced logs is quite significant, as shown in Figure 26(b).
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Figure 26. Comparison between forced logs and no stable storage (Fast Paxos)

Finally, Figure 27 gives the recovery time required by a process depending on the number of messages retrieved

from the stable storage. The number of retrieved messages is proportional to the number of reads from the disk, thus

increasing the recovery time.
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Figure 27. Recovery time

18Moreover, Note that for a long-lived application, this model is not really practical, since every process is likely to crash and recover at least

once during the life of the application.

41



B Optional Appendix. Implementation of €2 in a Crash-Recovery Model with partial syn-

chrony

Figure 28 gives the implementation of the failure dete€toin a crash-recovery model with partial synchrony
assumptions. We assume that message communication times are bound by an unknown period but hold after some
global stabilisation time. Intuitively, the algorithm works as follows. A progeskeeps track of the processes that it
trusts in a set denotadustlist. A procesg; keeps on sendingAM-ALIVE messages to every process. Periodically,

p; removes of itdrustlist the processes from which it did not receive, within a certain threshold|-amy-ALIVE

message. Whep; receives an-AM-ALIVE message from some procgssand if p; was not part of thérustlist, p;

then addgp; to itstrustlist and incrementp;’s threshold. However, an unstable process can be trusted, therefore the
algorithm counts the number of times that a process crashes and recovers. This scheme allows a process to detect
when a process crashes and recovers, an unstable process has an unbouded epoch number at a correct process, while
a correct process has an epoch number that stops increasing.p/bexshes and recovers, sends &@ECOVERED

message to every process (line 8). Whemeceives e&RECOVEREDMessage from;, p; updates the epoch number

of p; at line 21 andy; addsp; to itstrustlist. Variable(.trustlist contains the process, within the trustlist, that has the

lowest epoch number (line 15), and if several of these exist, select the one with the lowest id.

Processes exchange their epoch number and take the maximum of all epoch numbers to prevent the following case.
Assume that processgs, p3, ps hever crash and that procgsscrashes and recovers. Whenrecovers, assume that
every process excepj receives th&kECOVEREDMessage from;. Thereforep; has epoch, = 0,0, 0, 0, while the
other processes have epgeh, = 1,0,0,0. Each process has the same trustlist, indeégdoutputsp; and(2,, , ,
outputsps which violates the property dR, exchanging their epoch number and taking the maximum such case is
avoided. Therefore, when receiving the trustlistalso takes the maximum between its epoch number and the one it
received fronp;. Note that the MIN function gives thig'st index that realises the minimum.

Proposition 62. The algorithm of Figure 28 satisfies the following property in a crash-recovery model with partial

synchrony assumptions. There is a time after which exactly one correct process is always trusted by every correct

process.

Proof. There is a time after which every correct process stops crashing and remains always-up. Therefore, every cor-
rect process keeps on sendingM-ALIVE message to every process. Thanks to the partial synchrony assumptions,

we know that after some global stabilisation time, a message does not take longer than a certain period of time to go
from one process to another. Eventually, every process guesses this period of time by increthgpiadine 19.

By the fair loss property of the links, every correct process then receives an infinite humber of-timesLIVE

messages. Therefore, every correct process eventually has the same set trustlist and epoch list, indeed they output all
the same process. Eventually, this process is correct since the algorithm chooses the process with the lowest epoch
number (remember that an unstable process has a non decreasing epoch number at a correct process). O
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for each process p;
upon initialisation or recoveryo
Q.trustlist— _L; trustlistp% — II
for all p; € I do
Ay, [pj] — default time-out interval
epochy, [pj] — 0
start task {updateD }
if recovery then sendRECOVERED to all
task updateD
repeat periodically
send (-AM-ALIVE ,epoch ;) to all processes
for all p; € IIdo
if p; € trustlist,, and p; did not receiva-AM-ALIVE from p; during the lastA ,, [p;] then
trustlist,, « trustlist,, \ {p; }
Q.trustlist— MIN(py, € trustlisy, | pr = MIN (epochy, )
. upon receivem from p; do
if m = (I-AM-ALIVE ,epocf;,j ) then
if p; ¢ trustlist,; then
trustlist,, «— trustlist,, U {p;}; Ay, [pj] — Ap,[p;] +1
for all p, € I1do
epoch, [p] < MAX(epochy, [pk], epoch, [pk])
elseif m = RECOVEREDthen
epochy,; [p;] < epochp, [p;] + 1; trustlist,, — trustlist,, U {p;}

Figure 28. Implementing2 in a crash-recovery model with partial synchrony assumptions
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