
Multiphase Stabilization
Mohamed G. Gouda

Abstract—We generalize the concept of stabilization of computing systems. According to this generalization, the actions of a system S

are partitioned into n partitions, called phase 1 through phase n. In this case, system S is said to be n-stabilizing to a state predicate Q

iff S has state predicates P.0, ..., P.n such that P.0 = true, P.n = Q, and the following two conditions hold for every j, 1 � j � n. First, if S

starts at a state satisfying P.(j-1) and if the only actions of S that are allowed to be executed are those of phase j or less, then S will

reach a state satisfying P.j. Second, the set of states satisfying P.j is closed under any execution of the actions of phase j or less. By

choosing n = 1, this generalization degenerates to the traditional definition of stabilization. We discuss three advantages of this

generalization over the traditional definition. First, this generalization captures many stabilization properties of systems that are

traditionally considered nonstabilizing. Second, verifying stabilization when n > 1 is usually easier than when n = 1. Third, this

generalization suggests a new method of fault recovery, called multiphase recovery.

Index Terms—Computing system, convergence, multiphase recovery, periodic reset, self-stabilization, spanning tree construction.

�

1 INTRODUCTION

STABILIZATION is an important property of computing
systems. This property can be used in explaining fault

tolerance (in particular, fault occurrence [1], fault recovery
[1], [4], and fault containment [7]) of these systems. It can
also be used in explaining the adaptivity of these systems to
their environments [9]. Moreover, the strive to achieve
stabilization has led to many interesting systems [3], [13].

Unfortunately, the growing research concerning system
stabilization is marred by two problems:

1. The definition of a stabilizing system is strict. Thus,
many computing systems that one feels should be
considered stabilizing are in fact nonstabilizing
according to this definition.

2. The strictness of this definition makes it hard to
design stabilizing systems or verify their correctness.

In this paper, we address these two problems by
introducing a generalization for system stabilization, called
multiphase stabilization. Systems that are stabilizing
according to the traditional definition are still stabilizing
according to the new generalization. However, some
systems that are traditionally considered nonstabilizing
become stabilizing according to this generalization. We also
argue that the new generalization makes proving system
stabilization easier and suggests a new method of fault
recovery.

The rest of this paper is organized as follows: In Section 2,
we define multiphase stabilizing systems and propose a
new fault recovery method for these systems in Section 3. In
Section 4, we discuss three examples of multiphase
stabilizing systems and, in Section 5, we present several
theorems that can be used in verifying the stabilization

properties of multiphase systems. In Section 6, we discuss
how to combine two (or more) multiphase stabilizing
systems into a single system. Then, in Section 7, we outline
a transformation for transforming any multiphase stabiliz-
ing system into a single-phase stabilizing system. Conclud-
ing remarks are in Section 8.

2 DEFINITION OF MULTIPHASE STABILIZATION

A (computing) system is a nonempty set of variables whose
values are from predefined domains and a nonempty set of
actions that can be executed to update the values of the
variables. Each action is of the form:

< guard > �> < statement >

where < guard > is a Boolean expression over the system
variables and < statement > is a sequence of assignment
and conditional statements over the system variables.

A state of a system S is an assignment of a value to each
variable of S. The value assigned to each variable is from the
domain of that variable.

A state p of a system S is called a fixed point iff the guard
of each action of S is false at state p.

A transition of a system S is a triple (p, c, q), where p and
q are states of S, c is an action of S, the guard of action c is
true at state p, and executing the statement of action c when
system S is in state p yields S in state q. For any transition
(p, c, q), p is called the tail state of the transition, q is called
the head state of the transition, and action c is said to be
enabled at state p.

A computation of a system S is a nonempty sequence of
transitions of S such that the following three conditions
hold:

1. Order: In the sequence, the head state of each
transition is the same as the tail state of the next
transition, if any.

2. Maximality: If the sequence is finite, then the head
state of the last transition in the sequence is a fixed
point.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002 201

. The author is with the Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712-1188.
E-mail: gouda@cs.utexas.edu.

Manuscript received 5 Apr. 1999; accepted 22 June 2001.
Recommended for acceptance by W. Sanders.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109528.

0098-5589/02/$17.00 � 2002 IEEE

3. Fairness: If the sequence contains a contiguous
subsequence of the form (p.0, c.0, p.1) , (p.1, c.1,
p.2) , ... , and if an action c is enabled at each of the
states p.0, p.1, ... in the subsequence, then the
subsequence is finite or action c is one of actions
c.0, c.1, ... in the subsequence.

The tail state of the first transition in a computation is

called the initial state of the computation. If a computation

is finite, then the head state of the last transition in the

computation is called the final state of the computation. If a

transition in a computation has a state p (as the tail or head

state of that transition), then the computation is said to

reach state p.
A state predicate of a system S is a function that has a

Boolean value, true or false, at each state of S. Let true

denote the state predicate whose value is true at each state

of system S.
Let P be a state predicate of a system S. A state of S is

called a P-state iff the value of P is true at that state.
Let P and Q be state predicates of a system S. Predicate P

equals predicate Q, denoted P = Q, in system S iff P and Q

have equal values at every state of S. Predicate P implies

predicate Q, denoted P ¼> Q, in system S iff, for every state

p of system S, if P is true at p, then Q is true at p. Note that

P = Q in S iff P ¼> Q and Q ¼> P in S.
Let n be an integer whose value is at least 1. An n-phase

system consists of a system S and a partitioning of the actions

of S into n nonempty partitions, named phase 1 through

phase n. Note that any system S can be made 1-phase by

grouping all the actions of S into one phase.
Let S be an n-phase system and let P be a state predicate

of S. Predicate P is called j-closed in S, where 1 � j � n, iff,

for each transition (p, c, q) of system S, if p is a P-state and c

is an action of phase j or less, then q is a P-state.

Lemma 1. For any n-phase system S,

1. the state predicate true is n-closed in S and
2. any k-closed predicate in S is also j-closed, where

1 � j � k � n.

Let S be an n-phase system and let P and Q be two state

predicates of S. System S is j-convergent from P to Q, where

1 � j � n, iff the following two conditions hold:

1. Reaching from P to Q: For each P-state p, p is a
Q-state or system S has a computation whose initial
state is p and whose actions are of phase j or less and
each such computation of S reaches a Q-state.

2. Closure of Q: Predicate Q is j-closed in S.

An n-phase system S is n-stabilizing to a state predicate Q

iff system S has n+1 state predicates P.0, P.1, ..., P.n such

that the following two conditions hold:

1. Boundary: P.0 = true and P.n = Q.
2. Convergence: For every j, 1 � j � n, S is j-convergent

from P.(j-1) to P.j.

In the special case where n = 1, the definitions of 1-closure,

1-convergence, and 1-stabilization degenerate to the tradi-

tional definitions of closure, convergence, and stabilization,

as given, for example, in [8].

Lemma 2. For any 1-phase system S, S is 1-convergent from true
to Q iff S is 1-stabilizing to Q.

3 MULTIPHASE RECOVERY

In this section, we describe a fault recovery method for
multiphase stabilizing systems. This method is called
multiphase recovery.

Let S be an arbitrary n-phase system. In general, the
computations of S can be partitioned into fault computa-
tions and fault-free computations. Let Q be an n-closed
state predicate of system S and assume that Q defines all
states that are reachable in every fault-free computation
of S. In other words, each fault-free state of S is a Q-state
and vice versa. The occurrence of one or more errors can
lead system S to a fault state (that is, not a Q-state). If
system S is n-stabilizing to Q, then a recovery procedure
can be invoked periodically to ensure that if S ever reaches
a fault state, then, eventually, S will return to a fault-free
state. This recovery procedure is described next.

Because system S is n-stabilizing to Q, S has n + 1 state
predicates P.0, P.1, ... , P.n that satisfy the two conditions of
boundary and convergence discussed in Section 2. The
periodic recovery procedure consists of n consecutive
stages. In the jth stage, where 1 � j � n, only those
S actions of phase j or less are allowed to be executed.
Execution of these actions proceeds until system S reaches a
(P.j)-state, then the jth stage terminates and the (j + 1)th
stage starts. During the nth stage, system S reaches a Q-state
and the recovery is complete.

Note that this recovery procedure is invoked periodi-
cally, regardless of whether system S is in a fault state.
Fortunately, only actions of system S are executed during
the recovery procedure. Therefore, if the recovery proce-
dure is invoked when system S is already in a Q-state and if
no fault occurs during the recovery, then the ongoing
computation of system S continues to be a fault-free
computation of the system. Thus, the effect of the recovery
procedure remains mostly transparent to any outside
observer of the system. The only observable effect of the
recovery procedure is a possible increase in the system
delay to produce a response because some system actions
are prevented from being executed during the recovery.

It is instructive to compare this method of multiphase
recovery with the recovery method that uses periodic reset.
(Note that we are interested here in resets that are invoked
every so many hours rather than resets that are invoked in
response to some detected errors, as discussed in [12].)
These two methods are invoked periodically to ensure that
if a system ever reaches a fault state, then, eventually, that
system will return to a fault-free state. However, whereas
multiphase recovery is transparent when no fault occurs, a
periodic reset is usually intrusive, forcing the system to
abandon its current state (even if that state is fault-free) and
return to its initial state. The intrusive nature of periodic
reset suggests that the time period between two successive
resets should be relatively large. On the other hand, the
transparent nature of multiphase recovery suggests that the
time period between two successive invocations of the
recovery procedure can be relatively short. Therefore,

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

multiphase recovery can erase the effects of a fault from a
system faster than recovery using periodic resets.

4 EXAMPLES oF MULTIPHASE STABILIZATION

In this section, we discuss three examples of multiphase
stabilizing systems. These examples illustrate some advan-
tages of the new definition of stabilization over the
traditional one.

Example 1. In this example, we discuss a system S that is
stabilizing according to the new definition of stabiliza-
tion, but not according to the traditional definition. Let S
be a 2-phase system that consists of r processes s[i : 0..r-1].
Each process s[i] has one Boolean variable st[i] and one
action. The action of process s[i] reads variables st[i] and
st[i-1 mod r], then updates st[i]. The action of process s[0]
belongs to phase 2 and the actions of all other processes
belong to phase 1. The processes of system S are defined
as follows:

process s[0]
var st[0] : boolean

begin

st[0] = st[r-1] �> st[0] := not st[0] {phase 2}
end

process s[i : 1..r-1]
var st[i] : boolean

begin

st[i] 6¼ st[i-1] �> st[i] := not st[i] {phase 1}
end

Let P and Q be the following state predicates of
system S.

P = (8i; 0 � i < r, st[i] = st[0]).
Q = (9i; 0 � i < r,

(8j; 0 � j � i, st[j] = st[0]) ^
(8j; i < j < r, st[j] 6¼ st[0])

).

It is straightforward to show that P is 1-closed, Q is
2-closed, S is 1-convergent from true to P, and S is
2-convergent from P to Q. Therefore, system S is
2-stabilizing to Q and multiphase recovery can be used
to make S recover from any faults as follows: Periodi-
cally, the action of process s[0] is prevented from
execution long enough until system S reaches a P-state.
Then, when all actions of system S are allowed to be
executed, S reaches a Q-state.

Note that if system S was considered 1-phase (rather
than 2-phase), then S would not be 1-stabilizing to Q.
This shows that S is not stabilizing to Q according to the
traditional definition of stabilization, but it is stabilizing
to Q according to the new definition. Thus, the new
definition of stabilization seems to illuminate some
stabilization properties that cannot be captured by the
traditional narrower definition.

Example 2. In this example, we show that the well-known
alternating-bit protocol is stabilizing according to the
new definition of stabilization, but not according to the
traditional definition.

Consider an alternating-bit protocol S that consists of
two processes s and r. Process s sends data messages to
process r, which replies by sending back an ack message
for every data message it receives. Each data message
sent by s is stored in a channel from s to r until the
message is finally received by r or lost. Similarly, each
ack message sent by r is stored in a channel from r to s
until the message is finally received by s or lost.

Each of the two channels stores the sequence of
messages that are sent into the channel but not yet
received or lost from the channel. Sending a message into
a channel consists of adding the message at the tail of the
message sequence in the channel. Receiving a message
from a channel consists of removing the head message
from the message sequence in the channel. Losing a
message from a channel consists of removing any
message in the message sequence in the channel. For
example, sending a message m into a channel whose
message sequence is “m0; m1; m2” makes the sequence
“m0; m1; m2; m.” Also, receiving a message from a
channel whose message sequence is “m0; m1; m2” makes
the sequence “m1; m2.” Finally, losing message m1 from
a channel whose message sequence is “m0; m1; m2”
makes the sequence “m0; m2.”

In protocol S, process s has a Boolean variable bs and
process r has a Boolean variable br. Each data message
sent by s is of the form data(b), where b is the value of
variable bs when the message is sent.

When r receives a data(b) message, r compares the
current value of variable br with b. If br = b, then r
recognizes that the received data(b) message is the
expected one. In this case, r stores the message, changes
the value of br, and sends back an ack(b) message to s. If
br 6¼ b, then r recognizes that the received data(b)
message is another copy of the last received message.
In this case, r discards the message, keeps the value of br
unchanged, but still sends back an ack(b) message to s
(because the last ack(b) message may have been lost
during transmission from r to s).

When s receives an ack(b) message, s compares the
current value of variable bs with b. If bs = b, then s
recognizes that the received ack(b) message is the
expected acknowledgment for the last data(b) message
sent by s. In this case, s changes the value of bs and starts
to send the next data(bs) message to r. If bs 6¼ b, then s
recognizes that the received ack(b) message is not the
expected one. In this case, s keeps the value of bs
unchanged and continues to resend the last data(b)
message (because earlier copies of that message may
have been lost during transmission from s to r).

Processes s and r in the alternating-bit protocol S are
as follows:

process s
var bs, b : boolean

begin

true �> send data(bs) to r {phase 2}
[] rcv ack(b) from r �> if bs 6¼ b �> skip

[] bs = b �> bs := not bs
fi {phase 1}

end

GOUDA: MULTIPHASE STABILIZATION 203

process r
var br, b : boolean

begin

rcv data(b) from r �> if br 6¼ b �>
{discard data(b)} skip

[] br = b �>
{store data(b)}
bs := not bs

fi; send ack(b) to s
{phase 1}

end

Note that the first action of process s belongs to
phase 2 and the second action of process s and the action
of process r belong to phase 1.

Let ch.s.r denote the sequence of data messages in the
channel from process s to process r and let ch.r.s denote
the sequence of ack messages in the channel from
process r to process s. Then, ch.s.r and ch.r.s can be
used in defining the state predicates P and Q of protocol S
as follows:

P = (ch.s.r = empty sequence) ^
(ch.r.s = empty sequence).

Q = (bs = br ^
ch.s.r = (data(not bs))*; (data(bs))* ^
ch.r.s = (ack(notbs))*)
^
(bs 6¼ br ^

ch.s.r = (data(bs))* ^
ch.r.s = (ack(not bs))*; (ack(bs))*).

It is straightforward to show that P is 1-closed, Q is
2-closed, S is 1-convergent from true to P, and S is
2-convergent from P to Q. Therefore, protocol S is
2-stabilizing to Q and multiphase recovery can be used
to make S recover from any faults as follows: Periodi-
cally, the first action of process s is prevented from
execution long enough to ensure that protocol S reaches a
P-state. Then, all actions of protocol S are allowed to be
executed and S reaches a Q-state.

Note that if protocol S was considered 1-phase, then S
would not be stabilizing to Q. This shows that S is not
stabilizing to Q according to the traditional definition of
stabilization. It is shown in [10] that any network
protocol whose variables have bounded domains cannot
be stabilizing according to the traditional definition of
stabilization. However, as illustrated by Example 2, this
negative result does not extend to multiphase stabiliza-
tion.

Example 3. In this example, we discuss a system S that is

stabilizing according to both the new definition of

stabilization and the traditional definition. However,

we argue that proving stabilization of S according to the

new definition is easier than proving it according to the

traditional definition.
Let S be a 3-phase system that consists of r processes

s[i : 0..r-1]. There is a one-to-one correspondence between
the processes of system S and the vertices of a connected

and undirected graph G. For every i, where 0 � i < n, let
v[i] denote the vertex in graph G that corresponds to
process s[i] in system S. Two processes s[i] and s[j] are
neighbors in S iff there is an edge between their
corresponding vertices v[i] and v[j] in G. The actions of
a process s[i] can read the variables of another process
s[j], only if s[i] and s[j] are neighbors.

The processes of system S maintain a rooted spanning
tree whose root is process s[0]. In particular, each process
s[i] has two variables ds[i] and pr[i]. Variable ds[i] stores
the number of edges for reaching s[0] from s[i] over the
spanning tree and variable pr[i] stores the index of the
parent of s[i] in the tree. Note that the parent of a process
s[i] is one of the neighbors of s[i]. For process s[0], the
two variables ds[0] and pr[0] have fixed values, namely,
0 and 0. Thus, process s[0] has no actions (for updating
the variables ds[0] and pr[0]). Each other process s[i] has
three actions. In each action, s[i] reads its own two
variables and the two variables of a neighbor, then
updates its own variables. The processes of system S are
defined as follows:

process s[0]
var ds[0] : 0..0,

pr[0] : 0..0
begin {there are no actions in s[0]}
end

process s[i : 1..r-1]
var ds[i] : 0..n,

pr[i] : index of the parent of s[i] in the
spanning tree

par g : index of an arbitrary neighbor of s[i]
begin

ds[i] < n _ ds[pr[i]] < n _ ds[i] 6¼ ds[pr[i]]+1
�> ds[i] := ds[pr[i]]+1 {phase 1}

[] ds[i] < n _ ds[pr[i]] = n �> ds[i] := n {phase 2}
[] ds[i] = n _ ds[g] < n-1 �> ds[i] := ds[g]+1;

pr[i] := g {phase 3}
end

Note that, in the third action, process s[i] detects that
ds[i] = n and there is a neighbor s[g] where ds[g] < n-1. In
this case, s[i] makes s[g] its parent in the tree. Note also
that, in each process, the first action belongs to phase 1,
the second action belongs to phase 2, and the third action
belongs to phase 3.

Let P, P’, and Q be the following state predicates of
system S.

P = (8i; 1 � i < r, ds[i] = n _
ds[pr[i]] = n _ ds[i] = ds[pr[i]] + 1).

P’ = (8i; 1 � i < r, ds[i] = n _ ds[i] = ds[pr[i]] + 1).
Q = (8i; 1 � i < r, ds[i] = ds[pr[i]] + 1).

It is straightforward to show that P is 1-closed, P’ is
2-closed, and Q is 3-closed. It is also straightforward to
show that S is 1-convergent from true to P, S is
2-convergent from P to P’, and S is 3-convergent from
P’ to Q. Thus, system S is 3-stabilizing to Q and
multiphase recovery can be used to make S recover from
errors as follows: Periodically, the second and third

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

actions in every process in S are prevented from
execution long enough until S reaches a P-state. Then,
the second actions in all processes in S are allowed to be
executed, but the third actions are still prevented from
execution until S reaches a P’-state. Finally, all actions of
system S are allowed to be executed, causing S to reach a
Q-state.

Note that if system S is considered 1-phase, then S is
1-stabilizing to Q [5]. However, proving stabilization
when S is 3-phase is easier than when S is 1-phase for the
following reason: If S is 3-phase, then proving 3-phase
stabilization of S consists of proving the following three
assertions:

. S is 1-convergent from true to P,

. S is 2-convergent from P to P’, and

. S is 3-convergent from P’ to Q.

On the other hand, if S is 1-phase, then proving 1-phase
stabilization of S consists of proving only one assertion:

. S is convergent from true to Q.

Proving this one assertion is harder than proving all
three former assertions. Thus, choosing S to be 3-phase,
rather 1-phase, has the effect of partitioning one complex
proof obligation into three simple ones.

5 THEOREMS OF MULTIPHASE STABILIZATION

In this section, we present some theorems that follow from
the definitions of closure, convergence, and stabilization in
Section 2. As discussed in [8], similar theorems also follow
from the traditional definitions of closure, convergence, and
stabilization. This shows that the new definitions inherit
many of the nice features of the traditional definitions.

In the following theorems, let S be any n-phase system,
and let P, P’, Q, and Q’ be state predicates of S. Also, let j
and k be any two integers, where 1 � j � k � n.

Base Theorem. The state predicate true is j-closed in S, system S
is j-convergent from true to true, and system S is n-stabilizing
to true.

Junctivity of Closure Theorem. If P is j-closed in S and Q is
k-closed in S, then P ^Q and P ^Q are j-closed in S.

Junctivity of Convergence Theorem. If S is j-convergent from
P to Q and S is j-convergent from P’ to Q’, then S is
j-convergent from P _ P 0 to Q _Q0 and S is j-convergent
from P ^ P 0 to Q ^Q0 (provided Q ^Q0 is not false).

Junctivity of Stabilization Theorem. If S is n-stabilizing to P
and S is n-stabilizing to Q, then S is n-stabilizing to P _Q

and S is n-stabilizing to P ^Q. (provided P ^Q is not false).

From Closure to Convergence Theorem. If Q is j-closed in S
and P ¼> Q in S, then S is j-convergent from P to Q.

From Convergence to Convergence Theorem: (Transitivity

of Convergence). If S is j-convergent from P to P’ and S is
j-convergent from P’ to Q, then S is j-convergent from P to Q.

From Convergence to Stabilization Theorem. If S is
n-convergent from P to Q and S is n-stabilizing to P, then S
is n-stabilizing to Q.

Weakening of Convergence Theorem. If S is j-convergent
from P to Q, P 0 ¼> P in S, Q => Q’ in S, and Q’ is j-closed
in S, then S is j-convergent from P’ to Q’

Weakening of Stabilization Theorem. If S is n-stabilizing to
Q, Q ¼> Q0 in S, and Q’ is n-closed in S, then S is
n-stabilizing to Q’.

6 HIERARCHIES OF MULTIPHASE STABILIZING

SYSTEMS

In this section, we show that the new definition of
stabilization, like the traditional one, supports system
compositions that preserve stabilization. In particular, we
show that it is possible to combine a system S that is
m-stabilizing to Q with a system T that is n-stabilizing to R
such that the resulting system is (m + n)-stabilizing to Q ^ R.

Consider the 3-phase system S in Example 3 above. In
system S, the processes s[i : 0..r-1] maintain a rooted
spanning tree whose root is process s[0]. The spanning tree
is maintained as each process s[i] stores the index of its
parent in the tree in a variable pr[i]. Recall that system S is
3-stabilizing to the state following predicate Q.

Q = (8i; 1 � i < r, ds[i] = ds[pr[i]] + 1).

Now, consider a 2-phase system T that consists of the
processes t[i : 0..r-1]. Like system S, there is a one-to-one
correspondence between the processes of system T and the
vertices of a connected and undirected graph G. For every i,
where 0 � i < r, let v[i] denote the vertex in graph G that
corresponds to process t[i] in system T. Two processes t[i]
and t[j] are neighbors in T iff there is an edge between their
corresponding vertices v[i] and v[j] in G. The actions of a
process t[i] can read the variables of another process t[j]
only if t[i] and t[j] are neighbors.

The processes of system T are arranged in a rooted
spanning tree whose root is process t[0]. Each process t[i]
has a variable pr[i] that stores the index of the parent of t[i]
in the tree. The processes of system T use this spanning tree
to propagate consecutive sequence numbers from process
t[0] to every other process in T. The current sequence
number of each process t[i] is stored in an integer variable
sq[i]. When t[0] detects that its current sequence number in
sq[0] equals that of each of its children in the tree, t[0]
increments the value of sq[0] by one. When any other t[i]
detects that its current sequence number in sq[i] equals that
of each of its children in the tree, t[i] assigns to sq[i] the
current sequence number of its parent t[pr[i]]. The
processes of system T are defined as follows:

process t[0]
var pr[0] : 0..0,

sq[0] : integer

begin

(8t[j] neighbor of t[0], pr[j] 6¼ 0 _ sq[j] = sq[0])
�> sq[0] := sq[0] + 1 {phase 2}

end

process t[i : 1..r-1]
var pr[i] : index of the parent of t[i] in the spanning tree,

sq[i] : integer

GOUDA: MULTIPHASE STABILIZATION 205

begin

(8t[j] neighbor of t[i], pr[j] 6¼ i _ sq[j] = sq[i]) ^
(sq[i] 6¼ sq[pr[i]]) �> sq[i] := sq[pr[i]] {phase 1}

end

Note that the action of process t[0] belongs to phase 2

and the actions of all other processes belong to phase 1. Let

Q’ and R be the following state predicates of system T.

Q’ = (8i; 1 � i < r, sq[i] = sq[pr[i]]).
R = (8i; 1 � i < r, sq[i] = sq[pr[i]] _ sq[i] = sq[pr[i]] + 1).

It is straightforward to show that Q’ is 1-closed in T, R is

2-closed in T, T is 1-convergent from true to Q’, and T is

2-convergent from Q’ to R. Therefore, system T is

2-stabilizing to R.
The 3-phase system S in Example 3 can be combined

with the above 2-phase system T to construct a 5-phase
system named ST. Specifically, each process s[i] in system S
is combined with the corresponding process t[i] in system T
to construct a process st[i] in system ST as follows: First, the
variables in process s[i] and the variables in process t[i] are
added as variables in process st[i]. Second, each action in
s[i] and each action in t[i] is added as an action in st[i].
Third, for each action in s[i], the phase of this action in st[i]
equals its phase in s[i] and, for each action in t[i], the phase
of this action in st[i] equals its phase in t[i] plus three, which
is the number of phases in system S. The processes of
system ST are defined as follows:

process st[0]
var ds[0] : 0..0,

pr[0] : 0..0,
sq[0] : integer

begin

(8st[j] neighbor of st[0], pr[j] 6¼ 0 _ sq[j] = sq[0])
�> sq[0] := sq[0] + 1 {phase 5}

end

process st[i : 1..r-1]
var ds[i] : 0..n-1,

pr[i] : index of the parent of st[i] in the
spanning tree,

sq[i] : integer

par g : index of an arbitrary neighbor of st[i]
begin

ds[i] < n ^ ds[pr[i]] < n ^ ds[i] 6¼ ds[pr[i]]+1
�> ds[i] := ds[pr[i]] + 1 {phase 1}

[] ds[i] < n ^ ds[pr[i]] = n �> ds[i] := n {phase 2}
[] ds[i] = n ^ ds[g] < n - 1 �> ds[i] := ds[g] + 1;

pr[i] := g {phase 3}
[] (8st½j� neighbor of st[i], pr[j] 6¼ i _ sq[j] = sq[i]) ^

(sq[i] 6¼ sq[pr[i]]) �> sq[i] := sq[pr[i]] {phase 4}
end

Because system S is 3-stabilizing to the state predicate Q

and system T is 2-stabilizing to the state predicate R, it is

straightforward to show that the constructed system ST is

5-stabilizing to the state predicate Q^R.

Q^R = (8i; 1 � i < r, ds[i] = ds[pr[i]] + 1) ^
(8i; 1 � i < r, sq[i] = sq[pr[i]] _ sq[i] = sq[pr[i]] + 1).

7 TRANSFORMING MULTIPHASE STABILIZATION TO

SINGLE-PHASE STABILIZATION

In this section, we discuss how to transform any system that
is n-stabilizing, where n � 2, to one that is 1-stabilizing. The
transformation consists of four steps. In each step, we add
variables and actions to the system processes to accomplish
a certain task. The tasks that are accomplished in these four
steps are as follows:

1. First Step. Make the processes maintain a rooted
spanning tree.

2. Second Step. Make the processes propagate se-
quence numbers in the range 0..3 along the spanning
tree in a cyclic fashion. In each cycle, the sequence
numbers are propagated as follows: First, sequence
number 0 is propagated from the root to the leaves.
Second, sequence number 1 is propagated from the
leaves to the root. Third, sequence number 2 is
propagated from the root to the leaves. Finally,
sequence number 3 is propagated from the leaves to
the root.

3. Third Step. Make the root of the spanning tree use
the propagated sequence numbers to detect whether
execution of the original actions in the system has
terminated.

4. Fourth Step. Make the processes execute the original
actions according to their phases and make the root
of the spanning tree detect termination of the current
phase and initiate execution of the next phase.

To describe these four steps in more detail, consider the
following n-stabilizing system, where n � 2.

process f[i : 0..r-1]
var u[i] : <type of u[i]>,

...
v[i] : <type of v[i]>

begin

G.i.1 �> S.i.1 {phase 1}
[] G.i.2 �> S.i.2 {phase 2}
...
[] G.i.n �> S.i.n {phase n}
end

For simplicity, we assume that each process in this
system has n actions: one action in each phase. We also
assume that each system computation whose actions are of
phase n - 1 or less is finite. Next, we describe how to apply
the above four steps to transform this n-stabilizing system
to a 1-stabilizing system.

First Step. Referring to Example 3 in Section 4, the
processes s[i : 0..r-1] maintain a rooted spanning tree,
whose root is s[0]. To maintain this tree, each process s[i]
has two variables ds[i] and pr[i] and three actions. (The
only exception is that s[0] has no actions.) Thus, to make
the processes f[i : 0..r-1] maintain a spanning tree whose
root is f[0], add to each process f[i] two variables ds[i]
and pr[i] and the same actions as those in the
corresponding process s[i]. However, unlike the actions
in s[i], which were assumed to be partitioned into three
phases, the added actions to f[i] are assumed to belong to
only one phase, namely phase 1.

206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

The added variables and actions make the processes
f[i : 0..r-1] maintain a rooted spanning tree whose root is
f[0]. Moreover, the tree maintenance system is
1-stabilizing [5].

Second Step. In order to make the processes in f[i : 0..r-1]

propagate sequence numbers over the maintained span-

ning tree, add to each process f[i] the following variable

var sq[i] : 0..3

and the following four actions:

[] sq[i] = 0 ^ (8f[j] neighbor of f[i], pr[j] 6¼ i _ sq[j] = 1)
�> sq[i] := 1; X

[] sq[i] = 1 ^ (i = 0 _ sq[pr[i]] = 2) �> sq[i] := 2
[] sq[i] = 2 ^ (8f[j] neighbor of f[i], pr[j] 6¼ i _ sq[j] = 3)

�> sq[i] := 3; Y
[] sq[i] = 3 ^ (i = 0 _ sq[pr[i]] = 0) �> sq[i] := 0; Z

All added actions are assumed to belong to phase 1.
Note that the added actions to process f[i] refer to

the variables pr[i] in f[i] and pr[j] in every neighboring
f[j]. These variables were added to f[i : 0..r-1] in the first
step of the transformation. Note also that the first
added action has a statement X, the third action has a
statement Y, and the fourth action has a statement Z.
For now, we assume that each of these is a skip
statement and, so, has no effect on action executions.
(These statements are redefined below.)

It is shown in [11] that any execution of the added
actions leads to a state satisfying the predicate (8i, i =
0..r-1, sq[i] = 3). Once this state is reached, sequence
number 0 is propagated (by the fourth action) from the
root to the leaves, then sequence number 1 is propa-
gated (by the first action) from the leaves to the root,
then sequence number 2 is propagated (by the second
action) from the root to the leaves, then sequence
number 3 is propagated (by the third action) from the
leaves to the root, and the cycle repeats.

Third Step. In order to make the root f[0] detect whether

execution of the original actions in f[i : 0..r-1] has

terminated, modify each process f[i] as follows: First,

add to process f[i] the following variable:

var tr[i] : boolean {termination detected}.

Second, modify the statement “S.i.k” in each original
action of process f[i] to become “S.i.k; tr[i] := false,”
where k = 1..n. Third, redefine the two statements X and
Y (that were introduced in the second step) in f[i] to
become as follows:

X: tr[i] := true

Y: tr[i] := (tr[i] ^
(not G.i.1 ^ not G.i.2 ^ ... ^ not G.i.n) ^
(8f[j] neighbor of f[i], pr[j] 6¼ i _ tr[j])
).

Recall that G.i.1, G.i.2, ... , G.i.n are the guards of the

original actions of process f[i].
Because of the second modification, the added

variable tr[i] is assigned the value false whenever
process f[i] executes one of its original actions. Because
of the third modification, variable tr[i] is assigned the
value true whenever process f[i] propagates the sequence

number 1. Also, variable tr[i] is assigned a termination
indication value whenever f[i] propagates the sequence
number 3. The assigned termination indication value is
true iff the following three conditions hold.

1. The current value of tr[i] is already true. This
indicates that process f[i] has not executed any
original action during the time period after f[i]
propagated the sequence number 1 and until it
propagated the sequence number 3.

2. No original action of process f[i] is currently
enabled.

3. For every child f[j] of process f[i] in the spanning
tree, the current value of variable tr[j] is true.

Therefore, the termination indication value assigned to
variable tr[0] is true iff no original action in the f[i : 0..r-1]
system is enabled.

Fourth Step. In order to make the root f[0] detect

termination of the current phase and initiate execution

of the next phase, modify each process f[i] as follows:

First, add to process f[i] the following variable:

var ph[i] : 1..n {current phase of f[i]}.

Also add to process f[0] the following variable:

var t : 0..tmax {time spent in phase n}.

Second, modify the guard “G.i.k” in each original action

of process f[i] to become “G:i:k _ ph½i� � k,” where k =

1..n. Third, redefine the two statements Y and Z (that

were introduced in the second step) in f[i] to become as

follows:

Y: tr[i] := (tr[i] ^
(not (G.i.1 ph[i] � 1) ^ ... ^ not (G.i.(n - 1)
^ ph[i] � n - 1)) ^
(8f[j] neighbor of f[i], pr[j] 6¼ i _ tr[j])
)

Z: if i = 0 ^ (ph[i] < n ^ not tr[i]) �> skip

[] i = 0 ^ (ph[i] < n ^ tr[i]) �>
ph[i] := ph[i]+ 1; t := 0

[] i = 0 ^ (ph[i] = n t < tmax) �> t := t + 1
[] i = 0 ^ (ph[i] = n t = tmax) �> ph[i] := 1
[] i 6¼ 0 �> ph[i] := ph[pr[i]]
fi

Because of the second modification, each process f[i]
cannot execute its kth original action until the value of its
variable ph[i] is at least k. Because of the third
modification, whenever process f[i] propagates the
sequence number 0, it executes statement Z whose effect
depends on the value of i. Executing statement Z in
process f[0] has the following effect: Process f[0] checks
whether the current phase is less than n and whether it
has terminated. If so, f[0] assigns variable ph[0] to its
next value to initiate the next phase. If the current phase
is n, then f[0] keeps this phase for tmax cycles before
changing the current phase to 1. Executing statement Z
in every other process f[i] has the following effect:
Process f[i] assigns its variables ph[i] the value of ph[j],
where f[j] is the parent of f[i] in the spanning tree.

GOUDA: MULTIPHASE STABILIZATION 207

The cost of applying this four-step transformation is
not overwhelming. This transformation adds five
variables (namely, ds[i], pr[i], sq[i], tr[i], and ph[i]) to
each process f[i] in the system and adds a sixth
variable (namely, t) to process f[0]. It also adds seven
actions to each process f[i : 1..r-1] and adds four
actions to process f[0].

8 CONCLUDING REMARKS

In this paper, we presented a new definition of system
stabilization, namely multiphase stabilization, and showed
that this definition is a proper generalization of the
traditional definition of single-phase stabilization. We
argued that it is easier to verify the stabilization properties
of n-phase systems when n is large than when n is small.
We also showed that each n-stabilizing system can be
transformed into a 1-stabilizing system. The proposed
transformation is reasonable, requiring that each process
in the system be enhanced by no more than six variables
and seven actions.

It is instructive to compare multiphase stabilization with
the convergence stairs presented in [10]. In both multiphase
stabilization and a convergence stair, the convergence of a
system (from any state to a specified state) occurs at stages.
However, in the case of multiphase stabilization, different
phases of actions are allowed to execute at each stage,
whereas, in the case of a convergence stair, all actions are
allowed to execute at each stage and, so, convergence is
harder to achieve (and verify) in this case.

It is argued in [2] that the actions of many (1-) stabilizing
systems can be partitioned into closure actions and
convergence actions. Clearly, each such system can be
viewed as a 2-stabilizing system where the convergence
actions belong to phase 1 and the closure actions belong to
phase 2.

Two issues that we have not addresses in this paper
concerning n-stabilizing systems are how to design such
systems, especially when n is relatively large, and what is
the effect of n on the convergence time of such systems.
We believe that these issues are important and merit
investigation.

ACKNOWLEDGMENTS

This work is supported in part by the DARPA contract
F33615-01-C-1901 from the Defense Advanced Research
Projects Agency. It is also supported in part by two IBM
Faculty Partnership Awards for the academic years of 2000-
2001 and 2001-2002, and by a grant from the Texas
Advanced Research Program provided by the Texas Higher
Education Coordinating Board.

REFERENCES

[1] A. Arora and M.G. Gouda, “Closure and Convergence: A
Foundation for Fault-Tolerant Computing,” IEEE Trans. Software
Eng., vol. 19, no. 3, pp. 1015-1027, Mar. 1993.

[2] A. Arora, M.G. Gouda, and G. Varghese, “Constraint Satisfaction
as a Basis for Designing Nonmasking Fault-Tolerance,” J. High-
Speed Networks, vol. 5, no. 3, pp. 293-306, 1996.

[3] Y. Afek and A. Bremler, “Self-Stabilizing Unidirectional Network
Algorithms by Power Supply,” Chicago J. Theoretical Computer
Science, vol. 4, no. 3, pp. 1-48, 1998.

[4] A. Bui, A.K. Datta, F. Petit, and V. Villain, “State-Optimal Snap-
Stabilizing PIF in Tree Networks,” Proc. Third Workshop Self-
Stabilizing Systems, pp. 78-85, 1999.

[5] N.S. Chen, F.P. Yu, and S.T. Huang, “A Self-Stabilizing Algorithm
for Constructing Spanning Trees,” Information Processing Letters,
vol. 39, pp. 147-151, 1991.

[6] S. Dolev and T. Herman, “Super Stabilizing Protocols for Dynamic
Distributed Systems,” Proc. Second Workshop Self-Stabilizing Sys-
tems, published as a technical report, Dept. of Computer Science,
Univ. of Nevada, Las Vegas, pp. 3.1-3.15, 1995.

[7] S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju, “Fault-
Containing Self-Stabilizing Algorithms,” Proc. ACM Symp. Princi-
ples of Distributed Computing, pp. 45-54, 1996.

[8] M.G. Gouda, “The Triumph and Tribulation of System Stabiliza-
tion,” Invited Paper, Proc. Int’l Workshop Distributed Algorithms,
J.M. Helary and M. Raynal eds., pp. 1-18, 1995.

[9] M.G. Gouda and T. Herman, “Adaptive Programming,” IEEE
Trans. Software Eng., vol. 17, no. 9, pp. 911-921, Sept. 1991.

[10] M.G. Gouda and N. Multari, “Stabilizing Communication Proto-
cols,” IEEE Trans. Computers, vol. 40, no. 4, pp. 448-458, Apr. 1991.

[11] F.F. Haddix, “Alternating Parallelism and the Stabilization of
Cellular Systems,” PhD dissertation, Dept. of Computer Sciences,
Univ. of Texas at Austin, 1999.

[12] S. Katz and K.J. Perry, “Self-Stabilizing Extensions for Message
Passing Systems,” Distributed Computing, vol. 7, pp. 17-26, 1993.

[13] S. Kutten and B. Patt-Shamir, “Stabilizing Time-Adaptive Proto-
cols,” Theoretical Computer Science, vol. 220, pp. 93-111, Year?

Mohamed G. Gouda received BSc degrees in
both engineering and mathematics, both from
Cairo University, Egypt. Later, he obtained the
MA degree in mathematics from York University,
Toronto, Canada, and Masters and PhD de-
grees in computer science from the University of
Waterloo, Ontario, Canada. He worked for the
Honeywell Corporate Technology Center in
Minneapolis from 1977-1980. In 1980, he joined
the University of Texas at Austin, where he
currently holds the Mike A. Myers Centennial

Professorship in Computer Sciences. He spent one summer at Bell Labs
in Murray Hill, New Jersey, one summer at the Microelectronics and
Computer Technology Corporation in Austin, and one winter at the
Eindhoven Technical University in the Netherlands. His research areas
are distributed and concurrent computing and network protocols. In
these areas, he has been working on abstraction, formality, correctness,
nondeterminism, atomicity, reliability, security, convergence, and
stabilization. He has published more than 50 journal papers and more
than 170 conference papers. He supervised more than 17 PhD
dissertations. Professor Gouda was the founding editor-in-chief of the
Springer-Verlag journal Distributed Computing from 1985-1989. He
served on the editorial board of Information Sciences from 1996-1999
and he is currently on the editorial boards of Distributed Computing and
the Journal of High Speed Networks. He was the program committee
chairman of ACM SIGCOMM Symposium in 1989. He was the first
program committee chairman of the IEEE International Conference on
Network Protocols in 1993. He was the first program committee
chairman of the IEEE Symposium on Advances in Computers and
Communications, which was held in Egypt in 1995. He was the program
committee chairman of the IEEE International Conference on Distributed
Computing Systems in 1999. He is on the steering committee of the
IEEE International Conference on Network Protocols and is an original
member of the Austin Tuesday Afternoon Club. Professor Gouda is the
author of the textbook Elements of Network Protocol Design, published
by John Wiley & Sons in 1998. This is the first ever textbook where
network protocols are presented in abstract and formal setting.
Currently, he is writing the textbook Elements of Secure Network
Protocols. Professor Gouda is the 1993 winner of the Kuwait Award in
Basic Sciences. He was the recipient of an IBM Faculty Partnership
Award for the academic year 2000-2001 and again for the academic
year 2001-2002. He won the 2001 IEEE Communication Society William
R. Bennet Best Paper Award for his paper “Secure Group Communica-
tions Using Key Graphs,” coauthored with C.K. Wong and S.S. Lam and
published in the February 2000 issue of the IEEE/ACM Transactions on
Networking (vol. 8, no. 1, pp. 16-30).

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

208 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002

