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Abstract 

This paper presents a new family of models of 
distributed-computation which combines features 
from synchronous, asynchronous, and failure-detector- 
augmented systems. Like synchronous systems, 
computation in this family of models evolves in 
rounds, and communication missed at a round is 
lost. Unlike synchronous systems, information that is 
missed at a round does not necessarily imply a real 
process failure. The features of a specific model is cap- 
tured in an abstract module called the round-by-round 
fault detector. The abstraction of system features into 
such a module facilitates the comparison of different 
systems, by contrasting their associated fault detectors. 
We show that this family of models unifies the study 
of synchrony, asynchrony, message-passing and shared 
memory. We further show that this approach leads 
to the development of shorter and simpler proofs of 
important results such as a lower bound on the number 
of rounds to achieve k-set agreement in a synchronous 
system. We believe that studying distributed systems 
through the proposed unifying framework will lead to 
new results and insights. 
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1 Introduction 

For many years, researchers studying synchronous 
message-passing systems have considered algorithms 
composed of rounds of computation. In each round, 
a process sends a message to the others and then waits 
to receive messages from the other processes. The syn- 
chronous nature of the system ensures that, by the end 
of the round, each process receives all messages sent 
to it in that round by correct processes. In the par- 
lance of Elrad and Francez [l] then, each round of a 
synchronous system is a communication-closed-layer. 

Asynchronous message-passing systems are not 
communication closed. However, round-based algo- 
rithms for f-resilient asynchronous systems, in which 
communication-closedness is enforced by discarding 
messages which are late and buffering messages which 
are early, have been developed in the context of the 
asynchronous Byzantine-Agreement problem [2,3]. In 
such algorithms, a process executing a round waits un- 
til it has received at least n - f messages for that round. 
The bound on the number of failures ensures that this 
will not block the algorithm. However, it was not clear 
to researchers whether round-based asynchronous sys- 
tems are equivalent to the ones in which late messages 
are not discarded [3]. 

Researchers turned their attention again to round- 
based asynchronous systems in [4]. There, studying 
the topological properties of system, they referred to 
round-based systems as iterated systems. The moti- 
vation for that name was the fact that the topological 
structure induced by round-based models, is an iter- 
ation of the topological structure induced by a single 
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round. One of the contributions in [4] was the realiza- 
tion for the first time that there is a nicely structured 
iterated model that is equivalent to shared-memory. 

The new idea in this paper is to study round- 
based models and abstract away the implementation of 
the communication exchange between processes, be it 
shared memory, message-passing or any other mech- 
anism. The properties of the communication mecha- 
nisms and system guarantees (such as resilience), are 
captured by a module called the round-by-round fault- 
detector (RRFD). In round r, a process emits its “mes- 
sage” for the round. Each process pi, from the set 
of processes S, communicates with the RRFD and for 
each process pj E S waits until it receives the mes- 
sage emitted by pj at round T, or the RRFD instructs it 
not to wait for such a message, by indicating that pj is 
faulty. When for each process pj, process pi has either 
received pj’s message, or it got an indication that pj is 
faulty, it can then proceeds to the next round. 

As with failure detectors considered elsewhere in the 
literature [5,6,7,8], RRFD’s are unreliuble-they may 
indicate pj at round r as faulty to some processes and 
deliver pj ‘s message to others, as well as indicate pj to 
be faulty in one round, only to deliver a message from 
it in the next round. 

Thus, an RRFD system evolves in rounds. In each 
round each process emits data to all other processors. 
Each process pi receives from the system a set of sus- 
pected processes D(i,r), and the data emitted by a 
subset S(i, r) of the processes. The system guaran- 
tees that S(i,r) U D(i,r) = S. Process pi proceeds 
to the next round and computes new messages to emit, 
based on the data it received and the set D(i, r). RRFD 
systems differ in the predicates over the sets D(;,r) 
(i = l,... (72, r = 0, 1, . . .) that they guarantee. Al- 
though it is always the case that D(i, t-) # S (if one 
interprets D(i,r) as a set of “late” processes, not all 
processes can be late), we do not preclude pi E D(i, T), 
since pi may be late to round r and “learn” that from the 
RRFD. Such a process, though, may “know” the mes- 
sage it sent through its local state at the beginning of 
the round. 

Using this notation, an abstract algorithm using an 
RRFD functions as follows (for pi): 
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r := 1 
forever do 

compute message m;,, for round T 
emit mi,r 
wait until Vpj E S 

received mj,r or 
Pj E m,4 

r-:=1”+1 
end 

An RRFD system satisfying predicate P solves a 
task T if there exist an emit-receive format algorithm 
such that, for any D(i, r) family of sets (pi E S, T > 0) 
that satisfies P, if processes start with inputs from T, 
then eventually, after enough rounds, processes commit 
to outputs that satisfy T’s input/output requirements. 

This way of viewing a fault detector contrasts with 
earlier research withfailure detectors [5,6, 7, 81. That 
research considered a fixed (asynchronous) system in 
which failures were “unannounced” and difficult to de- 
tect. A failure detector is used to augment these systems 
by “announcing” (perhaps unreliably) which processes 
were faulty. That work viewed a failure detector as a 
“helpful” entity. In contrast, this paper defines a system 
based on the round-by-round fault detector to which it 
corresponds. There is no notion of “augmenting” a sys- 
tem by a failure detector, but rather it is an integral part 
of the system. It is for this reason that the fault-detector 
may be considered in-fact to be an adversary. The more 
freedom the RRFD has to present different sets of faulty 
processes, the more power it has and the harder it will 
be to solve problems in the corresponding system. 

The remainder of the paper is organized as fol- 
lows. Section 2 presents many traditional systems in 
the RRFD framework. Section 3 shows how RRFD’s 
can be used to study traditional problems in distributed 
computing. It proposes an RRFD system that is equiv- 
alent to a system that has an access k-set agreement 
object. Section 4 shows how RRFD’s can be used to 
relate synchronous and asynchronous systems by prov- 
ing a theorem that relates the solvability of problems in 
an asynchronous system to the existence of a bounded 
solution in a synchronous system (under certain failure 
bounds). A corollary of this result shows how asyn- 
chronous impossibility results [9, 10, 11, 121 can be 
used to give direct proofs of synchronous lower bounds 
[13, 141. Section 5 shows how the semi-synchronous 
model of Dolev, Dwork, and Stockmeyer [15] can be 
understood in terms of RRFD’s and uses this to solve 
an open problem in that model. Related work is con- 



sidered in Section 6, and concluding remarks appear in 
Section 7. 

2 Examples of RRFD systems 

This section shows how a variety of traditional systems 
may be thought of in terms of round-by-round fault de- 
tectors. 

Let PA be the predicate defining an RRFD system 
A, and let PB define an RRFD system B over the same 
number of processes. We say that A is a submodel of 
B iff PA + PB. Obviously, if A is a submodel of B 
then A can be used to implement B. (By “implement”, 
we mean that an algorithm can be devised by which an 
RRFD system with A can simulated such a system with 
B. If A is a submodel of B, then a trivial algorithm 
suffices.) The converse does not hold. An RRFD sys- 
tem A may implement an RRFD system B and not be 
a submodel of B. 

This paper proposes to investigate systems by find- 
ing their RRFD counterparts. The RRFD counterparts, 
being part of the same family, bring forth the common- 
alities and the differences between the systems. There 
are many possibilities for choosing an RRFD conterpart 
of a given system. There are some questions one may 
ask about the conterpart of a non-RRFD system N: 

1. 

2. 

3. 

Find an RRFD system M such that M and N are 
equivalent, in the sense that they implement each 
other. 

Given a system N are there weakest and strongest 
RRFD systems Qw and Qs, respectively, equiva- 
lent to N, such that any RRFD system Q equiv- 
alent to N, Q is a submodel of Qw and Qs is a 
submodel of Q. 

Find an RRFD system M that corresponds to N 
in the sense that is equivalent to N, but in addition 
“resembles” N the most. We did not yet find a 
definition of this notion that is satisfactory to us. 

What follows is rather informal discussion of RRFD 
systems that “correspond” to well known non-RRFD 
models of interest. 

1. System N is a synchronous message-passing sys- 
tem with at most f < n processes that may fail by 
send-omission. 

The RRFD system A we propose is 

(~PiNWPi 6 ~(G-))MJr>0 up&9 qe)I I f. 
(1) 
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2. 

3. 

System N implements A by process pi designat- 
ing D(i,r) as the set of processes from which it 
failed to receive an r-round message by the end 
of the rth round. System A implements N, by pi 
simulating the reception of the clock-tick when it 
is ready to move to the next round. 

System N is a synchronous message-passing sys- 
tem with at most f faulty processes that fail by 
crashing. 

The RRFD system A we propose satisfies predi- 
cate 1 and, in addition 

(2) 
It is thus explicit in the model definition that the 
crash-fault model is a sub-model of the send- 
omission-fault model. 

System N is an asynchronous message-passing 
system with at most f crash-failures. 

The RRFD system A we propose satisfies 

(VT > O)WPi E WI~Wl 5 f). (3) 

Note the differences between this and predicate 1. 
The synchronous system ensures that the union of 
all D(i, r) has size at most f. The asynchronous 
system makes a guarantee only on a set-by-set ba- 
sis (this can be improved to a round-by-round ba- 
sis; see below). 

System N implements A by simulating rounds, 
discarding messages that have been missed, and 
buffering messages which are too early. Each 
round a process waits until it receives n - f mes- 
sages of the round. To see that system A imple- 
ments N, run A in full information mode. When 
process pi receives a round r message at round T 
from pj it can recreate all the simulated messages 
it missed from pj since the last round it received a 
message from pj. It can thus simulate their FIFO 
reception at that moment. Thus this simulation 
maps the runs (and views) of the RRFD system A, 
to (a subset of) runs of system N. Consequently 
A implements N. 

To appreciate the difficulties one may encounter in 
explicitly identifying a weakest RRFD for certain 
systems, notice that contrary to intuition A is not 
weakestforNifn > 2ff2. Iff < tand2t <n, 
an RRFD system can allow t processes to miss t 



other processes. Formally, consider an RRFD sys- 
tem B that satisfies: (El& C 5’) (I&I 5 t A (Vpi E 
S-Q)W(+)l I fN’~i E QW(O-)I 5 4. 
Two rounds of B implement a round of A (and 
thus N). Obviously, A is a strict sub-model of B. 

4. System N is an asynchronous SWMR shared 
memory system with at most f crash-faulty pro- 
cesses. 

In this system we have an array of registers 
Cl,... , C,. Process pi repeatedly writes into Cj 
and then reads all the other variables in some ar- 
bitrary order until it reads at least n - f values it 
did not read before. It is surprisingly difficult to 
find a natural explicit predicate (rather than spec- 
ifying the predicate by a state machine) that cap- 
tures N. This indicates to us that our understand- 
ing of this ubiquitous system is operational rather 
than declarative. Among many choices we settled 
for an RRFD system A that satisfies predicate 3 
and, in addition 

This predicate says that, in any round, there is 
at least one process that is declared faulty to no 
process. Being a sub-model of the RRFD sys- 
tem in item 3, it has at least as much power. 
But we avoid the “network-partition” problem that 
message-passing with 2f 2 n encounters. For in- 
stance, to emulate pi's write operation of a value 
21 to its register, run A in a full-information mode 
where pi indicates it is writing ‘u. At the round that 
all messages received in A by pi reflect the fact 
that of TJ being written in the simulated system N, 
pi may terminate the simulated writing operation. 
In the subsequent round any process will know of 
u. To see that N implements A, notice that the first 
process to write will be read by all. 

To see the implementation of shared-memory by 
message-passing [23] in the context of RRFDs, 
notice that, if 2f < n, then two rounds of the 
RRFD system in item 3 implement a round of A. 
(In the second round each process emits the set of 
correct processes it heard from in the first round. 
The simulated set D(i, V) is the set of processes pi 

has not heard of by the end of the second round. 
The reason predicate 4 is satisfied is that since in 
the first round all heard from a majority, there must 
be at least one process that was heard by majority. 

5. 

6. 
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All processes will receive the value of such a pro- 
cess by the end of the second round.) 

As for being a weakest RRFD, notice that shared- 
memory also satisfies (Vpi, pj)(pj E D(i, r) * 
pi $! O(j, r)). But notice that this predicate does 
not imply predicate 4 since we can have pl miss 
p’~ that misses ~3, etc. until pn misses pl. Thus, 

at the least we need to take the conjunction of the 
two predicates. 

To see that the RRFD with this predicate is an 
alternative to predicate 4, notice that, if after rE 
rounds no processor is known by all, then the 
“does not know” relation must contain a cycle, 
since we have a directed graph in which each pro- 
cess has at least one outgoing edge, corresponding 
to the “does not know” relation. Information is 
passed on the cycle in the reverse direction in all 
k rounds. Thus a cycle must be of length at least 
k+ 1. Consequently, after n rounds there cannot be 
a cycle. (We conjecture that two rounds suffice.) 

System N is an asynchronous Atomic-Snapshot 
shared-memory system with at most f processes 
that may fail by crashing. This system is similar 
to that in item 4 except that the array is written 
and scanned using atomic-snapshot operations. 

This system has a natural RRFD system A that 
corresponds to N. Its predicate satisfies predi- 
cate 3 and, in addition 

Showing that this RRFD implements f-resilient 
Atomic-Snapshot shared-memory is a simple 
corollary of [4]. 

Notice that this predicate (with 3) implies 
(b)(UpiE~)D(i,r) < f). This still differs from 
synchronous systems in that the union is not over 
all rounds. This changes if a traditional failure de- 
tector is used, as the next item shows. 

System N is an asynchronous message-passing 
system with traditional failure detector S [6]. 

In this asynchronous system all but one (a-priori 
unknown) process may fail. The system is aug- 
mented with a failure detector that eventually an- 
nounces any “real” crash, and never announces, 
as faulty, one process that never fails. Other pro- 
cesses may or may not be announced as faulty. 



The RRFD system that will naturally correspond 
to S is the one that satisfies: 

(3 Pj) (Pj $ ur>o Up,&5 W?-))~ 

(Processes use the failure detector S to advance 
from one round to the next. Thus, O(i,r) is the 
value that allows pi to complete round r.) This 
specification needn’t include the fact that every 
faulty process must be announced by S eventu- 
ally. This comes “for free” when using an RRFD 
system. If a process really crashes and is not an- 
nounced, the system will block, and thus vacu- 
ously implement the asynchronous system with S. 

We next notice that an equivalent predicate is: 

which corresponds item 1 (with f = n - 1). Thus 
we have reduced the existence of a wait-free algo- 
rithm for S to the existence of algorithm for con- 
sensus in item 1, just by predicate manipulation. 

3 RRFD’s and k-Set Agreement 

RRFD’s can be studied in relation to classical problems 
in distributed computing. This section focuses on the 
problem of k-set agreement [24]. This problem requires 
each of a collection of n > k processes to choose a 
value that is the initial value of one of the processes; at 
most k different values can be chosen. Note that, for 
k = 1, this is the traditional consensus problem. 

The following fault-detector 

is the one we propose to capture k-set agreement. The- 
orem 3.1 shows that this RRFD system can implement 
k-set agreement. Theorem 3.3 shows that any system 
that can implement k-set agreement (and shared mem- 
ory) can implement this RRFD. 

Before proving this, consider the nature of this fault 
detector. In each round, the number of processes de- 
tected by some process but not by all is less than k. 
Thus, this imposes a bound on the “uncertainty” exhib- 
ited by the fault detector. For k = 1, this means that the 
fault detectors at different processes cannot disagree. 
The results of this section clearly quantify the intuition 
that, the weaker the problem to be solved (i.e., the larger 
k is), the weaker the system can be (as measured by its 
RRFD). 

Theorem 3.1 The problem of k-set agreement can be 
solved with a detector supporting the following: 

Proof Using this detector, k-set agreement can be 
solved in one round. A process pi emits its value and 
chooses the value of the process in S - D(i, 1) with 
the lowest process identifier. If ~1,712 are two chosen 
values corresponding to pi < p2 then it implies that pl 
is in the union of the faulty sets (some process chose 
pa) but not in the intersection (some process chose pl). 
Since the size of the union minus the intersection is less 
then k, it implies that at most k distinct values can be 
chosen. 

An immediate corollary of Theorem 3.1 is the fol- 
lowing result of Chaudhuri [24]. It follows since 
(k - 1)-resilient shared-memory implements (k - 
1)-resilient Atomic-Snapshot, and the corresponding 
RRFD predicate of item 5 implies the predicate of The- 
orem 3.1. 

Corollary 3.2 k-set agreement can be solved in an 
asynchronous shared-memory system with at most k - 1 
failures. 

Section 5 shows how a partially synchronous system 
defined by Dolev, Dwork, and Stockmeyer [15] can be 
used to implement the failure detector of Theorem 3.1 
with k = 1, thus giving a solution to consensus. 

The following theorem shows that a system that can 
solve k-set agreement can implement the RRFD above. 

Theorem 3.3 Suppose that a system allows a solution 
to the problem of k-set agreement and also that the sys- 
tem can implement SWMR shared-memory. Then the 
system supports a detector with the following property: 

Proof To emit a value at round T a process appends 
it value (together with sequence-number r) to its cell. 
To compute the values D(i,r), the processes run a k- 
set agreement algorithm, each using its identifier as in- 
put. Suppose that a process pi receives j as its output 
in round T. It then writes j to its cell and reads the rest 
of the cells. It reads the set Q of process identifiers (as 
well as I for the processes that have yet to write). The 
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process then uses S - Q as its value of D(i, r). Obvi- 
ously, it can read emitted values for Q at round r, since 
these process already participated in the round. 

Notice that two sets D(i,r) and D(j,r) can differ 
only on processors IDS that were chosen through the 
k-set agreement algorithm (all other processes are in 
both sets). Thus, the difference in the union minus the 
intersection is bounded by k. But since all of them 
will exclude the chosen identifier that was written first 
to a SWMR variable, if follows that the difference is 
bounded by k - 1. 

0 

4 Relating Synchronous and Asynchronous Sys- 
tems 

This section shows how RRFD’s can be used to relate 
synchronous and asynchronous systems. Specifically, it 
shows that an Atomic-Snapshot asynchronous system 
with at most k crash-failures can implement the first 
[f/kJ rounds of synchronous system with f omission 
or crash faults. This can be used to prove the result of 
Chaudhuri et al. [ 131 that there is no [f/k] -round algo- 
rithm for k-set agreement for the latter (synchronous) 
system. The existence of such an algorithm combined 
with the results of this section would imply the exis- 
tence of an asynchronous algorithm for k-set agreement 
that tolerates k failures, which is known to be impossi- 
ble [9, 11, 121. (For the special case of k = 1, this 
means that the impossibility result of Fischer, Lynch, 
and Paterson [lo] implies the lower bound of Fischer 
and Lynch [ 141.) 

The result is given in two sections. Section 4.1 
proves the result for send-omission failures in the syn- 
chronous systems. The proof is by simple reduction in 
the context of RRFD systems. Section 4.2 strengthens 
the results to systems with crash failures. 

The simple reduction of the omission-fault lower 
bound to the asynchronous impossibility result was not 
observed earlier since researchers tend to think of syn- 
chronous and asynchronous systems as living in differ- 
ent domains. Once observed, it suggests that the reduc- 
tion can be extended to crash faults via the omission- 
crash transformers suggested in [ 161. Thus the value of 
the RRFD framework is in its ability to suggest connec- 
tions, previously overlooked. Once such a connection 
is made, the technical details do not require high level 
of ingenuity. 

4.1 Send-Omission Failures 

An RRFD systems a system A implements B if by 
combining some rounds of A to simulate a round of B 
we can simulate the messages emitted at the round and 
implement a predicate that implies B’s RRFD predi- 
cate. 

Theorem 4.1 Consider integers f and k such that f 2 
k > 0. Asynchronous RRFD Atomic-Snapshot shared- 
memory system (item 5’) with at most k failures, can 
implement the first [f /kJ rounds of an RRFD mes- 
sage passing system with at most f omission failures 
(item 1). 

Proof Consider an RRFD asynchronous Atomic- 
Snapshot shared-memory system with at most k fail- 
ures. Consider an execution of this system for [f /kJ 
rounds. We will map a fault in the RRFD asynchronous 
system to a fault in the synchronous one. 

Item 5 implies that this system supports a detector 
with the following property: 

(v’r > 0) (Iu,,dW-)I I k). 

Thus, the RRFD has the following property: 

This matches the property of the RRFD for a syn- 
chronous system with at most f omission-failures over 
[f/k] rounds. 0 

Corollary 4.2 Any solution to k-set agreement in a 
synchronous system with at most f omission failures 
requires at least Lf /kj + 1 rounds in the worst case. 

Since this section is more of an exposition, we leave 
the proof of the Corollary to the next subsection where 
the result is extended to the more benign crash faults. 

4.2 Crash Faults 

This subsection adds some simple machinery needed 
to extend the results of the previous subsection from 
omission failures to crash failures. The techniques are 
similar to those developed by Neiger and Toueg [ 161 to 
convert synchronous algorithms tolerant of crash fail- 
ures into ones tolerant of omission failures. Since we 
failed to find a ready-made off-the-shelf transformation 
that we can borrow from [16], and in order to make 
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the paper self-contained, we will represent and utilize a 
simplified adopt-commit protocol that is introduced in 
P71. 

The machinery we add is an adopt-commit protocol. 
Process pi inputs to the protocol a value ‘ui it proposes. 
The output of pi in the protocol is to commit or adopt 
some input value Y. The relation between the output of 
processes should satisfy: 

1. If vj = v, for all j = 1,. . . , n, then all processes 
commit to v. 

2. If any process commits to v then all processes 
commit or adopt v. 

The following protocol solves the adopt-commit 
problem in a wait-free manner (i.e. f = n - l-resilient 
) in the SWMR shared memory system. The protocol 
for pi follows. We have two arrays Cl,l, . . . , Cn,l and 
Cl,27 * * * , Cn,2 of SWMR registers initialized to I: 

begin 
write vi to CQ 
V := lJj,l,..., n read Cj,l 
ifV - {I} = {v} 

then 6’~ := “commit v” 
else CQ := “adopt vi” 

v := Uj=l,...,n read Cj,2 
if V - {I} = {“commit v”} 

then return commit v 
else if “commit v” E V 

then return adopt v 
else return adopt vi 

end 

The correctness of the protocol follows from the fact 
that if pi writes “commit u” in the second round, then 
no other process will write “commit b”, b # a, since the 
value pi proposes to commit to in round 2 has to be the 
same as the value written first in round 1. In round 2, 
if a processor commits to v it must be that “commit v” 
was the value written first, and thus all processors will 
either commit or adopt v. 

Theorem 4.3 Theorem 4.1 holds when the RRFD for 
omission faults is replaced by the RRFD for crash 
faults. 

Proof We show first how to implement a round of the 
synchronous system B using three rounds of the asyn- 
chronous one A. 

To simulate round T of system B, inductively, pi has 
computed a simulated value VQ to write for simulated 
round r. It has also a set of processes Fi that it pro- 
poses to have crashed, which is empty at the beginning 
of round 1. Round r of system B will be simulated by 
3 rounds of system A. 

In the first round of A, pi writes v+ for round r. It 
then reads in a snapshot until the number of values it 
misses is less or equal to k. Let k$ be set of processes 
whose values pi missed. Process pi sets F! := Fi U 

Mi. In round 2 and 3 processors run n adopt-commit 
protocols in parallel, one for each process pj E S. If pj 
in Fi, the input of pi in the adopt-commit protocol for 
pj is “pj-faulty”, else “pj-alive” (if it uses “pj-alive”, 
then it includes the value it received from pj). 

At the end of the adopt-commit protocol for pj, if pi 
either commits or adopts “pj-faulty”, then it adds pj to 
Fi. If pi commits to “pj-faulty,” it returns .L for the 
value from pj in simulated round r. Otherwise, it must 
have read, in the adopt-commit protocol, another pro- 
cess that proposed “pj-alive”. This proposal includes 
pj’s value for the round, and this value is used by pi as 
pj ‘S value for round r. 

The correctness of the simulation follows. A process 
pj will appear to fail in a round r only if some process 
commits it as faulty. Since all processes consequently 
will adopt or commit “pj-faulty” at round T, pj will be- 
long to all Fi ‘s at the beginning of round T + 1. They 
will all propose to fail it at round r + 1 and thus all will 
commit to its faultiness at round T + 1 and subsequent 
rounds. 

Since each simulated round introduces at most k 
new processes to lJi Fi, by the end of simulated round 
[f/k], at most f processes failed in the simulated syn- 
chronous system. 

cl 

The corollary to this theorem is the result of Chaud- 
huri et al. [13]. 

Corollary 4.4 Corollary 4.2 holds with crash-faults 
RRFD replacing the send-omission RRFD. 

Proof Use the simulation of Theorem 4.3 to simulate 
an algorithm. A process pi that ends with a view after 
simulating round [f /k j in which it is committed to pi 
(itself) faulty, does not end up with a simulated view 
that allows it to chose a value. But if pi did not pro- 
pose itself faulty at the beginning of round [f/k], even 
though it ended up committed to its failure, the process 
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is still compatible with an alive process, since no pro- 
cess failed it in previous rounds. Thus we have only 
at most k( 1flk-j - 1) processes that have not chosen a 
value. But since n > f, we have n-k( [f/k] -1) > k. 

Suppose k-set agreement is solvable in A in [f/k] 
rounds, then after the simulation, processes whose 
output is “I crashed” can adopt a value from a process 
with a real output value, since the system is k resilient 
and at least k + 1 processes have real outputs. The 
result is k-set agreement in an asynchronous system 
that is k-resilient, in contradiction to [9, 11, 121. 0 

5 Semi-Synchronous Systems 

Dolev, Dwork, and Stockmeyer [15] considered sys- 
tems that varied five different parameters and explored 
their ability to solve consensus. This section focuses on 
one of their models, specifically one with the following 
properties: 

There are no bounds on the relative speeds of pro- 
cesses (i.e., the processes are asynchronous). 

Processes fail by crashing. 

Processes perform a sequence of steps. Each step 
consists of receiving all messages that have been 
buffered by the communication subsystem since 
the last step and then broadcasting a message. In 
this particular model, such a step is atomic. 

The communication system supports broadcast: if 
process q receives message m from p, then all cor- 
rect processes do so. 

Every message sent is delivered before any pro- 
cess can take A steps. 

They showed that consensus is possible in this sys- 
tem by giving an algorithm that runs in 2nA steps. 
They left as an open problem whether or not there was 
an O(A)-time algorithm. 

This section proves that this system admits a solu- 
tion that runs in 2A steps. It is done by showing that 
this system supports the RRFD given in Theorem 3.1 
with k = 1 (thus allowing a consensus algorithm) and 
2A steps per round. This RRFD is identified by the 
following property: 

(v’r > O)@‘P~,P~ E S)(D(G-) = 0(&r)). (5) 

Since the proof of Theorem 3.1 gives a one-round algo- 
rithm, there is an algorithm that runs in 2A steps. 

The following describes how the RRFD given in 
equation 5 can be implemented in 2A steps. A pro- 
cess’s execution occurs in blocks of 24 steps. If a 
process receives a round-r message before sending its 
own, then it sends no further messages (acting as if it 
has omitted to broadcast), although it continues to re- 
ceive message from the others. Otherwise, it broadcasts 
its round-r message, tagging it with the round number. 
Notice that, in a sense, we use the first receive-send in a 
round as an atomic read-modify-write. If the “receive” 
returns no round-r messages, then a round-r message is 
broadcast, otherwise it is not. At the end of a round r, 
process pi takes D(i, r) to be the set of processes from 
which it does not receive round-r messages. 

Theorem 5.1 The RRFD described for the semi- 
synchronous system supports equation 5. 

Proof For any process p,,, let T,, denote the time 
that P,, executes its first receive/send for round T. 
Let pi be the first process to execute a receive/send 
at round r and let pj be any process that broadcasts 
a round r message. We will show, that any process 
pk will receive a message from pj in round r. By 
definition, TJ 2 Ti, and Tk 2 Ti. Since pj did not 
receive pi’s message of round T before pj started 
round T, we conclude Tj 5 Ti + A(k), where A(k) 
denotes the time of any consecutive A steps by pk. 
Thus, Tj 2 Tk + A(k). Since receive/send is atomic 
we conclude that pk by the end of round r at time 
Tk + 2A(k) would have received the message send at 
Tj. In particular, it will receive the message sent by 
pJ. Thus the semi-synchronous RRFD system satisfies 
equation 5. 0 

6 Related Work 

Unification of synchrony and asynchrony in limited do- 
main has in the past been proposed by Awerbuch with 
his celebrated synchronizer [18]. Awerbuch was able 
to show that if no faults are expected synchrony and 
asynchrony are the same. The two systems implement 
each other. A decade later, in 1993, Chaudhuri, Her- 
lihy, Lynch and Tuttle [ 131 showed that, with a combi- 
nation of techniques most of which resemble the topo- 
logical arguments that established impossibility of set- 
consensus in the asynchronous domain, one can estab- 
lish a lower bound in the synchronous case. 
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Recently, [4] introduced the idea of taking a 
model and defining its iterated version, forcing 
communication-closedness. This gave rise to the ideas 
in this paper. The similarity between the iterated ver- 
sion of the asynchronous model and the synchronous 
one suggested the possibility of deriving a lower bound 
in the synchronous case by reduction from impossibil- 
ity result in the asynchronous case. 

Herlihy, Rajsbaum, and Tuttle, in a paper in this 
proceedings [ 191, were influenced in another direction. 
They considered, in the words of [4], the model of it- 
erated message passing. They characterized the struc- 
ture of one-shot message-passing as a pseudo-sphere, a 
simple structure whose iteration is the structure itself. 
Using explicit topological arguments they were able to 
derive the synchronous lower bound, and extend it be- 
yond our work to the semi-synchronous model in [20]. 
However, their results apply solely to message passing- 
systems. 

7 Conclusions and Future Work 

This paper presented a framework, RRFD, that uni- 
fies the most seemingly unrelated notions in distributed 
computing-synchrony and asynchrony. It has estab- 
lished the case for the framework by showing that it 
is a bridge that draws attention to the similarities be- 
tween the models, and how results in one model may 
be transferred to the other. Moreover, these models 
are not only of theoretical interest. We advocate us- 
ing them. We propose them as a setting to develop real 
algorithms. As with programming languages, restric- 
tions imposed on the programmer in the form of adher- 
ing to communication- closed-layers may be a blessing. 
It forces the programmer to a line of design that will re- 
sult, we hope, in simple structured algorithms [21]. 

Future immediate work, which we hope to add to 
the full version of the paper, is the extension of the re- 
duction to the semi-synchronous model in [20]. Essen- 
tially, our contention is that, by favoring reduction to di- 
rect topological arguments, there are very few instances 
of problems that one needs explicit topology. The use 
of explicit topology is analogous to proving a problem 
NP-complete by a direct reduction to Turing-Machine 
computation as done with Satisfiability, rather then by 
reduction to a similar problem. In fact, there may ex- 
ist a small family of impossibility results, so that any 
impossibility or lower bound result in the distributed 
domain may be derived from them by reduction. 

Finally, it will be interesting to show that in a pre- 

cise sense RRFD generalizes the earlier notion of fault- 
detector [5,6,7,8], and re-derive the associated results. 
Such an investigation will be an instance of the general 
investigation as to what kind of systems can be imple- 
mented given a restricted language in which an RRFD 
predicate may be stated. 
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