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Abstract. This work considers the problem of performingt
tasks in a distributed system ofp fault-prone processors. This
problem, calleddo-all herein, was introduced by Dwork,
Halpern and Waarts. The solutions presented here are for the
model of computation that abstracts a synchronous message-
passing distributed system with processor stop-failures and
restarts. We present two new algorithms based on a new ag-
gressive coordination paradigm by which multiple coordina-
tors may be active as the result of failures. The first algo-
rithm is tolerant off < p stop-failures and does not allow
restarts. Its available processor steps (work) complexity is
S = O((t+ p log p/ log log p) · log f) and its message com-
plexity isM = O(t + p log p/ log log p +fp). Unlike prior
solutions, our algorithm uses redundant broadcasts when en-
countering failures and, forp = tand largef , it achieves better
work complexity. This algorithm is used as the basis for an-
other algorithm that tolerates stop-failuresand restarts. This
new algorithm is the first solution for thedo-all problem that
efficiently deals with processor restarts. Its available proces-
sor steps isS = O((t+ p log p+ f) ·min{log p, log f}), and
its message complexity isM = O(t + p log p + fp), where
f is the total number of failures.
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1 Introduction

Achieving efficient distributed solutions for specific problems
depends on our ability to effectively exploit parallelism in a
system consisting of multiple processors. This is often chal-
lenging because the set of processors available to a computa-
tion may dynamically change. Such changes may occur due
to processor failures or processors becoming unavailable dur-
ing periods when they are required to perform other unrelated
tasks, or due to repaired or idle processors joining the com-
putation already in progress. A basic problem that can read-
ily benefit from adaptively parallel solutions is the problem
of performing a number of similar, independent and idempo-
tent tasks. By the similarity of tasks we mean that the task
executions consume equal or comparable resources. By the
independence of the tasks we mean that the completion of
any task does not affect any other task. By the idempotence
of the tasks we mean that each task can be executed multiple
times or concurrently without negatively impacting the final
result. Examples of such problems are checking all the points
in a large solution space, trying to generate a witness or re-
fute its existence, or simply performing a number of similar
independent calculations.

Here we consider the abstract problem of performingt
tasks in a synchronous message passing distributed environ-
ment consisting ofp processors, which are subject to failures
and restarts. Failures are crash failures, i.e., a faulty processor
stops and does not perform any further actions. Restarted pro-
cessors resume computation in a predefined initial state, i.e.,
no stable storage is assumed. We refer to such a problem as
thedo-all problem.

Algorithmic solutions for thedo-all problem in the
message-passing models of computation can be evaluated ac-
cording to their computational effectiveness that measures the
number of computation steps taken in performing the tasks,
and according to their communication efficiency that mea-
sures the amount of communication needed to perform the
tasks. Dwork, Halpern and Waarts [6], the first to consider the
do-all problem, use aworkmeasure defined as the number of
tasks executed, counting multiplicities, to assess the compu-
tational efficiency. This work measure accounts only for steps
taken by processors while executing the tasks of thedo-all
problem; processor steps taken for coordination or waiting
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S: available processor steps M : message complexity

No [5] O(t + (f + 1)p) O((f + 1)p)
restarts [7] O(t + (f + 1)p) O(fpε + min{f + 1, log p}p)
(f < p) AN O((t + p log p/ log log p) log f) O(t + p log p/ log log p + fp)

Restarts
(f < p+r)

AR O((t + p log p + f) ·min{log p, log f}) O(t + p log p + fp)

Fig. 1.Efficiency of the solutions in [5, 7] and algorithms AN and AR (the solutions in [6] consider a different notion of work complexity and
focus on evaluation of effort)

for messages are not counted. Another measure of work, the
available processor steps, defined by Kanellakis and Shvarts-
man [10], takes into account all steps taken by the processors,
that is, both steps taken in executing thet tasks and any other
steps, including idling, taken by the available processors. Thus
the available processor steps measure [10] is more conserva-
tive than the work measure of [6]. LetW (t, p) be the work
complexity andS(t, p) be the available processor steps com-
plexity of somedo-all algorithm in some failure model. It
is always the case thatW (t, p) = O(S(t, p)), sinceS(t, p)
counts the idle/wait steps, which are not included inW (t, p).
The equalityW (t, p) = S(t, p) can be achieved, for example,
by algorithms that perform at least one task during any fixed
time period. In our work we use the available processor steps
measure.

Communication efficiency is gauged using the message
complexity that accounts for the number of messages sent dur-
ing the computation, or, when the messages substantially vary
in size, using the bit complexity that accounts for the num-
ber of bits sent. When processors communicate using broad-
casts (multicasts), it is possible to measure the communication
complexity either in terms of the total number of broadcast
messages, or in terms of the number of messages destined
to all recipients targetted by the broadcasts. In this work we
use the more conservative communication complexity mea-
sure by taking into account all messages created as the result
of a broadcast. For example, we count a single broadcast top
processors asp messages.

Dwork et al.also use theeffort complexity, defined as the
sum of the work and message complexities. This approach
makes sense for algorithms for which the work and the mes-
sage complexities are similar. However, this makes it diffi-
cult to compare relative efficiency of algorithms that exhibit
varying trade-offs between the work and the communication
efficiencies. De Prisco, Mayer and Yung [5] evaluatedo-all
algorithms using a “lexicographic” criterion: first evaluate an
algorithm according to its available processor steps and then
according to its message complexity. This approach assumes
that optimization of the computational steps is more important
than that of the message complexity. In this paper we consider
the available processor steps, denoted byS, and the message
complexity, denoted byM , as twoindependentmeasures of
efficiency of algorithms.

It is not difficult to formulate trivial solutions todo-all in
which each processor performs each of thet tasks. Such solu-
tions haveS = Ω(t(p+r)), wherer is the number of restarts,
and they do not require any communication. Solutions that
achieve better efficiency inS trade messages for computation
steps.

Review of prior work

Algorithms solving thedo-all problem have been provided
by Dwork, Halpern and Waarts [6], by De Prisco, Mayer and
Yung [5], and by Galil, Mayer and Yung [7]. These determin-
istic algorithms are formulated for failure models that allow
processor failures but disallow processor restarts. The point-
to-point messaging between non-faulty processors is assumed
to be reliable. In a synchronous system with these assumptions
processor failures are detectable, for example using a timeout,
and such processors are modeled using thefail-stop processor
abstraction of Schlichting and Schneider [15].

Dwork, Halpern and Waarts [6] developed the first algo-
rithms for thedo-all problem. One algorithm presented in [6]
(protocolB) has effortO(t + p

√
p), with work contributing

the costO(t+ p) towards the effort, and message complexity
contributing the costO(p

√
p). The running time of the algo-

rithm is O(t + p). The algorithm uses the synchrony of the
system to detect failures by means of time-outs. In this algo-
rithm thet tasks are divided into chunks and each of these is
divided into subchunks. Processors checkpoint their progress
by multicasting the completion information to subsets of pro-
cessors after performing a subchunk, and broadcasting to all
processors after completing chunks of work. Another algo-
rithm in [6] (protocolC) has effortO(t + p log p). It has op-
timal work of O(t + p), message complexity ofO(p log p),
and timeO(p2(t + p)2t+p). Thus the reduction in message
complexity is traded-off for a significant increase in time. Yet
another algorithm of [6] (protocolD) obtains work optimal-
ity and is designed for maximum speed-up, which is achieved
with a more aggressive checkpointing strategy, thus trading-
off time for messages. The message complexity is quadratic
in p for the fault-free case, and in the presence of a failure
pattern off < p failures, the message complexity degrades to
Θ(f p2).

De Prisco, Mayer andYung [5] present an algorithm which
has the available processor stepsO(t + (f + 1)p) and mes-
sage complexityO((f + 1)p). The available processor steps
and communication efficiency approach requires keeping all
the processors busy doing tasks, simultaneously controlling
the amount of communication. Their algorithm operates as
follows. At each step all the processors have an overestimate
of the set of all the available processors. One processor is de-
signed to be the coordinator and is responsible for the progress
of the computation. It allocates the outstanding tasks accord-
ing to some allocation rule and waits for notifications of the
tasks which have been performed. The coordinator changes
over time. To avoid a quadratic upper bound forS substantial
processor slackness (p 	 t) is assumed.
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Another efficient algorithm was developed by Galil, Mayer
and Yung [7]. Working in the context of Byzantine agreement
with stop-failures (for which they establish a message-optimal
solution), they improved the message complexity of [5] to
O(fpε+min{f+1, log p}p), for any positiveε, while achiev-
ing the available processor steps complexity ofO(t+(f+1)p).

In [5] a lower bound ofΩ(t+(f+1)p) for algorithms that
use the stage-checkpointing strategy is proved, this bound be-
ing quadratic inp for f comparable withp. However there are
algorithmic strategies that have the potential of circumvent-
ing the quadratic bound. Consider the following scenarios.
In the first one we havet = o(p), f > p/2, and the algo-
rithm assigns all tasks to every processor. ThenS = O(pt) =
o(t + (f + 1)p), becausefp = Θ(p2). This na¨ıve algorithm
has a quadraticS for p = O(t). In the second example as-
sume that the three quantitiesp, t andf are of comparable
magnitude. Consider the algorithm in which all the proces-
sors are coordinators, execution of tasks is interleaved with
communication, and the outstanding tasks are evenly allo-
cated among the live processors based on their identifiers.
The tasks allocation is done after each round of exchang-
ing messages about which processors are still available and
which tasks have been successfully performed. One can show
that S = O(p log p/ log log p). This bound iso(t + (f +
1)p) for f > p/2 and t = p. Unfortunately the number
of messages exchanged is more than quadratic, and can be
Ω(p2 log p/ log log p). These examples suggest a possibility
of performance better thanS = O(t + (f + 1)p), however
the simple algorithms discussed above have either the avail-
able processor steps quadratic inp, or the number of messages
more than quadratic inp in the case whenp, t andf are of the
same order. One interesting result of our paper is showing that
an algorithm can be developed which has both the available
processor steps which is always subquadratic, and the number
of messages which is quadratic only forf comparable top,
even with restarts.

Previous deterministic algorithms are designed so that at
each step there is at most one coordinator; if the current co-
ordinator fails then the next available processor takes over,
according to a time-out strategy. Having a single coordinator
helps to bound the number of messages, but a drawback of
such approach is that any protocol with at most one active
coordinator is bound to haveS = Ω(t+ (f + 1)p). Namely,
consider the following behavior of the adversary: while there is
more than one operational processor, the adversary stops each
coordinator immediately after it becomes one and before it
sends any messages. This creates pauses ofΩ(1) steps, giving
theΩ((f + 1)p) part, wheref is the number of stop-failures
(f < p). Eventually there remains only one processor which
has to perform all the tasks, because it has never received any
messages, this gives the remainingΩ(t) part. A lower-bound
argument for stage-checkpointing strategies is formally pre-
sented in [5]. Moreover, when processor restarts are allowed,
any algorithm that relies on a single coordinator for informa-
tion gathering might not terminate, because the adversary can
always kill the current coordinator, keeping alive all the other
processors so that no progress is made.

Summary of contributions

All previous algorithms do not consider the possibility that
a faulty processor is repaired and reintegrated into the sys-
tem. In this paper we present the first algorithm that solves the
do-all problem allowing processor restarts. We introduce a
new algorithmic technique based on an aggressive coordina-
tion paradigm that permits multiple concurrent coordinators.
This approach is suggested by the earlier observation that algo-
rithms with only one coordinator cannot deal efficiently with
restarts. The number of coordinators is managed adaptively.
When failures of coordinators disrupt the progress of the com-
putation, the number of coordinators is increased; when the
failures subside, a single coordinator is appointed.En route
to the solution for restartable processors we introduce a new
algorithm for thedo-all problem without restarts. This al-
gorithm, that we call “algorithm AN" (Algorithm No-restart),
is tolerant off < p stop-failures. It has available processor
steps complexity1 S = O((t + p log p/ log log p) log f) and
message complexityM = O(t + p log p/ log log p + fp).
Algorithm AN is the basis for our second algorithm, called
“algorithm AR" (Algorithm with Restarts), which tolerates
stop-failures and restarts. Its available processor steps com-
plexity isS = O((t + p log p + f) · min{log p, log f}), and
its message complexity isM = O(t+ p log p+ fp), wheref
is the number of failures. The results are summarized in Fig. 1.

Our algorithm AN is more efficient in terms ofS than the
algorithms in [5] and [7] whenf , p andt are comparable; the
algorithm also has efficient message complexity. Algorithms
AN and algorithmAR come within alog f (andlog p) factor of
the respective lower bounds [10] proved in the context of the
shared-memory model of computation for any algorithms that
balance loads of surviving processors in each constant-time
step.

Our algorithms assume that the communication is reliable.
If a processor sends a message to another operational processor
and when the message arrives at the destination the processor is
still operational, then the message is received. Moreover, if an
operational processor sends a multicast message and then fails,
then either the message is sent to all destinations or to none at
all. Such multicast is received by all operational processors.
Prior solutions do not make this assumption, although they do
not solve the problem of processor restarts. The availability
of reliable multicast simplifies solutions for non-restartable
processors, but dealing with processor restarts remains a chal-
lenge even when such broadcast is available. There are several
reasons for considering solutions with such reliable multicast.
First of all, in a distributed setting where processors cooper-
ate closely, it becomes increasingly important to assume the
ability to perform efficient and reliable broadcast or multicast.
This assumption might not hold for extant WANs, but broad-
cast LANs (e.g., Ethernet and bypass rings) have the property
that if the sender is transmitting a multicast message, then
the message is sent to all destination. Of course this does not
guarantee that such multicast will be received, however when
a processor is unable to receive or process a message, e.g., due
to unavailable buffer space or failure of the network interface
hardware at the destination, this can be interpreted as a failure

1 The expression “log f ” stands for1 when f < 2 and log2f
otherwise; all logarithms are to the base 2.
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of the receiver. From the standpoint of the sender, the availabil-
ity of hardware-assisted broadcast makes the communication
cost of sending a broadcast message comparable to the com-
munication cost of sending a single point-to-point message.
However, since multiple receivers may have to process the
broadcast message, we are using a conservative cost measure
that assumes that the communication cost of a multicast is pro-
portional to the number of recipients. Secondly, by separating
the concerns between the reliability of processors and the un-
derlying communication medium, we are able to formulate
solutions at a higher level of modularity so that one can take
advantage of efficient reliable broadcast algorithms (cf. [8])
without altering the overall algorithmic approach. Lastly, our
approach presents a new venue for optimizingdo-all solu-
tions and for beating theΩ(t + (f + 1)p) lower bound of
stage-checkpointing algorithms [5].

We conjecture that with minor modifications, our algo-
rithms remain correct and efficient even if worker-to-coordi-
nator multicasts are not reliable. However coordinators still
need to use reliable broadcast.

For the fail-stop/restart models we assume that a proces-
sor loses its state upon a failure and that its state is reset to
some known initial state upon a restart. Our algorithms can-
not take direct advantage of such a possibility, and it would be
interesting to explore the benefits of having stable storage.

We believe that it is important to consider processor restarts
in general-purpose distributed computation. For example, im-
portant communication services such as group communication
systems [4] are in part motivated by the need to re-integrate
processors that have either previously failed or were unable to
communicate. In this work we make new contributions to the
study of complexity of doing work in the presence of failures
and restarts.

Other related work

Thedo-all problem for the shared-memory model of compu-
tation was introduced and studied by Kanellakis and Shvarts-
man [10,11] (the problem is calledwrite-all in that context).
Parallel computation using the iterateddo-allparadigm is the
subject of several subsequent papers, most notably the work
of Kedem, Palem and Spirakis [12], Martel, Park and Subra-
monian [14] and Kedem, Palem, Rabin and Raghunathan [13].
Kanellakis, Michailidis and Shvartsman [9] developed a tech-
nique for controlling redundant concurrent access to shared
memory in algorithms with processor stop-failures. This is
done with the help of a structure they callprocessor priority
tree. In this work we use a similar structure in the qualitatively
different message-passing setting. Furthermore, we are able to
use our structure with restartable processors.

Kanellakis and Shvartsman [11] give matching lower and
upper bounds on solving thedo-all problem for algorithms
that are able to choose the best possible assignment of pro-
cessors to tasks, for example using an oracle. These lower and
upper bounds were developed for the shared-memory model
of computation, however the bounds apply, verbatim, to the
message-passing model (when the oracle is omniscient). For
the model with stop-failures, this bound ist+p log p/ log log p
and for the model with restarts, this bound ist+p log p.A com-
ponent of the upper bound on work of our algorithms comes

within a small multiplicative factor of these bounds. For the
algorithm AN this factor islog f , and for the algortihm AR
this factor ismin{log p, log f}.

A randomized solution for thedo-all problem is pre-
sented by Chlebus and Kowalski [3]. Their work is for the
model of faults in which an adversary chooses at mostc · p
processors prior to the start of the computation, for a fixed
constant0 < c < 1, and then may fail any of these pro-
cessors at any time, while the remaining processors will stay
operational. The randomized algorithm has both the expected
available processor steps and message complexity ofO(t+p ·
(1 + log∗ p− log∗(p/t))), wherelog∗ is the number of times
the log function has to be applied to its argument to yield the
result that is no larger than1. This is in contrast with the lower
boundΩ(t+p·log t/ log log t)on the available processor steps
required in the worst case by any deterministic algorithm in
this setting.

The structure of the rest of the paper is as follows. Section 2
contains definitions and gives a high-level view of the algo-
rithms. Section 3 includes the presentation of algorithm AN
with a proof of its correctness and an analysis. Section 4 gives
algorithm AR with a proof of its correctness and an analysis.
Section 5 concludes with remarks and future work.

2 Model and algorithmic preliminaries

In Sect. 2.1 we describe the distributed setting considered and
in Sect. 2.2 we introduce the main ideas underlying our algo-
rithms.

2.1 Model of computation

Distributed setting.We consider a distributed system consist-
ing of a setP of p processors. We assume that the setP is fixed
and is known to all processors inP. Processors have unique
identifiers (PIDs) and the set of PIDs is totally ordered. Proces-
sors communicate by message passing. The distributed system
is synchronous and we assume that the processor clocks are
globally synchronized. Processor activities are structured in
terms ofstepsthat have some fixed known constant duration.
In each step a processor can either receive messages or perform
some local computation or send messages to other processors.

Messaging assumptions.We assume that the underlying net-
work is fully connected, that is, any processor can send mes-
sages to any other processor, and that messages are not lost in
transit or corrupted. Messages sent within one step are deliv-
ered before the end of the next step. Thus we also assume that
there is a known upper bound on message delivery time. We
assume that reliable multicast [8] is available. With reliable
multicast a processorq can send a message to any setP ⊆ P
of processors and all the processors inP that are alive during
the entire following step receive the message sent byq. Note
that in any step a processor may receive up to|P| messages
(thus we assume that the time needed to process a received
message is small compared to the duration of the step). We
are not concerned with the size of messages; however, using
bit-string set encoding, each message sent by our algorithms
containsO(max{t, p}) bits, wheret is the number of tasks.
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Tasks.We define atask to be a computation that can be per-
formed by any processor in one time step and its execution
is independent of the execution of any of the other tasks. The
tasks are alsoidempotent, i.e., executing a task many times
and/or concurrently has the same effect as executing the task
once. Tasks are uniquely identified by their task identifiers
(TIDs) and the set of TIDs is totally ordered. We denote by
T the set oft tasks and we assume thatT is known to all the
processors.

Models of failure.We are using thefail-stopprocessor model
[15]. This means that the processors fail by stopping and that
in our synchronous setting processor failures can be detected
using a timeout.We consider both the case when no restarts are
allowed and the case when processors restart after a failure. A
processor may stop at any moment during the computation. A
failed processor does not receive any messages and does not
perform any computation. Messages delivered to a faulty pro-
cessor are lost. If restarts are allowed, a processor can restart
at any point after a failure. We assume that during a single
step a faulty processor can restart at most once (e.g., a proces-
sor can restart in response to a clock tick). Upon a restart the
state of the restarted processor is reset to its initial state, but
the processor is aware of the restart. Since an arbitrary time
may elapse between the failure of a processor to its restart, the
knowledge of the restarted processor may be arbitrarily out of
date. Thus we assume a weak model where the processors do
not have stable storage that survives a failure. Stable storage
could help, for example, for processors to make individual
computational progress when an adversary may completely
prevent processors from communicating with each other.

It is obvious that if any pattern of failures is allowed, that
is, if no restrictions are imposed on the adversary that causes
failures, then computational progress can not be guaranteed.
For example, if all the processors fail then no progress is pos-
sible. Even if processors restart, progress can be prevented.
For example, consider the scenario in which a subset of the
processors is alive initially, these processors perform some
computation, and then they all crash while the processors in
the remaining set restart without any possibility of communi-
cation between the two sets. Since there is no stable storage,
this can be repeated forever without any progress in compu-
tation.

We will consider two families of failure models, one that
allows failures but no restarts, and another that allows restarts.
The failure models impose some restriction on the failure pat-
tern that the adversary can cause. The following definition is
used to qualify certain allowable failure patterns.

Definition 2.1. Let k be a positive integer. A failure pattern
is said to be “k-restricted” if during any consecutivek steps
i, i + 1, . . . , i + k − 1 there is at least one processor that is
alive during all stepsi, i+ 1, . . . , i+ k − 1.

We now define the failure models. LetF (k)
FS be the fail-

ure model defined as the set of all failure patterns that are
k-restricted, fork ≥ 0, and have no processor restarts. The
family FS of fail-stop failure models includes allF (k)

FS for

non-negativek. Notice thatF (0)
FS imposes no restrictions on

the failure patterns, that is, all processors can fail in this model.
Similarly we define the failure modelF (k)

FSR as the set of all

failure patterns that arek-restricted, fork ≥ 0, and that in-
clude processor restarts. The familyFSRof fail-stop/restart
failure models includes allF (k)

FSR for non-negativek. Also

for the fail-stop/restart failure models,F (0)
FSR imposes no re-

strictions on the failure patterns. With these definitions, we
have that, for eachk, F (k)

FS ⊆ F (k)
FSR, F (k+1)

FS ⊆ F (k)
FS , and

F (k+1)
FSR ⊆ F (k)

FSR. This is because in each case any failure
pattern in the subset model is also a failure pattern for the re-
spective superset model, yet the superset models may allow
failure patterns not permitted by the respective subsets.

Given a failure pattern, we denote byf the number of
failures and byr the number of restarts. For the familyFSwe
have thatf is bounded from above byp andr = 0, while for
the familyFSRwe have thatr ≤ f < r+p. We define thesize
of a failure patternF to be the number of processor failures
f , and we denote it by|F |. Our complexity results depend
on |F |, and since it is always the case thatr ≤ f , the main
asymptotic results will not involver.

The do-all problem and termination conditions.First we
define the problem.

Definition 2.2. Given a failure model, for any setT of tasks
and the setP of processors, thedo-all problem is to perform
all tasks inT .

What we mean by performing all tasks is that a terminating
algorithm that solves thedo-all problem must execute all
tasks and at least one processor is aware of this fact. In the
context of the model that hask-restricted failure patterns this
means that if an algorithm exists for thisk, then the algorithm
may terminate in stepτ when each processor that was active
and did not fail in stepsτ−k, . . . , τ−1, τ knows that all tasks
have been performed.

As we have noted earlier, thedo-all problem is not nec-
essarily solvable in each failure model. Let us first look at the
fail-stop models. InF (0)

FS no solution is possible: indeed if all
processors fail before executing all the tasks inT , then the
tasks can never be completed. Clearly we would like to solve
the problem as long as at least one processor is alive, that
is, as long asf < p. By the definition ofF (1)

FS we have that

the failure patterns allowed byF (1)
FS are exactly those failure

patterns withf < p. There is a trivial solution that works for
F (1)

FS : each processors performs all the task inT . This solution,
however is not efficient. We provide an efficient algorithm that
solves thedo-all problem forF (1)

FS . The algorithms in [5–7]

also work forF (1)
FS . SinceF (1)

FS is a superset ofF (k)
FS , for any

k > 1, the solution forF (1)
FS is also a solution forF (k)

FS . (It can

be shown thatF (1)
FS = F (k)

FS for anyk > 1, thus no algorithmic
advantage can be achieved by increasingk.)

Next we look at the fail-stop/restart failure models. Since
F (0)

FS is a subset ofF (0)
FSR, no solution is possible forF (0)

FSR.

It is not hard to see that no solution is possible also forF (1)
FSR.

Indeed a1-restricted failure pattern requires that at least one
processor be alive during any step. However with a stop-
failure/restart model this is not sufficient to guarantee progress.
As we have remarked before, even if there is always one pro-
cessor alive progress can be prevented (the scenario in which
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half of the processors fail while the other half of the proces-
sors restart is an example). Hence the best we can hope for is
to find a solution forF (2)

FSR. We notice that in ak-restricted
execution, fork ≥ 2, it is guaranteed that processors’ life-
times have some overlap and the bigger isk the bigger is the
overlap. Fork = 2 such overlap can be as small as a single
step. Hence in order to not lose information about the ongoing
computation (such loss, in the absence of stable storage, pre-
vents progress), it is necessary that processors exchange state
information during each step. Thus a solution that works for
a smallk tends to have large message complexity. We pro-
vide an efficient algorithm that solves thedo-all problem for
F (26)

FSR. The constant26 depends on our implementation of the
algorithm. With a modest effort the constant can be reduced
to 17, as we explain later. Note also that there is aqualitative
distinction betweenF (1)

FSR andF (2)
FSR: processors’ lifetimes

may not overlap in the former while they must overlap in the
latter. The difference betweenF (k)

FSR andF (k+1)
FSR whenk ≥ 2

isquantitative: in the latter the overlap of processors’ lifetimes
is one step longer than in the former.

Performance measures.To evaluate the performance of our
algorithms we useavailable processor stepsandcommunica-
tion complexity. The available processor steps is the number of
steps taken by all the processors and the communication com-
plexity is the number of point-to-point messages sent. More
formally let F be the set of allowed failure patterns, that is,
the failure model considered. For a computation subject to a
failure patternF , F ∈ F , denote bypi(F ) the number of
live processors executing stepi and bymi(F ) the number of
point-to-point messages sent during stepi. For a given prob-
lem, if the computation solves the problem by stepτ in the
presence of the failure patternF , then the available processor
steps complexityS is:

Sp,f = max
F∈F, |F |≤f




∑
i≤τ

pi(F )


 ,

and the communication complexityM is:

Mp,f = max
F∈F, |F |≤f




∑
i≤τ

mi(F )


 .

(Recall that in our definitions: (a) all steps of the opera-
tional processors are counted, including any idle/waiting time,
and (b) a single multicast counts for as many messages as it
has recipients.)

2.2 Overview of algorithmic techniques

Both algorithms proceed in aloopwhich is repeated until all
the tasks are executed. A single iteration of the loop is called
a phase. A phase consists of three consecutivestages. Each
stage consists of three steps (thus a phase consists of 9 steps).
In each stage processors use the first step to receive messages
sent in the previous stage, the second step to perform local
computation, and the third step to send messages. We refer to
these three step as thereceivesubstage, thecomputesubstage
and thesendsubstage.

Coordinators and workers.A processor can be acoordinator
of a given phase. All processors (including coordinators) are
workers in a given phase. Coordinators are responsible for
recording progress, while workers perform tasks and report
on that to the coordinators. In the first phase one processor
acts as the coordinator. There may be multiple coordinators in
subsequent phases. The number of processors that assume the
coordinator role is determined by themartingale principle: if
none of the expected coordinators survive through the entire
phase, then the number of coordinators for the next phase is
doubled. Whenever at least one coordinator survives a given
phase, the number of coordinators for the next phase is reduced
to one.

If at least one processor acts as a coordinator during a
phase and it completes the phase without failing, we say that
the phase isattended, the phase isunattendedotherwise.

Local views.Processors assume the role of coordinator based
on their local knowledge. During the computation each pro-
cessorw maintains a listLw = 〈q1, q2, ..., qk〉 of supposed
live processors. We call such list alocal view. The processors
in Lw are partitioned intolayers consisting of consecutive
sublists ofLw: Lw = 〈Λ0, Λ1, ..., Λj〉2. The number of pro-
cessors in layerΛi+1, for i = 0, 1, ..., j − 1, is the double of
the number of processors in layerΛi. LayerΛj may contain
less processors. WhenΛ0 = 〈q1〉 the local view can be vi-
sualized as a binary tree rooted at processorq1, where nodes
are placed from left to right with respect to the linear order
given byLw. Thus, in a tree-like local view, layerΛ0 consists
of processorq1, layerΛi consists of2i consecutive processors
starting at processorq2i and ending at processorq2i+1−1, with
the exception of the very last layer that may contain a smaller
number of processors. Processors in a local view do not nec-
essarily appear in the order of processor identifiers (restarted
processors are appended at the end of the local view).

Example.Suppose that we have a system ofp = 31 pro-
cessors. Assume that for a phase� all processors are in the
local view of a workerw. in order of processor identifier,
and that the view is a tree-like view (e.g., at the beginning
of the computation, for� = 0). If in phase� processors
1, 5, 7, 18, 20, 21, 22, 23, 24, 31 fail (hence phase� is unat-
tended) and in phase�+ 1, processors2, 9, 15, 25, 26, 27, 28,
29, 30 fail (phase� + 1 is attended by processor3), then the
view of processorw for phase� + 2 is the one in Fig. 2. If
in phase� + 2 processor3 fails and processors5, 22, 29, 31
restart (phase� + 2 is unattended) and in phase� + 3 pro-
cessors4, 6 fail and processors1, 2, 9 restart (phase� + 3 is
unattended) then the view of processorw for phase� + 4 is
the one in Fig. 3.

3
4 6

10 12 13 14
16 17 18 19 20

Fig. 2.A local view for phase
 + 2.

2 For sequencesL = 〈e1, . . . , en〉 andK = 〈d1, . . . , dm〉 we
define〈L, K〉 to be the sequence〈e1, . . . , en, d1, . . . , dm〉.
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10 12 13 14
16 17 19 20 5 22 29 31

1 2 9

Fig. 3.A local view for phase
 + 4.

The local view is used to implement the martingale prin-
ciple of appointing coordinators as follows. LetL�,w = 〈Λ0,
Λ1, ..., Λj〉 be the local view of workerw at the beginning of
phase�. Processorw expects processors in layerΛ0 to coor-
dinate phase�; if no processor in layerΛ0 completes phase
�, then processorw expects processors in layerΛ1 to coordi-
nate phase�+1; in general processorw expects processors in
layerΛi to coordinate phase�+ i if processors in all previous
layersΛk, � ≤ k < �+ i, did not complete phase�+ k. The
local view is updated at the end of each phase (the update rule
depends on the algorithm).

Phasestructureand taskallocation.The structure of a phase of
the algorithms is as follows. Each processorw keeps its local
information about the set of tasks already performed, denoted
Dw, and the set of live processors, denotedPw, as known by
processorw. The setDw is always an underestimate of the
set of tasks actually done andPw is always an overestimate
of the set of processors that are “available" from the start of
the phase (here any processors that restarted during the phase
are not considered available, since they might not have up
to date information about the computation). We denote by
Uw the set ofunaccountedtasks, i.e., the tasks whose done
status is unknown tow. The setsUw andDw are related by
Uw = T \ Dw, whereT is the set of all the tasks. Given a
phase� we useP�,w, U�,w andD�,w to denote the values of
the corresponding sets at the beginning of phase�.

Computation starts with phase0 and any processorq has
all processors inL0,q and hasD0,q empty. At the beginning
of phase� each worker (that is, each processor)w performs
one task according to its local viewL�,w and its knowledge
of the setU�,w of unaccounted tasks, using the followingload
balancing rule. Workerw executes the task whose rank is
(i mod |U�,w|)th in the setU�,w of unaccounted tasks, where
i is the rank of processorw in the local viewL�,w. Then the
worker reports the execution of the task to all the processors
that, according to the worker’s local view, are supposed to be
coordinators of phase�. For simplicity we assume that a pro-
cessor sends a message to itself when it is both worker and
coordinator. Any processorc that, according to its local view,
is supposed to be coordinator, gathers reports from the work-
ers, updates its information aboutP�,c andU�,c and broadcasts
this new information causing the local views to be reorganized.
We will see that at the beginning of any phase� all live pro-
cessors have the same local viewL� and the same setU� of
unaccounted tasks and that accounted tasks have been actu-
ally executed. Restarted processors are reintegrated in the lo-
cal views and are available for computation in the subsequent
phase. A new phase starts ifU� is not empty.

3 Algorithm AN for the fail-stop model

In this section we present, prove correct and analyze algorithm
AN which solves thedo-all for the failure modelF (1)

FS .

3.1 AlgorithmAN

The algorithm follows the algorithm structure described in the
previous section. The computation starts with phase number0
and proceeds in a loop until all tasks are known to have been
executed. The detailed description of a phase is given in Fig. 4.

Local view update rule.In phase 0 the local viewL0,w of any
processorw is a tree-like view containing all the processors
in P ordered by their PIDs. LetL�,w = 〈Λ0, Λ1, ..., Λj〉 be
the local view of processorw for phase�. We distinguish two
possible cases.

Case1.Phase� is unattended. Then the local view of processor
w for phase�+ 1 isL�+1,w = 〈Λ1, ..., Λj〉.
Case 2.Phase� is attended. Then processorw receives
summary messages from some coordinator inΛ0. Proces-
sorw computes its setPw as described in stage 3 (we will see
that all processors compute the same setPw). The local view
L�+1,w ofw for phase�+1 is a tree-like local view containing
the processors inPw ordered by their PIDs.

Figure 6 in Sect. 4 provides a graphical description of
a phase of algorithm AN (ignore the messages and steps of
restarted processors).

In this section we show that algorithm AN solves thedo-
all problem for the failure modelF (1)

FS . Given an execution
of the algorithm we say that the execution isgood if it is an
execution allowed byF (1)

FS . Hence we have to prove that the
algorithm solves the problem for any good execution.

Given an execution of the algorithm, we enumerate the
phases. We denote the attended phases of the execution by
α1, α2, . . . , etc. We denote byπi the sequence of unattended
phases between the attended phasesαi andαi+1. We refer to
πi as theith (unattended) period; an unattended period can
be empty. Hence the computation proceeds as follows: unat-
tended periodπ0, attended phaseα1, unattended periodπ1,
attended phaseα2, and so on. We will show that after a finite
number of attended phases the algorithm terminates. If the al-
gorithm correctly solves the problem, it must be the case that
there are no tasks left unaccounted after a certain phaseατ .

Next we show that at the beginning of each phase every
live processor has consistent knowledge of the ongoing com-
putation. Then we prove safety (accurate processor and task
accounting) and progress (task execution) properties, which
imply the correctness of the algorithm.

Lemma 3.1. In any execution of algorithmAN, for any two
processorsw, v alive at the beginning of phase�, we have that
L�,w = L�,v and thatU�,w = U�,v.

Proof. By induction on the number of phases. For the base
case we need to prove that the lemma is true for the first phase.
Initially we have thatL0,w = L0,v = 〈P〉 andUw = Uv = T .
Hence the base case is true.
Assume that the lemma is true for phase�. We need to prove
that it is true for phase� + 1. Letw andv be two processors
alive at the beginning of phase�+1. Since there are no restarts,
processorsw andv are alive also at the beginning of phase�.
By the inductive hypothesis we have thatL�,w = L�,v and
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Phase
 of algorithm AN:

Stage 1. Receive: The receive substage is not used.
Compute: In the compute substage, any processorw performs a specific taskz according to the load balancing rule.
Send: In the send substage processorw sends areport (z) to any coordinator, that is, to any processor in the first layer
of the local viewL�,w.

Stage 2. Receive: In the receive substage the coordinators gatherreport messages. For any coordinatorc, let z1
c , . . . , zkc

c be the
set of TIDs received.
Compute: In the compute substagec setsDc ← Dc ∪⋃kc

i=1{zi
c}, andPc to the set of processors from whichc received

report messages.
Send: In the send substage, coordinatorc multicasts the messagesummary(Dc, Pc) to processors inPc.

Stage 3. Receive: During the receive substagesummary messages are received by live processors. For any processorw, let
(D1

w, P 1
w), . . . , (Dkw

w , P kw
w ) be the sets received insummary messages3 .

Compute: In the compute substagew setsDw ← Di
w andPw ← P i

w for an arbitraryi ∈ {1, . . . , kw} and updates its
local viewLw as described below.
Send: The send substage is not used.

Fig. 4.Detailed descrpition of a phase of Algorithm AN.

U�,w = U�,v. We now distinguish two possible cases: phase�
is unattended and phase� is attended.

3.2 Correctness of algorithmAN

Case 1.Phase� is unattended. Then there are no coordinators
and nosummary messages are received byw andv during
phase�. Thus the setsUw andUv are not modified during
phase�. Moreover processorsw andv use the same rule to
update the local view (case 1 of the local view update rule).
HenceL�+1,w = L�+1,v andU�+1,w = U�+1,v.

Case 2.Phase� is attended. SinceL�,w = L�,v all the work-
ers sendreport messages to some coordinatorsc1, ..., ck.
Since we have reliable multicast, thereport message of
each worker reaches all the coordinators if the worker is alive,
or no one if it failed. Thussummary messages sent by the
coordinators are all the same. Letsummary(D,P ) be one
such a message. Since the phase is attended and broadcast is
reliable both processorsw andv receive thesummary(D,P )
message from at least one coordinator. Hence in stage 3 of
phase�, workersw andv setD�+1,w = D�+1,v = D and con-
sequently we haveU�+1,w = U�+1,v. They also setP�+1,w =
P�+1,v = P and use the same rule (case 2 of the local view
update rule) to update the local view. HenceL�+1,w = L�+1,v.
✷

Because of Lemma 3.1, we can defineL� = L�,w for
any live processorw as the view at the beginning of phase�,
P� = P�,w as the set of live processors,D� = D�,w as the set
of done tasks andU� = U�,w as the set of unaccounted tasks
at the beginning of phase�.

We denote byp� the cardinality of the set of live processors
computed for phase�, i.e.,p� = |P�|, and byu� the cardinality
of the set of unaccounted tasks for phase�, i.e.,u� = |U�|. We
havep1 = p andu0 = t.

3 As we will see in Sect. 3.2, these messages are in fact identical.

Lemma 3.2. In any execution of algorithmAN, if a processor
w is alive during the first two stages of phase� then processor
w belongs toP�.

Proof. Letw be a processor alive at the beginning of phase�.
Processorw (whether it is a coordinator or not) is taken out
of the setP� only if a coordinator does not receive areport
message fromw in phase� − 1. If w is a coordinator and all
coordinators are dead, thenw would be removed by the local
view update rule. This is possible only ifw fails during phase
�− 1. Sincew is alive at the beginning of phase�, processor
w does not fail in phase�− 1. ✷

Lemma 3.3. In any good execution of algorithmAN, if a task
z does not belong toU� then it has been executed in one of the
phases1, 2, ..., �− 1.

Proof. Taskz is taken out of the setU� by a coordinatorc
whenc receives areport (z) message in a phase prior to�.
However a worker sends such a message only after executing
taskz. Taskz is taken out of the setU� by a workerw whenw
receives asummary(Dc, Pc) message from some coordinator
c in phase prior to�, andz ∈ Dc.Again this means thatz must
have been reported as done toc. ✷

Lemma 3.4. In any good execution of algorithmAN, for any
phase� we have thatu�+1 ≤ u�.

Proof. By the code of the algorithm, no task is added toU�.
✷

Lemma 3.5. In any good execution of algorithmAN, for any
attended phase� we have thatu�+1 < u�.

Proof. Since phase� is attended, there is at least one coordi-
natorc alive in phase�. By Lemma 3.2 processorc belongs
to P� and thus it executes one task. Hence at least one task is
executed and consequently at least one task is taken out ofU�.
By Lemma 3.4, no task is added toU� during phase�. ✷

Lemma 3.6. In a good execution of algorithmAN, any unat-
tended period consists of at mostlog f phases.
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Proof. Consider the unattended periodπi and let� be its first
phase. First we claim that the first layer of viewL� consists of a
single processor. This is so because (a) eitheri = 0 and� = 0,
in which caseL0 is the initial local view, or (b)i > 0 andπi is
preceded by attended phaseαi, in which caseL� is constructed
by the local update rule to have a single processor in its first
layer. By Lemma 3.2 any processor alive at the beginning
of phase� belongs toP� and thus toL�. By the local view
update rule for unattended phases, we have that eventually all
processors inL� are supposed to be coordinators. Sincef < p,
at least one processor is alive and thus eventually there is an
attended phase. Thelog f upper bound follows from the the
martingale principle governing the sizes of consecutive layers
of view.The number of processors accommodated in the layers
of the view doubles for each successive layer. Hence, denoting
by fi the number of failures inπi, we have that the number of
phases inπi is at mostlog fi. Obviouslyfi < f . ✷

Finally we show the correctness of algorithm AN.

Theorem 3.7. In a good execution of algorithmAN, the al-
gorithm terminates with all tasks performed.

Proof. By Lemma 3.2 no live processor leaves the computa-
tion and sincef < p the computation ends only whenU� is
empty. By Lemma 3.3, when the computation ends, all tasks
are performed. It remains to prove that the algorithm actually
terminates. By Lemma 3.6 for every1 + log f phases there is
at least one attended phase. Hence, by Lemmata 3.4 and 3.5,
the number of unaccounted tasks decreases by at least one in
every1 + log f phases. Thus, the algorithm terminates after
at mostO(t log f) phases. ✷

Since the algorithm terminates after a finite number of
attended phases with all tasks performed, we letτ be such that
Uατ+1 = ø, and consequentlyuατ+1 = 0.

3.3 Analysis of algorithmAN

We now analyze the performance of algorithm AN in terms of
the available processor stepsS and the number of messages
M .

To assessS we consider separately all the attended phases
and all the unattended phases of the execution. LetSa be the
part ofS spent during all the attended phases andSu be the
part ofS spent during all the unattended phases. Hence we
haveS = Sa + Su.
The following lemma uses the construction by Martel, as it is
presented in Lemma 3.3.4 in [10].

Lemma 3.8. In any good execution of algorithmANwe have
Sa = O(t+ p log p/ log log p).

Proof. We consider all the attended phasesα1, α2, ..., ατ by
subdividing them into two cases.

Case 1.All attended phasesαi such thatpαi ≤ uαi . The load
balancing rule assures that at most one processor is assigned
to a task. Hence the available processor steps used in this case
can be charged to the number of tasks executed which is at
mostt+ f ≤ t+ p. HenceS1 = O(t+ p).

Case 2.All attended phases in whichpαi > uαi . We letd(p)
stand forlog p/ log log p. We consider the following two sub-
cases.

Subcase 2.1.All attended phasesαi after whichuαi+1 <
uαi/d(p). Sinceuαi+1 < uαi < pαi < p and phaseατ is the
last phase for whichuτ > 0, it follows that subcase 2.1 occurs
O(logd(p) p) times. The quantityO(logd(p) p) is O(d(p)) be-

caused(p)d(p) = Θ(p). No more thanp processors complete
such phases, therefore the partS2.1 of Sa spent in this case is

S2.1 = O
(
p

log p
log log p

)
.

Subcase 2.2.All attended phasesαi after whichuαi+1 ≥
uαi/d(p). Consider a particular phaseαi. Since in this case
pαi > uαi , by the load balancing rule at least� pαi

uαi
� but no

more than� pαi

uαi
� processors are assigned to each of theuαi

unaccounted tasks. Sinceuαi+1 tasks remain unaccounted af-
ter phaseαi, the number of processors that failed during this
phase is at least

uαi+1

⌊
pαi

uαi

⌋
≥ uαi

d(p)
· pαi

2uαi

=
pαi

2d(p)
.

Hence, the number of processors that proceed to phaseαi+1
is no more than

pαi − pαi

2d(p)
= pαi(1 − 1

2d(p)
) .

Let αi0 , αi1 , ..., αik
be the attended phases in this subcase.

Since the number of processor in phaseαi0 is at mostp, the
number of processors alive in phaseαij for j > 0 is at most
p(1 − 1

2d(p) )
j . Therefore the partS2.2 of Sa spent in this case

is bounded as follows:

S2.2 ≤
k∑

j=0

p

(
1 − 1

2d(p)

)j

≤ p

1 − (1 − 1
2d(p) )

= p · 2d(p)
= O(p · d(p)) .

Summing up the contributions of all the cases considered we
getSa:

Sa = S1 + S2.1 + S2.2 = O
(
t+ p

log p
log log p

)
.

✷

Lemma 3.9. In any good execution of algorithmAN we have
Su = O(Sa log f).

Proof. The number of processors alive in a phase of the unat-
tended periodπi is at mostpαi

, that is the number of pro-
cessors alive in the attended phase immediately precedingπi.
To cover the case whenπ0 is not empty, we letα0 = 0 and
pα0 = |P| = p. By Lemma 3.6 the number of phases in period
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πi is at mostlog f . Hence the part ofSu spent in periodπi is
at mostpαi

log f . We have

Su ≤
τ∑

i=0

(pαi
log f)

= log f ·
τ∑

i=1

pαi

≤ (p+ Sa) log f = O(Sa log f) .

✷

Theorem 3.10. In any good execution of algorithmAN we
haveS = O(log f(t+ p log p/ log log p)).

Proof. The total available processor stepsS is given byS =
Sa + Su. The theorem follows from Lemmata 3.8 and 3.9.✷

Remark.A lower bound ofΩ(t+p log p/ log log p) [10] (The-
orem 4.2.4) is known for any algorithm that performs tasks by
balancing loads of surviving processors in each time step. Al-
though that lower bound was derived for the shared-memory
model of computation, the result does not use any arguments
involving shared-memory. The work of algorithm AN comes
within a factor oflog f (and thus alsolog p) relative to that
lower bound. This suggests that improving the work result is
difficult and that better solutions may have to involve a trade-
off between the work and message complexities.Kramer.

We now assess the message complexity. First remember
that the computation proceeds as follows:π0, α1, π1, α2, ...,
πτ−1, ατ . In order to count the total number of messages
we distinguish between the attended phases preceded by a
nonempty unattended period and the attended phases which
are not preceded by unattended periods. Formally, we letMu

be the number of messages sent inπi−1αi, for all thosei’s
such thatπi−1 is nonempty and we letMa be the number of
messages sent inπi−1αi, for all thosei’s such thatπi−1 is
empty (clearly in these cases we haveπi−1αi = αi). Next we
estimateMa andMu and thus the message complexityM of
algorithm AN.

Lemma 3.11. In any execution of algorithmAN we have
Ma = O(t+ p log p/ log log p).

Proof. First notice that in a phase� where there is a unique
coordinator the number of messages sent is2p�. By the defi-
nition ofMa, messages counted inMa are messages sent in a
phaseαi such thatπi−1 is empty. This means that the phase
previous toαi isαi−1 which, by definition, is attended. Hence
by the local view update rule of attended phases we have that
αi has a unique coordinator. Thus phaseαi gives a contri-
bution of at most2pαi messages toMa. It is possible that
some of the attended phases do not contribute toMa, how-
ever counting all the attended phases as contributing toMa

we have thatMa ≤ ∑τ
i=1 2pαi = 2Sa. The lemma follows

from Lemma 3.8. ✷

Lemma 3.12. Inanygoodexecutionof algorithmANwehave
Mu = O(fp).

Proof. First we notice that in any phase the number of mes-
sages sent isO(cp) wherec is the number of coordinators for
that phase. Hence to estimateMu we simple count all the sup-
posed coordinators in the phases included inπi−1αi, where
πi−1 is nonempty.

Let i be such thatπi−1 is not empty. Since the number of
processors doubles in each consecutive layer of the local view
according to the martingale principle, we have that the total
number of supposed coordinators in all the phases ofπi−1αi

is 2fi−1 +1 = O(fi−1), wherefi−1 is the number of failures
duringπi−1. Hence the total number of supposed coordinators,
in all of the phases contributing toMu, is

∑τ
i=1O(fi−1) =

O(f).
Hence the total number of messages counted inMu isO(fp).
✷

Theorem 3.13. In any good execution of algorithmAN the
number of messages sent isM = O(t + p log p/ log log p +
fp).

Proof. The total number of messages sent isM = Ma +Mu.
The theorem follows from Lemmata 3.11 and 3.12. ✷

4 Algorithm AR for the fail-stop/restart model

In this section we present, prove correct and analyze algorithm
AR which solves thedo-all for the failure modelF (26)

FSR.

4.1 AlgorithmAR

AlgorithmAR is similar to algorithmAN; the difference is that
there are added messages to handle the restarts of processors.
In Fig. 5 we provide the detailed description for each stage of a
phase. The parts that are new or that are different in algorithm
AR as compared to algorithm AN areitalicized.

After the restart, processorq broadcastsrestart (q) mes-
sages in each step until it receives a response. Processors re-
ceiving such messages, ignore them if these messages are
not received in the receive substage of stage 2 of a phase.
Thus we can imagine that a restarted processorq broadcasts
a restart (q) in the send substage of stage 1 of a phase�
(however we will count all therestart messages in the
message complexity). This message is then received by all the
live and restarted processors of that phase, and, as we will see
shortly, processorq is re-integrated in the view for phase�+1.
Processorq needs to be informed about the status of the ongo-
ing computation. Hence processors that have this information
send theinfo (U�, L�) messages to processorq with the set
U� of unaccounted tasks and the local viewL�.

Loal view update rule.In phase 0 the local viewL0,w of
any processorw contains all the processors inP ordered by
their PIDs, and the first layer is a singleton set. LetL�,w =
〈Λ0, Λ1, ..., Λj〉 be the local view of processorw for phase�.
We distinguish two possible cases.

Case 1. Phase� is unattended. LetR� be the set of restarted
processors which sendrestart messages. LetR′ be the
set of processors ofR� that are not already in the local view
L�,w. Let 〈R′〉 be the processors inR′ ordered according to
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Phase
 of algorithm AR:

Stage 1. Receive: The receive substage is not used.
Compute: In the compute substage any processorw performs a specific taskz according to the load balancing rule.
Send: In the send substagew sends areport (z) to any coordinator, that is, to any processor in the first layer ofL�,w.
Any restarted processorq broadcasts therestart (q) message informing all live processors of its restart.

Stage 2. Receive: In the receive substage the coordinators gatherreport messagesand all processors gatherrestart messages.
LetR be the set of processors that sent arestart message.For any coordinatorc, let z1

c , ..., zkc
c be the set of TIDs

received inreport messages.
Compute: In the compute substagec setsDc ← Dc ∪⋃kc

i=1{zi
c} andPc to the set of processors from whichc received

report messages.
Send: In the send substage, coordinatorc multicasts the messagesummary(Dc, Pc) to the processors inPc andR. Any
processor inPc sends the messageinfo (U�, L�) to processors inR.

Stage 3. Receive: In the receive substage processors inR receiveinfo (U�, L�) messages and processors inPc andR receive
summary(Dc, Pc) messages.
Compute: In the compute substage, a restartedprocessorq setsL�,q ← L� andU�,q ← U�.Let(D1

w, P 1
w), ..., (Dkw

w , P kw
w )

be the sets received insummary messages by processorw. Processorw setsDw ← Di
w andPw ← P i

w for an arbitrary
i ∈ 1, ..., kw and updates its local viewL�,w as described below.
Send: The send substage is not used.

Fig. 5.Descrpition of details of one phase of Algorithm AR (the code that differs from Algorithm AN is given initalics).
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Fig. 6.A phase of algorithm AR (for algorithm AN ignore the bottom line, which represents restarted processors, and all the messages referring
to it).

their PIDs. The local view for the next phase isL�+1,w =
〈Λ1, ..., Λj〉 ⊕ 〈R′〉. The operator⊕ places processors ofR′,
in the order〈R′〉, into the last layerΛj till this layer contains
exactly the double of the processors of layerΛj−1 and pos-
sibly adds a new layerΛj+1 to accommodate the remaining
processors of〈R′〉. That is, newly restarted processors which
are not yet in the view, are appended at the end of the old
view. Notice that restarted processors, which receiveinfo
messages, know the old viewL�.

Case 2. Phase� is attended. LetR� be the set of restarted
processors. Since the phase is attendedsummary messages
are received by all the live processors (including the restarted
ones). Any processorw updatesPw as described in stage 3.
Processorw knows the setR�. The local viewL�+1,w for the
next phase is structured according to the martingale principle
and contains all the processors inPw ∪R� ordered according
to their PIDs.

If there are no restarts, algorithmAR behaves as algorithm
AN. Figure 6 provides a graphical description of both algo-
rithms.

4.2 Correctness of algorithmAR

In this section we show that algorithm AN solves thedo-all
problem for the failure modelF (26)

FSR. Given an execution of the
algorithm we say that the execution isgoodif it is an execution
allowed byF (26)

FSR. Hence we have to prove that the algorithm
solves the problem for any good execution.

A restarted processor has no information about the ongo-
ing computation, and thus cannot actively participate in the
computation, until it gets a chance to communicate with other
processors. Moreover, if a processors completes two consec-
utive phases it is able to acquire information about the com-
putation in the first of the two phases and to transfer it to other
processors in the second of the two phases. We will show that
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having, at any point during any execution, a processor that is
operational for 26 consecutive steps is sufficient for our al-
gorithm. This allows for the largest number of steps, 8, that
may be “wasted" because this is just short of the 9 steps that
constitute a phase, plus two complete phases, i.e., 18 steps, as
described above. This intuition is made formal in the proofs
in this section.

Formally we use the following definitions.

Definition 4.1. A live processor is said to be “fully active”
at a particular timet during phase�, if it stays alive from the
start of phase�− 1 through timet.

Definition 4.2. A live processor is said to be a “witness” for
phase� if it stays alive for the duration of phases�− 1 and�.

We remark that the difference between a processor fully
active in phase� and a witness of phase� is that the witness is
guaranteed, by definition, to survive the entire phase�, while
the fully active processor may fail before the end of phase�.
Hence a fully active processor cannot guarantee transfer of
state information while the witness can.

Lemma 4.1. In a good execution, there is a witness for any
phase.

Proof. A good execution has a26-restricted failure pattern.
Thus for any stepi, there is at least one processor that stays
alive for the next26 steps. Notice that8 of these step may
be spent waiting for the beginning of the next phase (if the
processor has just restarted in stepi). However the remaining
18 steps are enough to guarantee that the processor stays alive
for the next two phases, since each phase consists of9 steps.
✷

The witness of phase� is always a processor fully active in
phase�. Next we show that at the beginning of each phase
every fully active processor has consistent knowledge of the
ongoing computation.

Lemma 4.2. In a good execution of algorithmAR, for any
two processorsw, v fully active at the beginning of phase�,
we have thatL�,w = L�,v and thatU�,w = U�,v.

Proof. By induction on the number of phases. For the base
case we need to prove that the lemma is true for the first phase.
Initially we have thatL0,w = L0,v = 〈P〉 andUw = Uv = T .
Hence the base case is true.
Assume that the lemma is true for phase�. We need to prove
that it is true for phase� + 1. Letw andv be two processors
fully active at the beginning of phase�+ 1.
First we claim that at the beginning of stage 3 of phase�, we
haveL�,w = L�,v andU�,w = U�,v. Indeed, ifw andv are fully
active also at the beginning of phase�, then the claim follows
by the inductive hypothesis. If processorw (resp.v) has just
restarted and is not yet fully active in phase�, then it sends a
restart message in stage 1 of phase�. By Lemma 4.1, there
is a witness for phase�. Hence processorw (resp.v) receives
a info message from the witness and thus at the beginning
of stage 3 of phase� it hasU�,w = U� (resp.U�,v = U�) and
L�,w = L� (resp.L�,v = L�).
We now distinguish two cases: phase� is attended and phase
� is unattended.

Case 1.Phase� is not attended. Then nosummary messages
are received byw andv and in stage 3 of phase� they do
not modify their setsU�,w andU�,v. The local view of both
processors is modified in the same way (case 1 of the local view
update). Hence we have thatU�+1,w = U�+1,v andL�+1,w =
L�+1,v.

Case 2.Phase� is attended. Then there is at least one co-
ordinator completing the phase. Letc1, ..., ck be the coor-
dinators for phase�. Since we have reliable multicast, the
report message of each worker reaches all coordinators
that are alive. Thus thesummary messages sent by coordi-
nators are all equal. Letsummary(D,P ) one such a mes-
sage. Since we have reliable multicast, both processorsw
and v receivesummary(D,P ) messages from the coordi-
nators. Hence in stage 3 of phase� processorsw andv set
D�+1,w = D�+1,v = D and thus we haveU�+1,w = U�+1,v.
Processorsw andv also setP�+1,w = P�+1,v = P and use
the same rule (case 2 of the local view update rule) to update
the local view. Hence we haveL�+1,w = L�+1,v. ✷

Because of the previous lemma we can define the view
L� = L�,w, the set of available processorsP� = P�,w, the
set of done tasksD� = D�,w and the set of unaccounted
tasksU� = U�,w, all of them referred to the beginning of
phase�, wherew is any fully active processor. Notice that
restarted (non-fully-active) processors may have inconsistent
knowledge of these quantities.

Remember that we denote byp� the cardinality of the set
of live processors for phase�, i.e.,p� = |P�|, and byu� the
cardinality of the set of unaccounted tasks for phase�, i.e.,
u� = |U�|.

In the following lemmata we prove safety (no live proces-
sor or undone task is forgotten) and progress (tasks execution)
properties, which imply the correctness of the algorithm.

Lemma 4.3. In any execution of algorithmAR, a processor
fully active at the beginning of phase� belongs toP�.

Proof. If processorw is fully active at the beginning of phase
� − 1, then by the inductive hypothesis it belongs toP�−1.
Processorw is taken out of the setP� only if a coordinator does
not receive areport message fromw in phase�− 1. Since
processorw survives phase� − 1 then it sends thereport
message in phase�− 1. Hence it belongs toP�.
If processorw is not fully active at the beginning of phase
�− 1, then it restarted in phase�− 1. Thus at the end of phase
�− 1 processorw is re-integrated in the local views of phase
�. Hence it belongs toP�. ✷

Lemma 4.4. In any execution of algorithmAR, if a taskz
does not belong toU� then it has been executed in phases
1, 2, ..., �− 1.

Proof. The proof is the same as the proof of Lemma 3.3.✷

Lemma 4.5. In a good execution of algorithmAR, for any
phase� we have thatu�+1 ≤ u�.

Proof. Consider phase�. If there are no restarts, then, by the
code, no task is added to the set of undone tasks. If there are
restarts, a restarted processorw hasU�,w = T . By Lemma 4.1,
there is a processorv which is a witness for phase�. Then pro-
cessorw receives theinfo (U�, L�) message from processor
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v and hence setsU�,w = U�. Hence also when processors
restart no task is added to the set of undone tasks. ✷

Lemma 4.6. In any good execution of algorithmAR, for any
attended phase� we have thatu�+1 < u�.

Proof. Since phase� is attended, there is at least one coordi-
natorc alive in phase�. A coordinator must be a fully active
processor (a restarted processor needs to complete a phase in
order to known the current view and become coordinator). By
Lemma 4.3 processorc belongs toP� and thus it executes one
task. Hence at least one task is executed and consequently at
least one task is taken out ofU�. By Lemma 4.5, no task is
added toU� during phase�. ✷

As for algorithm AN, given a particular execution, we de-
note byα1, α2, ..., ατ the attended phases and byπi the unat-
tended period in between phasesαi andαi+1.

Lemma 4.7. In a good execution of algorithmAR any unat-
tended period consists of at mostmin{log p, log f} phases.

Proof. Consider the unattended periodπi. As argued in
Lemma 3.6 the views at the beginning ofπi is a tree-like
view.
By Lemma 4.3 and by the local view update rule for unattended
phases, any processor fully active at the beginning of a phase
� of πi belongs toP� and thus toL�. By the local view update
rule for unattended phases, we have that eventually there is a
phase�′ such that all fully active processors are supposed to be
coordinators of phase�′ (that is, the first layer ofL�′ contains
all the processors fully active at the beginning of phase�′).
By Lemma 4.1, phase�′ has a witness. The witness is a fully
active processor and by definition it survives the entire phase.
Hence, phase�′ is attended.
The upper bounds on the number of phases follow from the
tree-like structure of the views. With the same argument used
in Lemma 3.6 we have that the number of phases ofπi is at
mostlog f . Thelog p bound follows from the fact that by dou-
bling the number of expected coordinators for each unattended
phase, after at mostlog p phases all processors are expected
to be coordinators and thus at least one of them (the witness)
survives the phase. ✷

Theorem 4.8. In a good execution of algorithmAR the algo-
rithm terminates and all the units of work are performed.

Proof. By Lemma 4.3 fully active processors are always part
of the computation, so the computation never ends if there are
fully active processors andU� is not empty. By Lemma 4.1
any phase has a witness which is a fully active processor.
The local knowledge about the outstanding tasks is sound, by
Lemma 4.4. For every1+ log p phases there is at least one at-
tended phase, by Lemma 4.7. Hence, by Lemmata 4.5 and 4.6,
the number of unaccounted tasks decreases by at least one in
every1+log p phases. Thus after at mostO(t log p) phases all
the tasks have been performed. During the next attended phase
this information is disseminated and the algorithm terminates.
✷

4.3 Analysis of algorithmAR

We next analyze the performance of algorithm AR in terms
of the available processor stepsS used and the numberM
of messages sent. To assessS we partition it intoSa spent
during the attended phases andSu spent during the unattended
phases. SoS = Sa +Su. In the following lemmata we assess
the available processor steps of algorithm AR.

Recall that good executions are those executions whose
failure pattern is allowed byF (26)

FSR. We also recall thatα1,
α2, ..., ατ denote the attended phases,πi denote the unat-
tended period in between phasesαi andαi+1 and thatp� and
u� denote, respectively, the size of the setP� of fully active
processors for phase� and the size of the setU� of undone
tasks for phase�.

Lemma 4.9. In a good execution of algorithmAR we have
Sa = O(t+ p log p+ f).

Proof. By Theorem 4.8 the algorithm terminates.
We first account for all those steps spent by a processor after a
restarts and before the processor either fails again or becomes
fully active, that is, it is included in the setP� for a phase�,
and thus is counted for inp�. The number of such steps spent
for each restart is bounded by a constant. Hence the available
processor steps spent isO(r), which isO(f).
Next we account for all the remaining part ofSa by distin-
guishing two possible cases:

Case 1.All attended phasesαk such thatpαk
≤ uαk

. The load
balancing rule assures that at most one processor is assigned
to a task. Hence the available processor steps used in this case
can be charged to the number of tasks executed, which is at
mostt+ f .

Case 2.All attended phases such thatpαk
> uαk

. We arrange
the tasks that were executed and accounted for during such
phases in the order by the phase in which they are performed
(for tasks executed in the same phase the order does not mat-
ter). Let 〈b1, b2, . . . , bm〉 be such a list. Notice thatm ≤ p
becauseuαk

< pαk
≤ p, and once the inequalityuαk

≤ p
starts to hold, it remains true in phasesαi for i ≥ k. We then
partition these tasks into disjoint adjacent segmentsZi:

Zi =
{
bk :

p

i+ 1
≤ m− k + 1 <

p

i

}
.

By the load balancing rule, at most

p

m− k + 1
≤ p

i+ 1
p

= i+ 1

processors are assigned to each task inZi, because when a
processor is assigned for the last time to taskbk, there are at
leastm − k + 1 unaccounted tasks. The size ofZi can be
estimated as follows:

|Zi| ≤ p

i
− p

i+ 1

≤ p

(
1
i

− 1
i+ 1

)

=
p

i(i+ 1)
.
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Hence the available processor steps used is less than
∑

1≤i≤m

p

i(i+ 1)
· (i+ 1) ≤ p

∑
1≤i≤p

1
i

= O(p log p) .

Combining all the cases we obtainSa = O(t+ p log p+ f).
✷

Lemma 4.10. In a good execution of algorithmAR we have
Su = O(Sa + f) · min{log p, log f}).

Proof. Consider the unattended periodπi.At the beginning of
this period there arepi available processors. By Lemma 4.7,
for each of these processors we need to account formin{log p,
log f} steps spent in periodi. Summing up over all attended
phases, we have that the part ofSu for these processors is

min{log p, log f} ·
τ∑

i=1

pαi = Sa · min{log p, log f}.

Each encountered restart can contribute additionally at most
min{log p, log f} processor steps because if the processor
stays alive past phaseαi+1, its contribution is already ac-
counted for. Since the number of restartsr is r ≤ f , the bound
follows. ✷

Theorem 4.11. In a good execution of algorithmAR the
available processor steps isS = O((t + p log p + f)
·min{log p, log f}).

Proof. The available processor stepsS of algorithm AR is
given byS = Sa + Su. The theorem follows from Lem-
mata 4.10 and 4.9. ✷

Remark.A lower bound ofΩ(t+p log p) [1] is known for any
algorithm that performs tasks by balancing loads of surviving
processors in each time step. Although that lower bound was
derived for the shared-memory model of computation, the re-
sult does not use any arguments involving shared-memory.
The work of algorithm AR includes a contribution that comes
within a factor of min{log p, log f} relative to that lower
bound. As we have similarly remarked for algorithm AN, this
suggests that improving the work result is difficult and that
better solutions may have to involve a trade-off between the
work and message complexities.✷

We now assess the message complexity. The analysis is
similar to the one done for algorithm AN. The difference is
that we need to account also for messages sent by restarted
processors. However the approach used to analyze the message
complexity of algorithm AN works also for algorithm AR.

We distinguish between the attended phases preceded by
a nonempty unattended period and the attended phases not
preceded by unattended periods. We letMu be the number of
messages sent inπi−1αi, for all thosei’s such thatπi−1 is
nonempty and we letMa be the number of messages sent in
πi−1αi, for all thosei’s such thatπi−1 is empty (clearly in
these cases we haveπi−1αi = αi). Next we estimateMa and
Mu and thus the message complexityM of algorithm AR.

Lemma 4.12. In a good execution of algorithmAR we have
Ma = O(t+ p log p/ log log p+ f).

Proof. We first account for messages sent by restarted pro-
cessors and responses to those messages. For each restart the
number ofrestart messages sent is bounded by a con-
stant and oneinfo and onesummary message are sent to a
restarted processor before it becomes fully active. Hence the
total number of messages sent due to restarts isO(r) = O(f).

The remaining messages can be estimated as detailed in
Lemma 3.11. In a phase� where there is a unique coordinator
the number of messages sent is2p�. By the definition ofMa,
messages counted inMa are messages sent in a phaseαi such
thatπi−1 is empty. This means that the phase previous toαi

is αi−1 which, by definition, is attended. Hence by the local
view update rule of attended phases we have thatαi has a
unique coordinator. Thus phaseαi gives a contribution of at
most2pαi messages toMa. HenceMa ≤ ∑τ

i=1 2pαi = 2Sa.
The lemma follows from Lemma 4.9. ✷

Lemma 4.13. In any good execution of algorithmAR we
haveMu = O(fp).

Proof. We first account for messages sent by restarted pro-
cessors and responses to those messages. The argument is the
same as in Lemma 4.12. The total number of messages sent
because of restarts isO(f).

Next we estimate the remaining messages as done in
Lemma 3.12. First we notice that in any phase the number
of messages sent isO(cp) wherec is the number of coordina-
tors for that phase. Hence to estimateMu we simple count all
the supposed coordinators in the phases included inπi−1αi,
whereπi−1 is nonempty.
Let ibe such thatπi−1 is not empty. Because of the structure of
the local view, we have that the total number of supposed co-
ordinators in all the phases ofπi−1αi is2fi−1 +1 = O(fi−1)
wherefi−1 is the number of failures duringπi−1. Hence the
total number of supposed coordinators, in all of the phases
contributing toMu, is

∑τ
i=1 O(fi−1) = O(f).

ThusMu is O(fp). ✷

Theorem 4.14. In agoodexecutionof algorithmAR thenum-
ber of messages sent isM = O(t+ p log p+ fp).

Proof. The total number of messages sent isM = Ma +Mu.
The theorem follows from Lemmata 4.12 and 4.13. ✷

5 Discussion

We have considered thedo-all problem which consists of
performingt tasks on a distributed system ofp fault-prone
synchronous processors. We presented the first algorithm for
the model with processor failures and restarts. Previous algo-
rithms do not allow processor restarts. Prior algorithmic ap-
proaches relied on the single coordinator paradigm in which
the coordinator is elected for the time during which the pro-
gress of the computation depends on it. However this approach
is not effective in the general model with processor restarts:
an omniscient adversary can always stop the single coordina-
tor while keeping alive all other processors thus preventing
any global progress. In this paper we have used a novel multi-
coordinator paradigm in which the number of simultaneous
coordinators increases exponentially in response to coordina-
tor failures. This approach enables effectivedo-all solutions
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that accommodate processor restarts. Moreover, when there
are no restarts, the performance of the algorithm is compara-
ble to that of previous algorithms.

There are two areas where improvements can be sought.
It appears not difficult to show that in our algorithms worker-
to-coordinator multicasts need not be reliable. A worthwhile
research direction is to design algorithms which use our ag-
gressive coordinator paradigm and unreliable coordinator-to-
worker communication. It is also interesting to consider the
models where processors have some stable storage. This may
help reduce the reliance on broadcasts as the sole means for
information propagation.

For the fail-stop/restart model we developed an algorithm
which tolerates failure/restart patterns that are26-restricted; a
26-restricted failure pattern is one such that for any26 con-
secutive steps of the algorithm there is at least one processor
alive in all the26 steps. The constant26 depends on the algo-
rithm. We conjecture that our algorithm can be easily modi-
fied by “squeezing” the phase into two stages, instead of the
three used in the presentation for the sake of clarity. With this
modification17-restricted failure patterns can be tolerated. A
different approach may solve the problem fork-restricted exe-
cutions with a smallerk. However the problem is not solvable
for 1-restricted executions and, as remarked in Sect. 2, there
is a qualitative difference between1-restricted executions and
k-restricted executions, withk ≥ 2. It is also clear that in or-
der to achieve solutions that work fork-restricted executions
for smallk it is necessary to use more messages. For exam-
ple for 2-restricted executions there must be transfer of state
information in each step.

Finally, it is also interesting to consider the failure models
wherek-restriction is imposed not on at least one processor as
we have done, but on at leastq processors, whereq is a failure
model parameter. Such definition yields families of failure
modelsF (k,q)

FS andF (k,q)
FSR , and more efficient algorithms could

be sought for these models. This is because the failure models
are more benign, i.e.,F (k,1)

FS ⊇ F (k,q)
FS andF (k,1)

FSR ⊇ F (k,q)
FSR

for q > 1.
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