
Routing without Flow Control

Costas Busch
Rensselaer Polytechnic

Institute

buschc@cs.rpi.edu

Maurice Herlihy
Brown University

herlihy@cs.brown.edu

Roger Wattenhofer
Microsoft Research

rogerwa@microsoft.com

ABSTRACT
We present the �rst dynamic hot-potato routing algorithm
that does not require an y form of explicit ow control: a
node may inject a message into the net w ork (n � n mesh)
whenever a link is free. In the worst case, a node may have
to wait an expected O(n) time before it has a free link. If
destinations are chosen uniformly at random, this algorithm
guarantees deliv ery in an expectedO(n) time steps. Both
measures are optimal up to a constant factor.

1. INTRODUCTION
A pac ketrouting algorithm is dynamic if pac kets may be
continually injected into the net work. Most dynamic rout-
ing algorithms rely on some kind of ow contr ol to prevent
the net w ork from becoming overloaded. For our purposes,
ow control is an y kind of feed-back mechanism that inhibits
a node from injecting a packet into the net w ork ev en when it
can. For example, a node might wait for an ac knowledgment
before sending a packet, or it may simply wait for some du-
ration bet w een pac kets.Because ow control techniques are
conserv ativ e, they do not fully exploit the netw ork capacity,
especially in the presence of load uctuations.

We present a new dynamic hot-potato routing algorithm for
the n � n mesh. A novel aspect of this algorithm is that
it uses no ow control: a node may send a message when-
ever a link is free. Moreover, a link will always be free in
an expected O(n) time steps, which is asymptotically opti-
mal. This algorithm delivers pac kets inO(n) expected time
when destinations are chosen uniformly at random. Since
the distance to a randomly chosen destination is
(n), this
complexity is also asymptotically optimal.

Our algorithm exploits techniques for randomized hot-potato
routing (\home-runs") �rst described by Busch et al. [10].
That algorithm, like most prior hot-potato algorithms [12,
5, 17, 2, 7, 10, 9], is static: all pac kets are injected at time
zero, and the analysis examines the time needed to deliver
them. (Static algorithms, by de�nition, need not be con-

cerned with ow control.) Our new algorithm, like only a
few others [8, 11], is dynamic: nodes may inject packets into
the net w ork repeatedly over a long duration. The new al-
gorithm's principal contribution is how it supports dynamic
analysis without the need for ow control.

1.1 Hot-Potato Routing
In hot-p otato (or deection) routing [3], the network nodes
ha ve no bu�ers to store packets in transit: any packet that
arriv es at a node other than its destination must immedi-
ately be forwarded to an adjacent node. Hot-potato routing
algorithms can be realized easily in hardware, since there is
no need for bu�ering or queuing. Moreover, hot-potato rout-
ing algorithms have been observed to work well in practice.
Hot-potato algorithms ha vebeen used in the HEP multi-
processor [24], the Connection Machine [15], the CalTech
Mosaic C [23], and in high-speed communication networks
[20]. Hot-potato routing algorithm are also well-suited for
use in optical switching netw orks [1, 14].

Our algorithm is greedy: whenever possible packets are sent
closer to their destination. Greedy algorithms are adaptive:
when loads are light, pac kets follow short paths. Non-greedy
algorithms typically impose detours that delay packets un-
necessarily . Simulation results [20] show that greedy hot-
potato routing is e�ective; pac kets almost never move aw ay
from their destinations.

Our algorithm is also local: Nodes are stateless, making
routing decisions exclusively on the basis of the packets re-
ceived at that time step.

1.2 The Mesh Network
We consider the n � n rectangular mesh network. Eac h
node (except at the edge) is connected to its neighbors by
four links, denoted up, down, left and right. Each node has
coordinates (x; y), where x is a column and y a row. The
low er-left corner has coordinates (0; 0) and the upper-right
corner (n � 1; n � 1). The distanc ebetween nodes (x0; y0)
and (x1; y1) is the quantity

jx0 � x1j + jy0 � y1j:

Nodes take steps synchr onously: time is discrete and at each
time step, a node receives at most one packet on eac h incom-
ing link, routes the packets, and sends at most one packet
on eac h outgoing link.The links are bidirectional. The dis-
tance bet w een tw o nodes corresponds to the minimum time

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SPAA �01 Crete, Greece
© 2001 ACM ISBN 1-58113-409-6/01/07�$5.00

11

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

needed to send a packet from one node to the other.

1.3 Packet Generation and Delivery
As noted, most earlier hot-potato algorithms consider only
one-shot (static) problems [12, 5, 17, 2, 7, 10, 9]. By con-
trast, our algorithm and analysis is dynamic, nodes may in-
ject packets repeatedly over a long duration. (We are aware
of only two other dynamic hot-potato algorithms [8, 11].)

All the packets have random destination, distributed uni-
formly over the n2 nodes in the network. As the analysis
will show, when a packet is injected into the network, it
is delivered to its destination node in O(n) expected time,
which is optimal up to constant factors.

Each node has an associated application, a program that
periodically sends and receives packets. The application
communicates with the node, which is responsible for the
low-level network routines: routing arriving packets, inject-
ing the application's outgoing on free links, and delivering
its incoming packets.

An application and its node communicate by a simple hand-
shake protocol. When the application sends a packet, it
blocks while the node's bu�er is full. When the application
asks to receive a packet, it blocks until the node delivers
one. We guarantee that the node will be able to inject a
new packet in O(n) time steps worst case (and four packets
per time step best case).

1.4 No Flow Control
The most unusual aspect of our algorithm is that it uses
no explicit ow control: A node can inject a packet into
the network any time a link is free. All known routing algo-
rithms and real-world protocols use some sort of ow control
to make sure that the network does not become overloaded.
(Overloaded networks perform poorly). Typical ow control
methods include:

� Nodes must negotiate network bandwidth before they
are allowed to inject packets.

� Nodes must wait for a long deterministic/adversarial
[22, 6] or random [19, 16, 21, 25] duration between
injections.

� Nodes must await acknowledgments of previous pack-
ets before injecting new packets.

Current real-world ow control mechanisms use the �rst and
third approach. An overview of the current state of the art
can be found in the books of Gouda [13] and Keshav [18].

For the mesh, algorithms with ow control restrict nodes
from injecting more than one packet per
(n) time steps. A
node is not allowed to inject a packet whenever it has a free
link, and therefore there are many free links in the network.
As a consequence, algorithms with ow control do not fully
utilize the packet capacity of the network. At any time only
a small fraction of the network is �lled with packets. Our
algorithm, on the other hand, utilizes the network capacity
to its maximum.

Routing without ow control proves to be especially useful
for situations where not all nodes generate packets at the
same rates. For example, consider the scenario where only
O(1) nodes want to inject packets into the network. In the
most eÆcient routing algorithms for the mesh with ow con-
trol [8], the injecting nodes have to wait
(n) time between
two injections, which means that only a very poor fraction
of O(1=n2) of the network is utilized. Without ow control
the O(1) nodes can take full advantage of all their links.

An algorithm without ow control gracefully supports appli-
cations that change packet generation rates over time. The
packet injection rate at a node does not have to be negoti-
ated with other nodes in the network but will adapt to the
present situation. For example, if all other nodes magically
stop injecting packets at the same time, a remaining node
u can start injecting packets at the maximum rate (up to
four packets per time step). If all other nodes again start
injecting packets, the node u is guaranteed to at least inject
one packet every O(n) expected time steps.

Hot-potato routing is the ideal routing paradigm for realiz-
ing routing without ow control. In traditional store-and-
forward routing algorithms, the nodes use queues to store
the packets in transit. In these networks ow control is
crucial, since without ow control queues would naturally
build up and the time for a packet delivery would go to in-
�nity. On the other hand, in hot-potato routing there are
no queues. At any time, there are at most as many packets
as links in the network.

Even though our algorithm is asymptotically optimal, we
can only guarantee rather large constant factors, and critics
might argue that algorithms with sophisticated ow con-
trol mechanisms will be more eÆcient after all. Note that
our constants are the result of various safe worst-case as-
sumptions. New simulation results [4] show that greedy al-
gorithms indeed have excellent performance with constant
factors that are at least as good as the best non-greedy (and
static) algorithms [12, 17]. Moreover, ow control obviously
introduces additional meta information packets. In the In-
ternet community it is widely believed that meta packets
are a signi�cant fraction of the total Internet traÆc. Hav-
ing no ow control (and therefore no meta traÆc) therefore
improves the total throughput.

1.5 Outline
In Section 2, we present our new hot-potato routing algo-
rithm. In Section 3, we give the analysis of our algorithm.
We show that packets are delivered to their destinations in
expected time O(n), if destinations are chosen at random.
In Section 4, we discuss the issues related to packet injection.
We show that even under heavy utilization of the network,
we can guarantee that with every O(n) expected time step
there will a free link at any node. Therefore, in the worst
case, a node can inject at least one packet every O(n)'th
time step. This is as good as the asymptotically optimum
solution (with ow control) by [8].

2. THE ALGORITHM
Every packet has a destination node chosen uniformly in
random over the n2 nodes of the network. In a node, a good

12

running

Packet States Priority

excited

sleeping, active

highest

lowest

destination

deected

active

excited

running

running

v
0

v

Figure 1: The states and the home run path

link for a packet is one that brings it closer to its destination,
and a bad link is one that does not.

Our algorithm is greedy: in a node, a packet always tries
to follow any good link. If a packet cannot advance to its
destination (because other advancing packets occupy all the
good links), the packet is forced to follow some bad link, in
which case we say that the packet is deected.

When two or more packets are competing in the same node
for the same links we say that there is a conict. In or-
der to resolve conicts, our algorithm makes use of priori-
ties: each node routes higher-priority packets before rout-
ing lower-priority packets. Conicts between packets of the
same priority are resolved in an arbitrary way.

To implement the priority scheme, the packets in our algo-
rithm have states, where each state corresponds to a priority,
as shown in the top of Figure 1. A packet � can be in only
one of the sleeping, active, excited, or running states. A
packet changes its state during its lifetime; We assume that
the hardware at the nodes supports means to modify the
headers of passing packets.

� Sleeping. Initially, when the packet � is injected into
the network, it is in the sleeping state. In the sleeping
state, at any node, packet � simply tries to follow any
good link. At each step, the sleeping packet � attempts
to change its state, and it becomes an active packet
with probability q = �(1=n), and otherwise, it remains
sleeping. After packet � leaves the sleeping state it
never reenters this state again.

In order to simplify the analysis, we assume that a
sleeping packet cannot be absorbed at its destination.
If a sleeping packet reaches its destination, it is sent
back into the network. (A packet is absorbed at its

destination when it is in a non-sleeping state.)

� Active. When packet � is in the active state, it simply
tries to follow any good link.

� Excited. Whenever an active packet is deected, it
has a chance to increase its priority and become an ex-
cited packet. Let's assume that the active packet � got
deected in the previous time step so that at the cur-
rent time step it appears in a node v, one link further
away from its destination. In node v, the active packet
� changes its state with probability p = �(1=n), and
it becomes excited, and otherwise it remains active.
When packet � becomes excited it will attempt to fol-
low an one-bend path towards its destination which we
will call a home run (see Figure 1). The �rst part of
the home run path is the row path towards the desti-
nation column, and the second part is the path in the
destination column towards the destination node.

� Running. Let's assume that the excited packet � suc-
cessfully followed the �rst link in the home run path, so
that the current time step it appears in a node v0, one
link closer to its destination. In node v0, the packet
� changes its state (deterministically this time) and
it becomes running, and it will remain in the running
state for the rest of the home run path. We note that
a packet is in the excited state for at most one time
step.

Consider now an excited or running packet �. If the packet
� becomes excited in the destination column then the home
run path consists only from the links towards the destination
node. At any time step, the preferred link of packet � is
always the link in the home run path. If in a node v, packet
� is unable to follow its preferred link, because of conicts
with other high priority packets, then at the same time step,
packet � loses its high priority and it becomes an active
packet, and is treated like that by node v. In this case we
say that packet � is interrupted.

There are only two nodes where the excited or running
packet � can be interrupted. The �rst is at the beginning
of the home run path, at the node where the packet � be-
comes excited, and it can be interrupted by other excited or
running packets. The second is in the node of the destina-
tion column where the running packet � turns, and it can
be interrupted by other running packets with destinations
in the same column. (To simplify the algorithm, we spec-
ify that a running packet which is already traversing in the
destination column cannot be interrupted by other running
packets that try to turn in the same column.) Notice that
if packet � is interrupted in the destination column then it
has to be deected.

3. TIME ANALYSIS
In this section, we show that when a packet is injected into
the network it is delivered to its destination inO(n) expected
time (which is optimal up to constant factors).

For the analysis, we need to de�ne the good and bad con-
ditions of the columns. At any time step, we say that a
column x of the network is in good condition if there are

13

less than 10n non-sleeping packets in the network that have
their destination in the column; else the column x is in bad
condition.

We will show that a packet reaches its destination in O(n)
expected time if its destination column is in good condition.
We will show that columns are almost always in good condi-
tion. The condition of a column is a random process which
is determined by the random destinations of the packets.
We will argue that in steady state (after long enough time),
when a packet is injected in the network at a random time
with high probability the packet faces good conditions. The
rare event in which a packet faces bad conditions when in-
jected in the network, doesn't hurt the time analysis of our
algorithm, since we only argue about expected time bounds
for packets injected at random times.

In this section we proceed as follows. In Subsection 3.1,
we show that a packet � can be routed to its destination
in O(n) time, whenever the destination column of � is in
good condition. In Subsection 3.2, we give several basic
preliminaries for the subsequent subsections.

In Subsection 3.3 we show that any column remains in good
condition for a long time. In particular, we divide the time
in consecutive time periods, each of length 6n, and we ex-
amine the condition of a column (if it is good or not) at
the beginning of each time period. We show that if at the
beginning of a time period a column x is in a good condition
then at the beginning of the next time period, column x will
remain in good condition with extremely high probability
(at least
(1� 1

en
)).

In Subsection 3.4, we show that if a column departs from
the good condition, then it returns back to good condition
in very short expected time. In particular, we show that if
a column x enters a bad condition then it will again reach a
good condition in at most 4n time periods, with extremely
high probability (at least
(1� n

en
)).

Finally, in Subsection 3.5, we combine all the above results
and we show that any packet is delivered to its destination
in expected O(n) time (under any conditions).

In the analysis we will often make use of the following in-
equalities. For all n, t, such that n � 1 and jtj � n,

et
�
1�

t2

n

�
�

�
1 +

t

n

�n

� et: (1)

For all p, k, such that 0 < p < 1 and k � 1,

1� p �
�
1�

p

k

�k
(2)

3.1 Time for one Packet
In this subsection we prove that any packet � is delivered
to its destination in O(n) time steps in the expected case
(Theorem 3.9), assuming that the destination column is in
good condition.1 (We will assume throughout this subsec-
tion that the destination column of � is in good condition.)

1We would like to note that the methodology in the proofs
of this subsection is similar to the methodology in the proofs
of paper [10].

Let the probabilities of a packet becoming excited and active
be:

p :=
1

16n
and q :=

1

24n
:

Let t0 be the time when packet � becomes active, and let
time t1 be the time when it is absorbed. Let x be the des-
tination column of packet �. Let m�(t) be the number of
non-sleeping packets with destination column x at time t.
Let m� := maxt0�t�t1 m�(t). As we will show in Corollary
3.16, while column x is in a good condition, m� < 12n with
high probability.

Lemma 3.1. The probability that a particular node con-
tains no excited packet is at least p0 := (1� p)4.

Proof. A packet becomes excited with probability p,
only if it was deected in the preceding step. It will fail
to become excited with probability at least 1 � p. Since
a node contains at most four packets, all four will fail to
become excited with probability at least (1� p)4.

Lemma 3.2. An excited packet � successfully follows its
preferred link and enters the running state with probability
at least (1� p)4n.

Proof. Let's assume that the excited packet � is in node
v = (x; y) at time t and wishes to follow its preferred link.
Our priority assignment guarantees that the excited packet
� can be interrupted only by other excited or running pack-
ets.

By Lemma 3.1, the probability that node v has no excited
packet at time t is at least p0. Therefore, with at least
this probability packet � will not be interrupted by another
excited packet.

We assume (WLOG) that packet's � preferred link is in the
left direction. A conicting running packet must �rst have
become excited at some node (x+ d; y) and time t � d, for
it to be in the running state at node (x; y) at time t, for
1 � d � n � x� 1. By Lemma 3.1, the probability that no
packet became excited in a node v0 = (x+d; y) at time t�d
is at least p0. Since there are at most n�1 nodes like v0, the
probability that no packet became excited at any of these
nodes and times, is at least p0

n�1
. Therefore, with at least

this probability there will be no conicting running packet
at node v at time t, and packet � will not be interrupted by
such packets.

In total, the probability that the excited packet � is not
interrupted in node v by other excited or running packets is
at least p0 � p0

n�1
= (1� p)4n:

Note that the probability that a packet becomes running
after being excited is independent from m�.

Lemma 3.3. A running packet � manages to turn into its
destination column with probability at least (1� p)m� .

14

Proof. According to the algorithm, the running packet
� can be interrupted by other running packets only at node
where it turns to its destination column. Let v = (x; y)
be the node where the running packet � turns at time t.
We will compute the probability that packet � will not be
interrupted by any other running packet at node v and time
t.

Let � be a running packet with destination in column x.
Let's assume that packet � conicts with � in node v at time
t. In order for packet � to be in a running state at time t
it must have become deected at some time t� d � 1, and
then became excited at time t� d, and traversed d links to
collide with �, all without being deected. After the packet
� becomes excited, both packets are in \phase": they are at
the same time steps at same distance from node v, and then
they meet in v at time t.

The key observation is that there is at most one deection
of � that could bring both packets in phase. If � failed to
become excited after the deection that could bring it in
phase with �, then � will never catch up with � in time to
interrupt � in node v and time t. Packet � has one chance
to become excited, with probability p, after that deection.
Thus, packet � fails to become excited, and is not in phase
with �, with probability 1� p. Therefore, with probability
at least 1� p, packet � will not interrupt �.

Because � is already in its destination column, there are at
mostm��1 other potential conicting packets, like �, which
have their destinations in column x. Each such packet will
not conict with � with probability at least 1�p. Therefore,
with probability at least (1 � p)m� , packet � will not be
interrupted when it turns.

Lemma 3.4. An excited packet � will be running success-
fully to its destination with probability at least (1�p)4n+m� .

Proof. When a packet becomes excited and then at-
tempts to follow the home run path towards its destination
it can only be interrupted in two nodes. The �rst node is
the node where the packet becomes excited and the second
node is the node where the packet turns to its destination
column. By multiplying the respective probabilities from
Lemma 3.2 and Lemma 3.3, the result follows.

Lemma 3.5. Let m� < 12n. If an active packet � is de-
ected, it will become excited and successfully be running to
its destination with probability at least p=2e.

Proof. By Theorem 3.4, after packet � becomes excited
it will successfully be running to its destination with proba-
bility at least (1�p)4n+m� . With p = 1=16n andm� < 12n,
and by applying Eqn. 1 we get

(1 � p)4n+m� >

�
1�

1

16n

�16n

�
1

e

�
1�

1

16n

�

�
1

2e
:

Each time the active packet � is deected, � gets excited
with probability p. Therefore the probability for successfully
running to its destination after a deection is at least p �
1=2e.

Lemma 3.6. If an active packet � is deected d times,
then it will reach its destination in at most t := 2d+ 2n� 2
steps. By symmetry, if a packet is active for t time steps, it
has been deected at least d := t=2� n + 1 times.

Proof. Initially, the distance from � to its destination
is no more than 2n � 2. Each time � is deected, the dis-
tance increases, and each time it follows a good link, it de-
creases.

Theorem 3.7. If m� < 12n, a non-sleeping packet � is
delivered to its destination within 65en time steps with prob-
ability at least 1� e�1.

Proof. In the 65en time steps, any of the deections in
the �rst 65en� 2n � 64en time steps could excite packet �
so that it could possibly become running and then reach its
destination within the 65en time steps.

By Lemma 3.6, in the 64en time steps, packet � must have
been deected at least 64en=2 � n + 1 � 32en times. By
Lemma 3.5, each of these deections fails to excite packet �
so that it reaches its destination, with probability at most
1� p=2e. Since deections of the same packet are indepen-
dent, and by Eqn. 1, all the d deections fail in the same
way with probability at most

�
1�

p

2e

�32en
=

�
1 �

1

32en

�32en

� e�1:

Subsequently, the non-sleeping packet � fails to reach its
destination in 65en time steps with probability at most e�1,
and thus, it reaches its destination with probability at least
1� e�1.

Theorem 3.8. If m� < 12n, the expected delivery time
for a non-sleeping packet � in bounded from above by O(n)
time steps.

Proof. By Lemma 3.7, the non-sleeping packet � reaches
its destination in t = 65en time steps with probability at
least 1 � e�1. Since consecutive time periods of length t
are independent, it is expected that packet � reaches its
destination within t=(1� e�1) = O(n) time steps.

Theorem 3.9. If m� < 12n, the expected total delivery
time for a packet � in bounded from above by O(n) time
steps.

Proof. When the packet � is injected in the network,
it starts out in the sleeping state. After 1=q expected time
in the network, packet � becomes active. By Lemma 3.8,
the active packet � reaches its destination in O(n) expected
time steps. Therefore, packet � reaches its destination in
1=q+O(n) = O(n) expected total time steps, as needed.

15

3.2 The Good, the Bad, and the Basics
In this subsection we give several basic preliminaries for the
subsequent subsections.

We use the following standard \Cherno�-type" tail inequal-
ity.

Theorem 3.10. Let X1; X2; : : : ; Xn be independent Pois-
son trials such that, for i = 1; : : : ; n, Pr[Xi] = pi, where
0 < pi < 1. Then, for � := E[

Pn
i=1Xi] =

Pn
i=1 pi, and

Æ > 0,

Pr[X > (1 + Æ)�] <

�
eÆ

(1 + Æ)(1+Æ)

��

:

Lemma 3.11. For any t � n, in t time steps, the proba-
bility to have more than 8qtn new non-sleeping packets with
destination in column x is less than 1=4qtn, for any x.

Proof. At any time step there are at most 4n2 packets
in the mesh. With probability q, a sleeping packet gets
active, with probability 1=n the random destination of a
newly injected (and now active) packet is column x.

In t time steps, we have at most 4tn2 chances that a sleeping
packet becomes active. The probability P to have not more
than 8qtn new active packets with destination column x can
be bounded with Theorem 3.10. With � = q=n �4tn2 = 4qtn
and Æ = 1 we have: P < (e=4)4qtn < 1=4qtn:

Lemma 3.12. A deected packet � enters the running state
(in the next steps) with probability at least 1=cn, with con-
stant c := 22.

Proof. The deected packet � becomes running only af-
ter it becomes excited, and then successfully follows the
�rst link in the home run path. The deected packet �
becomes excited with probability p. By Lemma 3.2, the
excited packet � becomes running with probability at least
(1 � p)4n. Using Eqn. 2, and since 0 < 4pn < 1, we have,

(1� p)4n =

�
1�

4pn

4n

�4n

� 1� 4pn =
3

4
:

Subsequently, the deected packet � becomes running with
probability at least p � 3=4 � 1=cn:

Lemma 3.13. During its lifetime, a packet � can inter-
rupt at most 2n running packets.

Proof. Packet � can interrupt other running packets
only when it is running in the destination column. Let's
assume that the packet � is running. The �rst location
where � can interrupt other running packets is at the node
where it turns to the destination node. Obviously, if packet
� interrupts another running packet when it turns, then �
successfully enters the destination column. After packet �
enters the destination column, then it reaches its destina-
tion without interruptions. Therefore, packet � has only one

chance to interrupt other running packets, when it becomes
running and successfully enters the destination column for
the �rst and last time.

Since the length of the destination column is n, packet �
can be in its destination column for at most n time steps.
In each of the nodes in the destination column, � can inter-
rupt at most 2 other running packets that try to turn, one
arriving from the left and one from the right link. In total,
� interrupts at most 2n running packets.

Lemma 3.14. Let t the time period t = t0 � t1, where
t0 < t1. Let x be a column such that at time t0 there are at
least � non-sleeping packets with destination in column x.
Then, by time t1 at least � of these non-sleeping packets will
be absorbed with probability at least 1 � (1� 1=cn)r, where
r := (�� �)(t=2� 2n)� 2�n:

Proof. First we compute the probability that at most �
of the � non-sleeping packets are absorbed in time period t,
so that at least �� � packets are not absorbed.

Let � be a packet that was non-sleeping at time t0 and still
not absorbed at time t1. Any of the deections of � in the
�rst t0 = (t1�2n)�to = t�2n steps could possibly excite �,
so that � could be running and reach its destination before
the end time period t. With Lemma 3.6, since � is not
absorbed, it must have been deected at least t0=2�n+1 =
t=2� 2n+ 1 times, in the t0 time period. Since there are at
least ��� non-absorbed packets like �, all of them together
have been deected at least (�� �)(t=2� 2n+ 1) times.

With Lemma 3.13, the � absorbed packets can together in-
terrupt at most 2�n running packets. Therefore, in time
period t there were at most 2�n attempts to produce run-
ning packets from the ��� non-absorbed packets. A packet
can become running only after a deection. Therefore, at
most 2�n deections of the non-absorbed packets produced
running packets.

Combining the deections, we have at least (� � �)(t=2 �
2n + 1) � 2�n � r deections of the non-absorbed packets
that did not produce running packets.

With Lemma 3.12, a deected packet will fail to become run-
ning with probability at most 1�1=cn. All the r deections
of the non-absorbed packets will fail to produce running
packets with probability at most (1� 1=cn)r. Therefore,
with at most this probability, at least a� b packets were not
absorbed, or equivalently at most b packets were absorbed.
Subsequently, with probability at least 1 � (1� 1=cn)r, at
least b packets are absorbed.

3.3 Good 2 Good
In this subsection we show that any column remains in good
condition for a long time (Corollary 3.19).

For the analysis, we divide the time in consecutive time pe-
riods, each of length 6n, and we examine the condition of a
column at the beginning of each time period.

By Lemma 3.11 we have:

16

Corollary 3.15. In 6n time steps we will have less than
2n new non-sleeping packets with destination in a speci�c
column x with probability at least 1� 1=4n=4, for any x.

By Corollary 3.15, we have:

Corollary 3.16. Consider a time period of 6n time steps.
If at the beginning of the time period column x is in a good
condition, then, during the time period, the number of non-
sleeping packets with destination in column x never exceeds
12n with probability at least 1� 1=4n=4.

Lemma 3.17. Consider a time period of 6n time steps. If
at the beginning of the time period column x is in a good con-
dition and at least 8n non-sleeping packets have destinations
in this column, then at least 2n of these packets will reach
their destinations within this time period with probability at
least

1�
1

e2n=c
:

Proof. By applying Lemma 3.14, with t = 6n, � = 8n,
� = 2n, we have that the desired probability is at least

1 �

�
1�

1

cn

�(8n�2n)(6n=2�2n)�4n2

= 1�

�
1�

1

cn

�2n2

= 1�

�
1�

1

cn

�cn�2n=c

� 1�
1

e2n=c
:

(By applying equation 1)

Theorem 3.18. If at time t0, column x is in a good con-
dition (where less than 10n non-sleeping packets have desti-
nations in column x) then after time period 6n it will remain
in the good condition with probability at least

1�
2

e2n=c
:

Proof. Consider the time t1 = t0 + 6n. By Corollary
3.15, by that time the newly introduced non-sleeping packets
are at most 2n, with probability at least

1�
1

4n=4
:

Consider �rst the case where at time t0 column x is in a
good condition and the number of non-sleeping packets with
destinations in x are less than 8n. At time t1, the number of
non-sleeping packets with destinations in x will be less than
8n + 2n = 10n, and column x remains in a good condition,
with probability at least

1�
1

4n=4
� 1�

2

e2n=c
:

Consider now the case where at time t0 column x is in a
good condition and at least 8n non-sleeping packets have
destinations in x. By Lemma 3.17, the number of packets
that are absorbed by time t1 is at least 2n with probability
at least

1�
1

e2n=c
:

Subsequently, at time t1 the number of non-sleeping packets
with destinations in x will be less than 10n+2n�2n = 10n,
and column x remains in a good condition, with probability
at least

�
1�

1

4n=4

�
�

�
1�

1

e2n=c

�

�

�
1�

1

e2n=c

�2

� 1�
2

e2n=c
:

(By applying equation 2)

Corollary 3.19. If a column is in good condition, it will
remain in good condition for expected time at least
(nen).

Proof. At time t0 we are in good condition. The prob-
ability for not being in good condition anymore at time
t1 = t0 + 6n is according to Theorem 3.18 less than P =

2

e2n=c
. Since this probability does not depend on the history

of the network, future probabilities are independent. Thus
the expected time of being constantly in good condition is
6n � 1=P = 3ne2n=c =
(nen):

3.4 Bad 2 Good
In this subsection we show that if a column departs from the
good condition, then it returns back to the good condition
in very short expected time (Corollary 3.23).

Similar to Subsection 3.3, we examine the condition of a
column at the beginning of every time period of length 6n.

Lemma 3.20. Consider a time period with 6n time steps.
If at the beginning of the time period the column x is in
bad condition (where at least 10n non-sleeping packets have
destinations in column x) then at least 3n of these packets
will be absorbed in this time period with probability at least

1�
1

en=c
:

Proof. By applying Lemma 3.14, with t = 6n, � = 10n,

17

� = 3n, we have that the desired probability is at least

1�

�
1�

1

cn

�(10n�3n)(6n=2�2n)�6n2

= 1�

�
1 �

1

cn

�n2

= 1�

�
1 �

1

cn

�cn�n=c

� 1�
1

en=c
:

(By applying equation 1)

Lemma 3.21. If at time t0 column x is in bad condition
and � (� � 10n) non-sleeping packets have destinations in
this column, then at time t1 = t0 + 6n the number of these
non-sleeping packets will be reduced to ��n with probability
at least

1�
2

en=c
:

Proof. Consider the time period t = t1 � t0 = 6n. By
Corollary 3.15, in this time period, the newly introduced
non-sleeping packets with destinations in column x are at
most 2n, with probability at least

1�
1

4n=4
:

By Lemma 3.20, the number of these non-sleeping packets
that are absorbed in time period t is at least 3n, with prob-
ability at least

1�
1

en=c
:

Subsequently, at time t1 the number of non-sleeping packets
will be at most � + 2n � 3n = � � n, with probability at
least �

1�
1

4n=4

�
�

�
1�

1

en=c

�

�

�
1�

1

en=c

�2

� 1�
2

en=c
:

(By applying equation 2)

Theorem 3.22. If at time t0 column x is in bad condi-
tion then in at most 24n2 time steps the column will reach
a good condition (where less than 10n non-sleeping packets
have destinations in column x) with probability at least

1�
8n

en=c
:

Proof. At the worst case, at time t0 there are at most
4n2 non-sleeping packets with destinations in column x. By

Lemma 3.21, at time t0 + 6n the number of these non-
sleeping packets will be at most 4n2�n, with probability at
least

1�
2

en=c
:

By applying Lemma 3.21 at most k times, we have that at
time t0+6kn the number of non-sleeping packets will be at
most 4n2 � kn, with probability at least�

1�
2

en=c

�k

:

For k = 4n � 4n � 10, by time t0 + 24n2, the non-sleeping
packets are less than 10n, with probability at least�

1�
2

en=c

�4n

� 1�
8n

en=c
:

(By applying equation 2)

Corollary 3.23. If a column is in bad condition, it will
enter the good condition in expected time at most O(n2).

3.5 And now all together
In this subsection we combine all the results from the previ-
ous subsections and we show that any packet is delivered to
its destination in expected O(n) time under any conditions.

Corollary 3.24. Let the network be in a steady state.
Then, at a random time t, the probability that a speci�c
column x is in good condition is 1�O(n=en), for any column
x.

Proof. Corollary 3.19 says that a column remains in
good condition for expected time at least Egood =
(nen).
Corollary 3.23 says that the expected time to remain in bad
condition is at most Ebad = O(n2).

We have the following:

Prgoodt!1 =
Egood

Egood +Ebad
= 1�O(n=en):

We get our main result immediately:

Theorem 3.25. Let the network be in a steady state. If
a packet is injected into the network at a random time, the
expected delivery time is O(n), which is asymptotically opti-
mal.

Proof. If the packet is injected when its destination col-
umn is in good condition, with Theorem 3.9 the expected
delivery time is O(n), as long as the column stays in good
condition for long enough time, which it does by Corollary
3.19. If the packet is injected when its destination column
is in bad condition or when the column is not in good con-
dition for long enough time, by Corollary 3.23 we have to

18

wait O(n2) time until the network is in good condition for
a long enough time again.

With Corollary 3.24 we know that with very high probabil-
ity, the �rst is true. The Theorem follows.

4. PACKET INJECTION
In our algorithm, the packets can be injected into the net-
work whenever there are free links, and we have proven in
the previous section that even with this very liberal injection
policy, the expected delivery time of a packet is asymptoti-
cally optimum.

In this section, we show that there actually are free links
every now and then, at any node. In other words, will show
that a speci�c node u can inject a new packet every O(n)
expected time in the worst case, which is also asymptotically
optimum.

If all nodes inject packets whenever they have free links, the
desired result follows naturally: there are O(n2) packets in
the network and from Theorem 3.25 we immediately know
that in O(n) time an expected number of O(n2) of these
packets are delivered. Since destinations are random, O(1)
of the delivered packets are routed to node u. So every
O(n) expected time slot, node u absorbs a packet from the
network. In the following time step node u has a guaranteed
free link and can itself inject a new packet into the network.

However, we don't want to make any assumptions on the
injection behavior of other nodes in the network. Paradox-
ically, it is more diÆcult to show that there is a free link
every now and then, when other nodes do not use every free
link to inject a packet. One could say that from a worst case
point of view the network behaves best if it is fully loaded, a
paradox called non-monotonicity which is known for routing
and thoroughly studied in [11].

Indeed, it can be shown to be impossible to give a worst-case
injection guarantee without further precautions. Let u be a
node in the mesh and let V be the set of (up to four) direct
neighbors of u. Assume that at each step the nodes in V
inject as many new packets into the network as they have
free links, which is up to 16. All other nodes in the network
are completely passive and do not inject any packets at all.
Then node u will be completely jammed, only by the traÆc
generated at the neighbor nodes V . Since the nodes in V
only inject O(1) packets per time step (and destinations are
random), node u must wait an expected number of O(n2)
time steps to receive one of these packets with destination
itself. Therefore, node u's time to wait for a free link is
worse than in the case described above, where all (other)
nodes inject a new packet into the network whenever they
have free links.

In order to have both, the liberal injection policy (nodes
can inject a new packet whenever there is a free link), and
the worst-case upper bound (the time between two free links
for a speci�c node is upper bounded by O(n)) we use the
following simple trick:

When the network is initialized, at step 0, all the
links are free and all nodes can inject up to four

packets. We demand the nodes to mark one of
their packets with a \replace" ag. If at step
0 a node does not want to inject a packet, the
node must inject an empty (but agged) packet
into the network. An empty packet behaves ex-
actly like a standard packet (also with a random
destination), but doesn't carry any information.

Later, upon receiving a agged packet, nodes
must inject a agged packet again (if no real
packet is available, an empty packet must be in-
jected instead). Therefore we always have ex-
actly n2 agged packets in the network. With
the same argumentation as above these packets
will make sure that each node receives a free link
every O(n) time step. And we still have about
3n2 free links in the network that can be used by
any node if there is not so much traÆc.

With the above trick, a constant fraction of the bandwidth
of the network may be used by empty agged packets. How-
ever, we have (many) empty packets only when the overall
traÆc in the network is low. As soon as traÆc in the net-
work picks up, the empty packets will be replaced by real
ones quickly and do not a�ect the overall performance. In
the extreme case where all nodes have packets to inject there
will be no empty packets that a�ect the bandwidth of the
network.

From the above, we have the desired result:

Theorem 4.1. In the worst case, still any node can inject
a new packet in O(n) expected time.

5. CONCLUSION
We presented the �rst dynamic hot-potato routing algo-
rithm which doesn't use any explicit ow control mechanism.
Without ow control packets can be injected whenever there
are free links, and therefore the network capacity is exploited
to its maximum. Although our algorithm doesn't use ow
control, the analysis shows that the expected delivery time
for a packet is O(n), and in the worst case a node obtains
a free link, and can inject a packet, every O(n) time steps.
Both measures are optimal up to a constant factor.

The network we studied in this paper is the n�n mesh. Our
analysis can be trivially extended to the two-dimensional
n� n torus (actually, in the torus the expression constants
are improved because the maximum distance between any
pair of nodes is n � 1, which is smaller than the maximum
distance 2n� 2 in the mesh). An interesting open problem
is to extend the analysis of our algorithms to other kinds of
network topologies.

Acknowledgments
Most of all we would like to thank Eli Upfal from Brown
University for pointing us to the problem of dynamic routing
analysis, and giving us excellent guidance for how to prove
stability in dynamic systems. We would also like to thank
the referees for their useful comments.

19

6. REFERENCES
[1] A. S. Acampora and S. I. A. Shah. Multihop lightwave

networks: a comparison of store-and-forward and
hot-potato routing. In Proc. IEEE INFOCOM, pages
10{19, 1991.

[2] A. Bar-Noy, P. Raghavan, B. Schieber, and
H. Tamaki. Fast deection routing for packets and
worms. In Proceedings of the Twelth Annual ACM
Symposium on Principles of Distributed Computing,
pages 75{86, Ithaca, New York, USA, Aug. 1993.

[3] P. Baran. On distributed communications networks.
IEEE Transactions on Communications, pages 1{9,
1964.

[4] Bartzis, Caragiannis, Kaklamanis, and Vergados.
Experimental evaluation of hot-potato routing
algorithms on 2-dimensional processor arrays. In
EUROPAR: Parallel Processing, 6th International
EURO-PAR Conference. LNCS, 2000.

[5] A. Ben-Dor, S. Halevi, and A. Schuster. Potential
function analysis of greedy hot-potato routing. Theory
of Computing Systems, 31(1):41{61, Jan./Feb. 1998.

[6] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and
D. P. Williamson. Adversarial queueing theory. In
Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pages
376{385, Philadelphia, Pennsylvania, 22{24 May 1996.

[7] A. Borodin, Y. Rabani, and B. Schieber. Deterministic
many-to-many hot potato routing. IEEE Transactions
on Parallel and Distributed Systems, 8(6):587{596,
June 1997.

[8] A. Broder and E. Upfal. Dynamic deection routing
on arrays. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, pages
348{358, May 1996.

[9] C. Busch, M. Herlihy, and R. Wattenhofer.
Hard-potato routing. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing
(STOC'00), pages 278{285, May 2000.

[10] C. Busch, M. Herlihy, and R. Wattenhofer.
Randomized greedy hot-potato routing. In Proceedings
of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA'00), pages 458{466, Jan.
2000.

[11] U. Feige. Nonmonotonic phenomena in packet routing.
In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, pages 583{591,
New York, May 1{4 1999. ACM Press.

[12] U. Feige and P. Raghavan. Exact analysis of
hot-potato routing. In IEEE, editor, Proceedings of the
33rd Annual Symposium on Foundations of Computer
Science, pages 553{562, Pittsburgh, PN, Oct. 1992.
IEEE Computer Society Press.

[13] M. G. Gouda. Elements of Network Protocol Design.
John Wiley and Sons, 1998.

[14] A. G. Greenberg and J. Goodman. Sharp approximate
models of deection routing. IEEE Transactions on
Communications, 41(1):210{223, Jan. 1993.

[15] W. D. Hillis. The Connection Machine. MIT press,
1985.

[16] N. Kahale and T. Leighton. Greedy dynamic routing
on arrays. Journal of Algorithms, 29(2):390{410, Nov.
1998.

[17] C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato
routing on processor arrays. In Proceedings of the 5th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 273{282, Velen, Germany, June
30{July 2, 1993. SIGACT and SIGARCH.

[18] S. Keshav. An engineering approach to computer
networking: ATM networks, the Internet, and the
telephone network. Addison-Wesley, Reading, MA,
USA, 1997.

[19] F. T. Leighton. Average case analysis of greedy
routing algorithms on arrays. In A.-S.
ACM-SIGARCH, editor, Proceedings of the 2nd
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 2{10, Island of Crete, Greece,
July 1990. ACM Press.

[20] N. F. Maxemchuk. Comparison of deection and store
and forward techniuques in the Manhattan street and
shu�e exchange networks. In Proc. IEEE INFOCOM,
pages 800{809, 1989.

[21] M. Mitzenmacher. Bounds on the greedy routing
algorithm for array networks. Journal of Computer
and System Sciences, 53(3):317{327, Dec. 1996.

[22] C. Scheideler and B. V�ocking. From static to dynamic
routing: EÆcient transformations of store-and-forward
protocols. In Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pages
215{224, New York, May 1{4 1999. ACM Press.

[23] C. L. Seitz. The caltech mosaic C: An experimental,
�ne-grain multicomputer. In 4th symp. on Parallel
Algorithms and Architectures, June 1992. Keynote
Speech.

[24] B. Smith. Architecture and applications of the HEP
multiprocessor computer system. In Proc. Fourth
Symp. Real Time Signal Processing IV, pages
241{248. SPIE, 1981.

[25] Stamoulis and Tsitsiklis. The eÆciency of greedy
routing in hypercubes and butteries. IEEETCOMM:
IEEE Transactions on Communications, 42, 1994.

20

