
Long-lived Adaptive Collect with Applications
(Extended Abstract)

Yehuda Afek
Computer Science Dep.,

Tel-Aviv University,
Israel 69978.

afek@math.tau.ac.il.

Gideon Stupp
Computer Science Dep.,

Tel-Aviv University,
Israel 69978.

afek@math.tau.ac.il.

Dan Touitou
Interdisciplinary Center,

Herzliya,
Israel 46150.

dant@idc.ac.il.

Abstract

A distributed algorithm is adaptive if the worst case step
complexity of its operations is bounded by a function of the
number of processes that are concurrently active during the
operation (rather than a function ofN , the total number
of processes, which is usually much larger). In this paper
we present long-lived and adaptive algorithms for collect in
the read/write shared-memory model. Replacing the reads
and writes in long-lived shared memory algorithms with our
adaptive collect results in many cases in a corresponding
long-lived algorithm which is adaptive. Examples of such
applications, which are discussed in the paper are atomic-
snapshots, andl-exclusion.

Following the long-lived and adaptive collect we present
a more pragmatic version of collect, calledactive set. This
algorithm is slightly weaker than the collect but has several
advantages. We employ this algorithm to transform algo-
rithms, such as the Bakery algorithm, into their correspond-
ing adaptive long-lived version, which is more efficient than
the version that was obtained with the collect.

Previously, long-lived and adaptive algorithms in this
model were presented only for the renaming problem [2].
A one-shot and adaptive collect algorithm was presented in
[10].

1. Introduction

Traditionally, the efficiency of a distributed algorithm is
measured as a function ofN , the total number of processes
that may participate in the algorithm. However, recently it
has been observed that the worst case complexity of dis-
tributed algorithms could perhaps be made adaptive, that
is, bounded by a function of a significantly smaller quan-
tity, the number of concurrently participating, or actually
active processes [4]. For example, Lamport’s fast mutual

exclusion algorithm [18] takes a constant number of steps
if one processor runs alone and a linear inN number of
steps if two or more processes run concurrently. Other adap-
tive (sometimes calledfast) algorithms have been since de-
signed [18, 4, 2, 19, 10, 6, 9, 7].

Long-lived and adaptive algorithms in the read/write
shared memory model have been previously presented only
for the renaming problem [11, 2, 3]. General methodologies
for long-lived adaptive algorithms have been presented only
in a model that uses strong synchronization primitives such
as read-modify-write, or load-linked and store-conditional
[4]. This paper presents building blocks and tools with
which many long-lived algorithms in the read/write model
can be transformed into their corresponding adaptive ver-
sions.

The strongest form of adaptiveness in the read/write
shared memory model has been defined and achieved in the
recently presented long-lived renaming algorithms [11, 2,
3]. In these specially tailored algorithms the complexity of
an operation is a function of thepoint contentionof the op-
eration, defined as the maximum number of processes ex-
ecuting concurrently at some point during the operation’s
interval. However, these renaming algorithms, as they are,
turned out to be useless in transforming other long-lived al-
gorithms into their adaptive variants.

Methods for converting algorithms into their adaptive
versions have been presented in the read/write model but
only for particularone-shotalgorithms [10, 14]. The ba-
sic idea in the transformation suggested in [14] assumes
that one-shot single-writer-multi-reader algorithms take the
simple form in which each processpi alternates between
writing its own variableCi and collecting the values of all
the variablesC1; : : : ; CN . The transformation then replaces
each of the collects with the one-shot adaptive collect proce-
dure of Attiya and Fouren [10]. For many one-shot single-
writer-multi-reader algorithms, this transformation removes
any dependence of the step complexity onN , resulting in

one-shot adaptive multi-writer-multi-reader algorithms.
The piece whose absence prohibits the application of

a similar transformation forlong-lived algorithms in the
read/write model, is a long-lived adaptive collect algorithm.
In this paper we provide this piece by presenting such an al-
gorithm and demonstrating its applications. First we define
two variants of adaptive and long-lived collect, the standard
collectandactive-set. Given these two variants the contri-
butions of the paper are as follows:

Basic building blocks:

1. A long-lived and adaptive to point-contention im-
plementation of the standard collect is given and
proved.

2. A long-lived and adaptive implementation of the
active-set is presented and proved. Although
this algorithm satisfies slightly different proper-
ties then the standard adaptive collect it has sev-
eral advantages as discussed below.

Applications of the building blocks:

1. The long-lived and adaptive collect is employed
to transform the snapshot algorithm presented
in [1] and the l-exclusion algorithm presented
in [5]. The resulting algorithms are long-lived
and adaptive to the interval contention (a weaker
form of adaptiveness, defined below).

2. We specially tailor the transformed atomic-
snapshot algorithm to get adaptiveness to the
point-contention.

3. The application of the long-lived adaptive active-
set algorithm to transform the Bakery mu-
tual exclusion algorithm into a corresponding
long-lived and adaptive algorithm is presented.
We also discuss similar applications to thel-
exclusion, and thel-assignment algorithm of
Burns and Peterson [12].

The first building block, which is simply calledcol-
lect, is non-sequentially specified just like the traditional
collect: There areN single-writer-multi-reader registers
C1; : : : ; CN , one for each process. To write in the collect
processpi writes its value inCi. To perform collect a con-
current process reads theN registers, one at a time in an
arbitrary order, and returns the vector of values read. Since
our implementation of the above specification is adaptive to
the (point) contention, it uses multi-writer-multi-reader reg-
isters. Moreover, because each operation returns a vector of
sizeN there can be noadaptivecollect that uses registers
of size smaller thanN (consider the case that one process

runs alone and has to return a vector ofN values inO(1)
primitive operations). Therefore, our implementation uses
registers that can holdN values (as is also the case with the
atomic snapshot algorithm of [1]). Furthermore, in our col-
lect algorithm, only in terms of shared memory operations
the complexity is adaptive. The number of operations each
process performs on itslocal memory is linear inN (due
to local operations on the sizeN registers). However, first
notice that remote (shared memory) accesses are consider-
ably more expensive than local memory accesses, secondly,
in part we overcome this problem as discussed below.

In an attempt to overcome the two drawbacks above
namely, size of registers and the complexity in terms of the
number of local operations, we notice that there are algo-
rithms (e.g., Bakery algorithm) in which not all the values
returned in a collect operation are important. Rather, only
the values of currently participating processes are relevant.
For such cases we can redefine a variant of collect, theac-
tive set, which can be implemented in shared memory and
local memory adaptive step complexities. Furthermore, we
are able to implement the active set with standard size reg-
isters (O(logN) bits each).

In the active set algorithm we deal with a more basic
problem of collecting the processes for which an active
flag is set. In this problem there areN single-writer-multi-
reader boolean registers,F1; : : : ; FN , one for each process.
Three concurrent operations are supported by theactive set:
join, leave andget set. In join processpi writes true in its
flagFi. In leave it writes false to its flagFi. In aget set
operation a process returns the set of processes that are cur-
rently active. That is, theget set must return any process
whose flag is true from before theget set starts until after
it finishes, and it must not return a process whose flag was
false during the entire same period. It may or may not re-
turn any other process. Using the active-set we implement
a weak-collect by first performingget set and then read-
ing the private single-writer-multi-reader registers of these
active processes.

To get some sense of the difficulties in designing long-
lived and adaptive collect we briefly review here the one-
shot version. The one-shot collect algorithm of Attiya and
Fouren [10] uses a large binary tree with a splitter[20] ob-
ject in eachnode. Abstractly, the splitter object is a shared
device that returns a special value to a process that accesses
the splitter alone and before any other process hasaccessed
the splitter, such a process is said to have won or captured
the splitter. All the processes thataccess the splitter concur-
rently with others or after it has been already touched, are
split into two sets such that not all the processes accessing
the splitter are placed in the same set. Notice that it is possi-
ble for no process to return the special value when accessing
a splitter (i.e., it is possible that no process wins a splitter).
To perform an update in the collect object a process starts at

the root of the binary tree and traverses down until it wins
a splitter, marking all the splitters it has touched as it goes
down. Then, the process writes its value in a register asso-
ciated with the splitter it has captured. To perform a collect
a processor performs a DFS traversal of the marked nodes
of the tree collecting all the values it observes during the
traversal. The difficulties in making this algorithm long-
lived, are first, how to un-mark nodes when processes finish
their update without the concurrently traversing (collecting)
processes being confused, and second, where would the val-
ues written by processes that have left be found. That is, a
process doing collect when the contention is very low is not
allowed to perform a DFS to reach deep enough locations
in the tree. One of the major achievements of this paper is
an algorithm that overcomes these difficulties.

Notice that in our mechanical transformations, even
though we use a long-lived and adaptive to point-contention
collect, the resulting algorithms are not necessarily adaptive
to the point-contention. Sometimes the resulting algorithms
are adaptive to the interval-contention. We speculate that in
many cases there is no automatic transformation that would
result in a point-contention variant of an algorithm, while
such a transformation into an interval-contention variant ex-
ists.

2. Preliminaries

We assume a standard asynchronous shared-memory
model of computation, following, e.g., [15]. A system con-
sists ofN processes,p1; : : : ; pN , communicating by read-
ing and writing to shared registers; we assume thateach
process can read from and write to any register (multi-writer
multi-readerregisters).

The following is a non-sequential specification of long-
lived collect: There areN single-writer-multi-reader regis-
tersC1; : : : ; CN , one for each process. To write processpi
simply writes the value inCi. To perform collect a concur-
rent process reads theN registers in an arbitrary order and
returns the vector of values read.

Consider some execution� of a long-lived algorithmA;
below,�0 is some finite prefix of�.

Processpi is participatingat the end of�0, if �0 includes
an invocation of some operation ofA by processpi without
the matching response. Theactive processesat the end of
�0, denoted Cont(�0), is the set of processes participating
at the end of�0. Given a subsequence� of �, let �0� be
the shortest prefix of� that contains�, we define theinter-
val contentionof � and thepoint contentionof �, denoted
IntCont(�) and PntCont(�) respectively, as follows:

IntCont(�) = j
[

�0�0 prefix of�0�

Cont(�0�0)j

PntCont(�) = max
�0�0 prefix of�0�

jCont(�0�0)j

Intuitively, the interval contention of a subsequence� is the
number of different processes that were active, (i.e., par-
ticipating) during� while the point contention is the maxi-
mum number of process active at any point of time during�.
Clearly, for any subsequence�, PntCont(�) � IntCont(�).

Given an operationop, we define theexecution interval
of op, denoted�(op) as the subsequence of� starting at the
invocation ofop and ending at the completion ofop. The
interval contentionandpoint contentionof an operationop
are defined as IntCont(�(op)) and PntCont(�(op)) respec-
tively. In the rest of the paper,k denotes the PntCont(�(op))
of some operationop, unless it is specifically said to repre-
sent IntCont(�(op)).

The step complexity of an algorithm isadaptive to in-
terval contentionif there is a bounded function S, such
that the number of steps performed by any processpi in
any execution interval of an operationopi of A is at most
S(IntCont(�(opi))). Similarly, the step complexity of an al-
gorithm isadaptive to point contentionif there is a bounded
function S, such that the number of steps performed by any
processpi in any execution interval of an operationopi of
A is at most S(PntCont(�(opi))).

Clearly, the contention of an execution interval is
bounded byn, the total number of processes. Therefore,
in an adaptive algorithm,opi terminates within a bounded
number of steps ofpi, regardless of the behavior of other
processes. Thus, an algorithm with adaptive step complex-
ity is necessarilywait-free.

3. Adaptive Collect

3.1. Algorithm overview

The algorithm uses a2N2 entries array in which pro-
cesses store their values. To perform an update a process
temporarily captures an entry in the array, in exclusion, as
close to the beginning of the array as possible. It records the
value it writes in the multi-writer-multi-reader register as-
sociated with this entry of the array and releases the entry.
At this point the process has successfully stored its value
in the system, later updates will not overwrite it. However,
a subsequent collect will have to scan the array to find the
new value. If this collect happens with low contention (e.g.,
in solo) such a scan would make it not adaptive. There-
fore, before finishing the update the process has to bubble
up its value to the beginning of the array. Future collects
then start at the beginning of the array, and in the absence
of contention find the necessary values at the beginning of
the array. In bubbling up, a process iterates on the entries
of the array from the entry it has captured up to the top (be-
ginning) of the array. In each such entry it recursively per-

Algorithm 1 Code for adaptive collect for processp.

Type:
pid = process id,1 : : :N and?;
item = hpid ; val ; timestampi;
itemSet = Set ofitem;

Shared:
A[1 : :2N 2]: atomic MRMW registers of type

itemSet ;
last [1 : :2N 2]: atomic MRMW registers of typepid ;
C [1 : :N][1 : :2N 2]: atomic SWMR registers of type
itemSet each initialized to;;

Local registers global to the program:
index ;
timestamp;

procedureupdate(val)
1 refresh(fhp; val; timestampig);
2 timestamp:=timestamp+1;

functioncollect() returnsItemSet

3 s:=gather(1);
4 refresh(s);
5 returns ;

functiongather(t) returnsItemSet

6 q :=last [t];
7 tmp:=C [q][t];
8 if (tmp = ?) then
9 tmp:=merge(gather(t+1),A[t]);
10 returntmp;

procedurerefresh(itemSet S)
11 index := 2k2-rename(p); // from [3]
12 A[index]:= merge(A[index]; S);
13 2k2-release-name(index);
14 for (t = index down to1) do
15 C [p][t]:=?;
16 last [t]:=p;
17 C [p][t]:=gather(t);

od;

functionmerge(ItemSet S ; ItemSet T)
18 The function merges the two sets,

leaving for each process only the
most recent entry according to the timestamps.

forms a sub-collect of the values recorded in the part of the
array which is below this entry, and records this collect in a
privatesingle-writer-multi-reader register that is associated
with this entry.

To perform a collect a process starts at the top (begin-
ning) of the array collecting values as it goes down. A key
point is that the number of entries the collecting process
scans depends on the point-contention it encounters. In the
absence of contention it finds the necessary values at the
first entry of the array. As described, the collect is regular,
i.e., the first of two sequential collects that overlap a write
of value “new” may return “new” while the later might re-
turn “old”. To prevent this we require each collect to write
the values it has read (perform anupdate()), thus ensuring
that any later collect returns the same or later values.

To capture an entry in the array in exclusion we use
the long-lived and adaptive2k2-renaming algorithm of
[2, 3] whose step complexity isO(k3) adaptive to point-
contention (Line 11 in Algorithm 1). After acquiring a
nameindex the process adds its value to a register asso-
ciated with entryindex in the array (Line 12 in Algorithm
1). It then releases the acquired name (Line 13) and starts
the bubbling up process.

In the bubbling up process the updater goes through the
entries of the array from the index it had captured to the
top. In each entry it performs a sub-collect of the bottom
part of the array (Functiongather) and records it with this
entry (Line 17). To do that we associate with each entry
a pointer, calledlast, that points to the single-writer-multi-
reader register of the last process that has recorded a sub-
collect with this entry. The process performs the bubbling
up through an entry in a particular order: First it writes
? in its single-writer-multi-reader register associated with
this entry (calledC [p][i] for processp in entryi), secondly
it writes its name intolast , and finally performs the sub-
collect and records its result inC [p][i] (Lines 15 to 17).

This particular order of recording collected informa-
tion in each entry guarantees the following property: If
a processq read last [i] = p and subsequently it reads
C [p][i] = vector then any update that has recorded infor-
mation below entryi in the array and has terminated before
q readlast [i] is included in thevector . Furthermore, ifq
observesC [p][i] = ? then it knows processp is concurrent
with its operation and by the adaptiveness it may now per-
form a few more operations, in particular recursively gath-
ering the information at entryi + 1 (Line 9 in the code).

Since the name processp gets from the renaming algo-
rithm is at most2k2, and thegather procedure takes at
mostO(k2) the total step complexity of theupdate() and
of collect is at mostO(k4).

To be able to distinguish new values from older values
we add to every value written by every process a sequence
number. When processp adds its information to entryA[i]

it erases the last value it wrote there (if any). When two
sets of values are merged (recursive collect operation and
content ofA[] of some entry, Lines 9 and 12), the value
with the larger sequence number is taken for each process.

The proof of correctness and that the complexity of ei-
ther thecollect or update is O(k4) are given in Sections
3.2 and 3.3, where it is proved that the adaptive collect sat-
isfies the following two properties (these are the properties
used to prove the correctness of the algorithms that use the
adaptive collect):

1. For each process the collect() operation returns a value
that was written either by the last update operation to
end before the collect() has started or by a later update
operation which is concurrent with the collect().

2. In two sequential collects,C1 andC2, such thatC2
starts afterC1 ends, for each processj,C2[j] is a value
that was writen not before valueC1[j] was.

3.2. Correctness of Adaptive Collect
(sketch of proof)

Any executionr of procedurerefresh has a setsr of
triplets that is passed to the procedure as a parameter. Given
a setR of procedurerefresh executions, we say that some
triplet t = hp; val ; tsi is in R, denotedt 2 R if there is
somer 2 R such thathp; val ; tsi2 sr . Given an execution
g (c) of gather (collect), we denote bysg (sc) the set of
triplets returned byg (c).

The following lemma states that any value returned by
gather was once added by somerefresh call. This lemma
is easily proved by induction on the prefixes of the adaptive
collect execution.

Lemma 3.1 Let e be an execution of theadaptive collect
algorithm, then for any prefixpre of e if R is the set of
refresh operations that started duringpre, then any regis-
ter inC and inA contains triplets that are inR. Moreover,
if g is an execution ofgather completely included inpre
then any triplet returned byg is inR.

Given two tripletst = hp; val; tsi andt0 = hp; val0; ts0i
we say thatt0 is more recentthan t (denotedt0 � t) if
ts0 � ts. Given a setR of refresh executions and a
processp we define themost recenttriplet of p in R, de-
notedRecentp;R to be hp; val; tsi 2 R, s.t., for every
t = hp; �; �i 2 R, Recent(p;R) � t. If R does not con-
tain any triplethp; val; tsi thenRecentp;R is undefined.

Given an executionr of refresh, we define theentry slot
of r to be the index returned by the2k2-rename algorithm
in Line 11. Given an executionr of refresh with entry slot
x, we say thatr crossedslotx0 � x if the process executing
r has already changedlast [x 0] to its id (Line 6).

Lemma 3.2 Lete be an execution of theadaptive collect al-
gorithm, and letg be an execution ofgather(x) contained
in e. Assume thatR1 is the set of allrefresh operations
that started before the end ofgather(x) andR2 is the set of
all refresh operations that crossedx before the beginning
of gather(x), then for every processp, if Recentp;R2

is de-
fined thensg contains a triplett = hp; val; tsi s.t.,t 2 R1

andt � Recentp;R2
.

Proof: We show that the claim holds for every prefix of
e by induction on the length of the prefixes. Letg be a
call togather(x) and letp be some process and assume that
Recentp;R2

is defined. Letr be an execution ofrefresh
such thatRecentp;R2

2 sr. According to the algorithm,
a processq returns fromgather(x) either (1) after read-
ing some process idq0 in last [x] and then reading a non-?
valuec[q’][x]= s (lines 7,8) or(2) after merging the result
of gather(x+ 1) with the content ofA[x] (Line 9).

Case1. Since processq0 assigned? to c[q’][x] before
writing its id into last [x] (Line 15) we may deduce that the
value read inC [q 0][x] is the result of agather(x) call per-
formed byq0 after q0 wrote its id intolast [x]. If r crossed
x beforeq0 executedgather(x), according to the induction
hypothesis the set returned by the execution ofgather(x)
by q0 contains a triplett = hp; val; tsi which is more recent
thanRecentp;R2

. If r crossedx after the beginning ofq0’s
execution ofcollect(x), the process executingr must have
overwrittenq0 in last [x] with its own id before it was read
by q- a contradiction.

Case 2. If the entry slot of r is greater thanx,
then according to the induction hypothesis, the call to
gather(x+ 1), which is completely included in the call
to gather(x), returns a triplett = hp; val; tsi which is
more recent thanRecentp;R2

. Now, since during the call
to merge, only updates with higher timestamps than those
returned fromgather(x+ 1) are chosen we are done. As-
sume that the entry slot ofr is x itself, by Line 12 and
by Lemma 3.1 whenq readsA[x], it must contain a triplet
t = hp; val; tsi which is more recent thanRecentp;R2

.

The following lemma follows immediately from the fact
that the result of acollect is gather(1).

Lemma 3.3 For every executionc of collect and every pro-
cessp if sc contains a triplet of the formt = hp; val; tsi then
t is more recent than all the tripletsupdated byp before the
beginning ofc.

Since everycollect performs arefresh(s) wheres is the
collect result, due to the previous lemma we may state:

Lemma 3.4 Let c andc0 be two executions ofcollect and
assume thatc0 starts completely after the end ofc then for
every triplett in s(c), there is a triplett0 in s(c0) which is
more recent thant.

3.3. Complexity (Sketch of analysis)

Assume thatp is a process executinggather(x), we
say thatp skipsover a slotx if it reads last [x]= p0 and
C [p’][x]= ? for some processp0, and consequently has to
perform a recursive callgather(x+ 1). In such a case we
also say thatp skips overp0.

By the algorithm, a process skips a slot when it encoun-
ters another processp0 that traverses this slot during its bub-
bling up procedure (lines 15 – 17). Since processp0 writes a
value different than?, intoC [p 0][x] before climbing up to
slotx�1, there is at most one entryC [p 0][�] at any point of
time which is= ?. Hence,p may skip overp0 at most once
while p0 executes the bubbling up procedure andp a gather
procedure.

Lemma 3.5 The largest slot index that can be reached dur-
ing an execution of proceduregather is g(k) + k wherek
is the point contention of thegather execution interval and
g(k) is the name complexity of the renaming algorithm used.

Proof: Let g be the execution of proceduregather(x) by
processp. By the algorithm,p performs recursive calls on
larger slots until it reaches slotx0 such that,last [x 0]= p0

andC [p 0][x 0]6= ?. We separate the slots skipped byp into
two sets: all the slots in which the processes crossed byp

started their call torefresh afterp started the call togather
and all the slots in which the processes crossed byp started
their last call torefresh beforep started the call togather.
If some processp0 started a call torefresh afterp started its
call togather the point contention it encountered during the
renaming algorithm is at mostk. Consequently, the entry
slot ofp0 is bounded byg(k) and in such a casep may cross
it only while skipping over slots1 : : : g(k). If some process
p0 started its last call torefresh beforep started its call to
gather, it may be crossed byp at most once, while bubbling
up duringrefresh (lines 15– 17).

Since any execution ofgather goes down at most to the
g(k) + k slots, and sinceg(k) = 2k2 we may conclude:

Theorem 3.6 The shared memory step complexity of
update andcollect isO(k4)

In Section 8 we show how to reduce the complexity of
proceduregather to O(k), which leads to an overall com-
plexity ofO(k3) for theupdate andcollect operations.

4. Transformations With Adaptive Collect

Most long-lived algorithms in the read/write shared
memory model can be writen in the natural form in which
each process alternates between writing its private single-
writer-multi-reader register and reading all the registers.

Following [14] we transform any such algorithm by replac-
ing the writes with theupdates from Algorithm 1, and the
read-all with thecollect. The transformed algorithm is in
many cases a long-lived and adaptive version of the original
algorithm. Examples of such algorithms are the snapshot
algorithm from [1] and thel-exclusion algorithm of [5].

Notice that unlike the adaptive collect procedure (Al-
gorithm 1) that is used in the transformation, the result-
ing algorithms are not necessarily adaptive to the point-
contention but rather they might be adaptive to the interval-
contention encountered. As in the collect procedure the lo-
cal step complexity of the transformed algorithms is not
adaptive. To overcome these disadvantages we present in
the next section a long-lived snapshot algorithm that is
adaptive to the point-contention,and in Section 6 we present
a long-lived and adaptiveactive set. Using theactive set
we can transform the Bakery algorithm, thel-exclusion al-
gorithm [5] and thel-assignment algorithm [12] into corre-
sponding long-lived algorithms that are adaptive also in the
number of local operations performed.

5. Point Contention Adaptive snapshot

The snapshot algorithm, like the collect algorithm, sup-
ports two operations: ansnapshot update() operation
with which any process updates its value and ascan() oper-
ation in which any processp collects the values written by
all the processes. The difference between a snapshot and a
collect is that the scans can be linearized with respect to the
update operations.

The snapshot algorithm in [1] is based on the idea that
in every update operation by processp, p first performs a
scan and then writes the scan result with the new update
value. To perform a scan, processp performs two collect
operations. If the values of all the processes are the same
in the two collects (to make this check robust every new
value is tagged with a sequentially increasing label) the col-
lect is a valid snapshot. If not, the process is iterated and
another two collects are performed. This procedure contin-
ues untilp observes some process,q that has changed its
value twice. Sinceq made a scan,scanq , between its up-
dates,scanq was performed duringp’s scan,scanp, and is
thus a valid returned value forscanp. From this algorithm
it follows that a scan operation performs at most2k collect
operations, or that its step complexity is at mostO(kN),
wherek here is the interval contention of the operation, i.e.,
IntCont(�(scanp)).

As we mentioned before, simple substitution of the col-
lect operation with an adaptive collect creates an adaptive
with respect to interval contention algorithm. Consider for
example the following scenario: during a snapshot,k pro-
cesses update their values one after the other with no over-
lap in their executions. Still the scanning process fails to

obtain two consecutive identical collectsk times. However,
in this scenario the point contention is 2 but the algorithm
makesO(k) collect operations.

The key idea in the modified snapshot algorithm, Algo-
rithm 2, is as follows: Ifscanp observedq with two differ-
ent values,v1 andv2, and laterp observes any other process
r reporting a snapshot in whichq appears with valuev2,
thenp may return this other snapshot for its scan operation.
Since this scan byr is linearized after processq wrotev2
it’s linearization point is contained in the interval ofscanp.
Moreover, if no suchr is observed but some processs did
change its variable, then the update operation of processs

was concurrent with the second update ofq and hence at
the same time concurrent withscanp. Furthermore,s’s up-
date is concurrent with any other process that is observed to
change its variable.

Algorithm 2 Code for adaptive with respect to point con-
tention snapshot for processp.

functionscan()
19 moved id :=?;
20 whiletrue do
21 a[1 : :N]:=collect(); // from Algorithm 1
22 b[1 : :N]:=collect();
23 if (8j 2 f1 : : :Ng a[j]:seq = b[j]:seq) then

return (hb[1]:data; b[1]:seqi;
24 : : : ; hb[N]:data; b[N]:seqi);
25 else-ifmoved id = ?
26 then for (j=1 toN) do // local access
27 if(a[j]:seq 6= b[j]:seq) then
28 moved id :=j ;
29 moved seq:=b[j]:seq;
30 break;

od;
31 else //moved id 6= ?
32 forj = 1 toN do // local access
33 if (b[j]:view [moved id]:seq � moved seq)
34 then returnb[j]:view;

od; od;

proceduresnapshot update(data)
35 s[1 : :N]:=scan;
36 seq := seq + 1;
37 update(hdata; seq ; s[1 : :N]i); // from Algorithm 1

5.1. Correctness proof (sketch), and com-
plexity

In order to prove that our implementation is a cor-
rect atomic snapshot, we show that our implementation is
linearizable[17]: for every execution of the snapshot al-

gorithm, there exists a total order among thescan and
snapshot update operations, consistent with the partial
order induced by the execution, such that, the sequential
history[17] induced by this total order iscorrect. A sequen-
tial history is correct if everyscan returns for every process
p the value written by the lastsnapshot update of p that
is serialized before thescan operation[1].

Let s ands0 be twoscan results. We say thats0 is more
recent thans, denoteds0 � s if for every processp, if s
contains a triplett = hp; val; tsi thens0 contains a triplet
t0 such thatt0 is more recent thant. The next lemma states
that every twoscan results are comparable:

Lemma 5.1 For every two scan results,s ands0, eithers �
s0 or s0 � s.

Proof: Directly from Lemma 3.4.

Given an execution of the snapshot algorithm we define
the total order,!, amongscan andsnapshot update op-
erations in the following way: LetS andS0 be twoscan
executions with resultss ands0 respectively and letU and
U 0 be twosnapshot update operations performed bypU
andpU 0 with time-stampstsU and tsU 0 respectively. We
say thatS ! S0 iff s0 is more recent thans, U ! S iff
s contains a triplethpU ; val; tsi such thatts � tsU 0 . Fi-
nally if there is ascan operationS such thatU ! S and
S ! U 0, we say thatU ! U 0. If there is no suchscan
operation we orderU andU 0 according to their respective
ending points. The correctness of the following lemmas fol-
lows from lemmas 3.3 and 3.4.

Lemma 5.2 The! total order is consistent with the partial
order induced by the execution.

Lemma 5.3 The sequential history induced by! is cor-
rect.

Now we conclude:

Theorem 5.4 The snapshot algorithm is a linearizable im-
plementation of the snapshot object.

5.2. Complexity

Lemma 5.5 If processp performs the while loopk times
during an execution of the scan functionwithout terminat-
ing then, the point contention of this scan execution is at
leastk.

Sketch of proof: Assume thatp performedk iterations of
the while loop during the execution ofscan. For iteration
i there is at least one process, denotedpi, such that dur-
ing the i-th iterationp has reada[pi]:seq 6=b[pi]:seq. Let
xi be the content ofb[pi] during thei-th iteration. Clearly,

for every i = 1 : : : k pi updatedxi into the collect object
after p started thescan execution. According to the al-
gorithm for everyi; j 2 f1 : : :kg, i 6= j, pi 6= pj , oth-
erwise the scan operation would have terminated by the
condition in Line 33. Moreover, for everyi = 2 : : :k,
xi.view [p1]:seq< x1.view [p1]:seq. Therefore, for every
i = 2 : : :k, pi has started the update operation during which
it updatedxi into the collect objectbeforep1 updatedx1
into the collect object and therefore,p2 : : : pk are all active
at that point of time.

Algorithm 3 Code for active set for processp.

Type:
pid = process id,1 : :N and?;
pidSet = Set ofpid types;

Shared:
A[1 : :2N 2], atomic MRMW registers of typepid ;
last [1 : :2N 2], atomic MRMW registers of typepid ;
C [1 : :N][1 : :2N 2], atomic SWMR registers of type
pidSet , each initialized to;;

Local registers global to the program:
index ;

procedurejoin()
38 index := 2k2-rename(p);
39 A[index]:=fpg;
40 bubble up();

procedureleave()
41 A[index]:=;;
42 2k2-release-name(index);
43 bubble up();

procedureget set() returnspidSet .
returngather(1)

procedurebubble up()
44 for (t = index down to1) do
45 C [p][t]:=?; // different than;
46 last [t]:=p;
47 C [p][t]:=gather(t);

od;

functiongather(t) returnspidSet .
48 q :=last [t];
49 temp:=C[q][t]; // try to get the set from the last

process that updated this entry.
50 if (temp = ?) then // some other process is active

therefore more operations are allowed.
51 tmp:=gather(t+1)[A[t];
52 returntmp;

Theorem 5.6 The complexity of a scan or
snapshot update operation isO(k4)

6. Active set

Although the adaptive collect presented in Section 3 en-
ables an automatic substitution of a standard collect oper-
ation it has two major drawbacks; the size of the registers,
which is unavoidable, and the non-adaptive local step com-
plexity. To deal with these drawbacks we suggest the
active set. A new object which, in many cases, can substi-
tute for collect:

Definition 6.1 An active setobject supports the following
operations:

1. join(): with which a process joins the set.

2. leave(): with which a process leaves the set.

3. get set(): which returns the current set of active pro-
cesses. More formally,get set() must return all the
processes that have finishedjoin() before get set()
has started and did not startleave() duringget set().
It also mustnot return any process that has finished
leave() beforeget set() started and has not started
join() duringget set().

Our implementation of an active set is such that the
step complexity of the operations depends both on the con-
tention and on the number of processes that are currently
in the set. I.e., if there areM processes in the set then
get set() can takeO(M) steps, even if all the processes
have finished thejoin() and have not yet startedleave().
Therefore, for this problem we redefine (from Section 2):
Processp is participating at the end of�0, if �0 includes an
invocation ofjoin byp without the response of the matching
leave by p. Fortunately, many non adaptive long-lived al-
gorithms may be transformed into their adaptive versions by
substituting the standard collects with a collect that is based
on the active set. In these algorithms only the values of
processes that are in certain region of the code are relevant
(e.g., outside the remainder section, in mutual exclusion al-
gorithms). Typically, in such an algorithm processp starts
with a join() and ends with aleave(). Whenever a process
needs to collect information from the other processes, it col-
lects it only from the active processes as follows: it first per-
forms aget set() and then collects the data only from the
processes in the set. If, for example, the number of collects
in the algorithm is constant, then the new transformed algo-
rithm is adaptive with respect to point contention (as origi-
nally defined) since processp is actually active between the
join() andleave(). For example, see Algorithm 4.

Algorithm 3 implements an active set inO(k04), where
k0 is the point-contention of operationop, according to the

new definition ofparticipating given above. In the full
paper an active set algorithm similar to Algorithm 5 with
O(k03) step complexity is presented.

During join() processp usesrenaming() to acquire a
unique entry. This entry is assigned top until it performs
leave(). After getting an entry,p writes its name in that en-
try and then propagates its name and the names of all the
processes it sees up to the beginning of the array (similar
to the adaptive collect algorithm). In theleave() proce-
dure processp erases its name from the entry, releases the
name it got, and again propagates this information up the ar-
ray. Theget set() operation invokes thegather operation
which works like in the adaptive collect algorithm. Either
the last process to propagate up from entryi has finished,
in which case a correct return value can be read from its
dedicated register, or it is active and so thegather() proce-
dure can continue to the next entry. Notice that here, there
is only one value in each entry and merging theO(k02) en-
tries takesO(k0) time, even in local steps. In Section 6.1
we show how the algorithm is implemented using registers
of sizeO(logN) bits.

The proof of correctness is very similar to the proof of
the adaptive collect (Section 3.2) and is given in the full
paper.

6.1. Adaptive Active Set: Reducing the
Register Size

As the reader may notice, the only data structure that
uses large registers isC , where processes store the result
of a completedgather. One possible way to avoid using
large registers is to replace every entry inC with a linked
list of process ids. In such case, a situation in which some
processp executinggather(x) readsC [p 0][x]:list while p0

is updatingC [p 0][x]:list may occur. To overcome this prob-
lem we borrow a technique from [16] and we wrap ev-
ery list in C with two countersstart and done . When-
ever p0 decides to alterC [p 0][x]:list, it first increments
C [p0][x]:start changesC [p 0][x]:list and then increments
C [p0][x]:done. A processp readingC [p 0][x]:list, first
readsC [p 0][x]:done, collects the content ofC [p 0][x]:list
and then readsC [p 0][x]:start. If the values read in
C [p0][x]:done and C [p 0][x]:start differ, that means that
p0 was concurrently updating the list, and sop cannot re-
turn the list but rather has to mergeA[x] with a the re-
sult of a recursive call togather(x+ 1). Notice, that one
can bound the number of values used inC [p 0][x]:start and
C [p0][x]:done using techniques from [8].

7. Local Adaptive Mutual Exclusion

Here (Algorithm 4) we demonstrate the usefulness of the
long-lived and adaptive active set in transforming the Bak-

ery mutual exclusion algorithm into an adaptive mutual ex-
clusion algorithm. Since in mutual exclusion a hungry pro-
cess must busy wait while other processes are in the critical
section the step complexity is redefined in this case as fol-
lows: each spin-lock on a variable while it does not change
is counted as one operation (in other words we count only
the number of remote, un-cashed, accesses). To the best
of our knowledge no adaptive mutual exclusion algorithm
was previously presented (Choy and Singh have presented
a mutual exlusion algorithm whose system response time
is adaptive, but not its step complexity [13]). Algorithm 4
presents the code of the transformed adaptive Bakery mu-
tual exclusion algorithm. The correctness proof is given in
Section 7.1.

Algorithm 4 Code for adaptive Bakery for processp.

Initially Number [i]=0 and
Choosing [i]=false, fori; 1 � i � N .

(entry)
53 join();
54 Choosing [p]:=true;
55 S :=get set();
56 Number [p]:= maxj2S (Number [j])+1;
57 Choosing [p]:=false;
58 S :=get set();
59 once for everyj 2 S do
60 wait untilChoosing [j]=false;
61 wait untilNumber [j]=0 or

(Number [j]; j) > (Number [p]; p);
(Critical Section)
(Exit):

62 Number [p]:=0;
63 leave();

(Remainder)

7.1. Correctness of the adaptive Bakery Al-
gorithm

Lemma 7.1 The adaptive bakery algorithm provides mu-
tual exclusion.

Proof: Assume by way of contradiction that two pro-
cesses,p andq, are in the critical section at the same time.
According to the algorithm,Number [p] andNumber [q] re-
main unchanged from the momentp andq finish Line 56
until they leave the critical section. Letlabelp andlabelq be
the content ofNumber [p] andNumber [q] respectively dur-
ing that period of time. Assume w.l.o.g that(labelp; p) >
(labelq ; q). If the returned setS that p gets from the sec-
ond execution ofget set at Line 58 does not containq,

then by Property 3 of Definition 6.1,q does not complete
the join execution at Line 53 beforep starts theget set at
Line 58. Thereforeq executes lines 55– 56 afterp executes
Line 56 and consequently readslabelp in Number [p] while
executing Line 56. In such case(labelp; p) < (labelq ; q)
which is a contradiction to the assumption that(labelp; p) >
(labelq ; q). Thereforeq 2 S. Assume thatp completes
the execution of Line 61 withj = q, by reading0 in
Number [q]. In order to pass the wait statement in Line 60
with j = q, p had to readfalse in Choosing[q]. This may
happen either if (1) beforeq executes Line 54 or (2) afterq
executes Line 60. In case (1), q seeslabelp while executing
Line 56 and(labelp; p) < (labelq ; q). In case (2) p can-
not read 0 inNumber [q]. Thereforep must readlabelq in
Number [q] at least untilq leaves the critical section and for
that reasonp cannot enter the critical section at least untilq

leaves it.

The proof that the algorithm is lockout-free is the same as
in the original algorithm.

8. Adaptive collect, an O(k)gather procedure

The basic idea of theO(k) improvement of function
gather, is as follows: if the point contention of agather
execution isk, and processp which executesgather has al-
ready crossed (“skipped”) over other processes more than
k times, there is at least one process crossed byp that al-
ready completed its own execution ofgather. Therefore,
every process executinggather mantains a set of processes
it has crossed since the beginning of thegather execution.
From time to time, processp checks if one of the crossed
processes has completed, and if so,p “returns back” to the
entry in which the crossed process was crossed. We add
for every processp and every entryi a SWMR register
Clast [p][i] that contains the result of the lastgather(i) ex-
ecutionp has performed duringrefresh. Clast [p][i] as op-
pose toC [p][i] is never set to?. In addition every process
keeps a tag/counter it incrementseach time it writes a new
gather result inC (Line 85). That tag value will be written
together with the process id, inlast before thegather exe-
cution (Line 86), and together with the result of thegather
in Clast (Line 88). In order to ensure aO(k) collect com-
plexity each time it crosses some other processp0, processp
that executesgather adds to a special set,crossed , in its pri-
vate memoryp0’s id together with the associated tag value
and the slot number in whichp andp0 have met (Line 74).
Every timep executinggather accesses a new slot inA it
search its set in order to find if one of the processes in the
set has completed thegather execution it was doing whilep
crossed it. This is done, by comparing the tag associated to
p0’s id p has read inlast [i]while crossingp0 at entryi, with
the tag associated with the gather result now mantained in

Algorithm 5 Code forO(k) gather

Updated Data Structures
last [1 : :2N 2]: atomic MRMW registers

of typepid�Integer;
Additional data structures
Shared:

Clast [1 : : :N][1 : : :2N 2], 2N3 atomic SWMR
registers of typeSet�Integer for each process,

Local registers global to the program:
TS an integer initialized to 0;

each initialized to;;
functiongather(t) returnsItemSet .

crossed := ;;t 0 := t ;
pwr := 1;ctr := 0;

64 while (true) do
65 hpr ; tsi :=last [t 0];
66 tmp:=C [pr][t 0];
67 if tmp 6= ? then
68 break;
69 if ctr=pwr then
70 pwr := 2*pwr ;
71 if crossed containshq ; t 00; ts 0i for some

processq entryt 00 and timestampts 0

s.t., the timestamp in Clast[q][t”]� ts 0 then
72 t 0:=t 00;
73 htmp; tsi:=Clast [q][t 00];

break;
74 crossed :=crossed[hpr; t0; tsi;
75 t 0:=t 0+1;
76 ctr := ctr+1;

od;
77 while (t 0 � t) do
78 t 0:=t 0-1;
79 tmp:=merge(tmp,A[t 0]);

od;
returntmp;

procedurerefresh(itemSet S)
80 index := 2k2-rename(p);
81 A[index]:= merge(A[index]; S);
82 2k2-release-name(index);
83 for (t = index down to1) do// Bubble up process
84 C [p][t]:=?; // different than;.
85 TS :=TS+1;
86 last [t]:=hp;TSi;
87 c:=gather(t);
88 Clast [p][t]:= hc;TS i;
89 C [p][t]:=c;
90 t:=t-1;

od;

Clast [p0][i] (Line 71). If this is the casep “jumps” back
to entry i, uses the content ofClast [p 0][i] as its own re-
sult of gather on entryi and in fact behaves as if it never
crossed overp0 (Line 77). In the full paper we show that if
the point contention isk, after scanningk entries, a process
executinggather finds at least one process that was crossed
by p and has terminated its ongoing collect and stored it in
Clast. Note that if a process would have to scan the set
after each entry inA the complexity would beO(k2). For
that reason a process does not scan the set for every entry,
but only every2j entries forj = 0; 1 : : : (Line 69). In this
way, if the point contention isk, the terminating process is
discovered after at most2k slots, but the total work on the
set is stillO(k). The correctness and complexity of the new
algorithm are shown in the full paper.

Theorem 8.1 There is an implementation of Adaptive col-
lect in which the complexity ofupdate and collect are
O(k3)

Acknowledgements: We would like to thank Hagit At-
tiya and Arye Fouren for many helpful discussions.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and
N. Shavit. Atomic snapshots of shared memory.Journal
of the ACM, 40(4):873–890, September 1993.

[2] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou.
Long-lived renaming made adaptive. InProc. 18th Annual
ACM Symp. on Principles of Distributed Computing, pages
91–103, May 1999.

[3] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and
D. Touitou. Adaptive Long-Lived Renaming Using
Bounded Memory Submitted to DISC99, April 1999.
ftp://ftp.math.tau.ac.il/pub/stupp/PAPERS/name99.ps.gz

[4] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In
Proc. of the 27th Ann. ACM Symp. on Theory of Computing,
pages 538–547, May 1995.

[5] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit.
A bounded first-in, first-enabled solution to the`-exclusion
problem.ACM Trans. on Programming Languages and Sys-
tems, 16(3):939–953, May 1994.

[6] Y. Afek and M. Merritt. Fast, wait-free(2k�1)-renaming. In
Proc. 18th Annual ACM Symp. on Principles of Distributed
Computing, pages 105–112, May 1999.

[7] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disen-
tangling multi-object operations. InProc. 16th Annual ACM
Symp. on Principles of Distributed Computing, pages 111–
120, August 1997.

[8] J. H. Anderson and M. Moir. Universal constructions for
multi-object operations. InProceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing,
pages 184–193. ACM, Aug. 1995.

[9] H. Attiya and E. Dagan. Universal operations: Unary ver-
sus binary. InProc. 15th Annual ACM Symp. on Principles
of Distributed Computing, pages 223–232, May 1996. Ex-
tended version available as Technion Computer Science De-
partment Technical Report #0931, April 1998.

[10] H. Attiya and A. Fouren. Adaptive wait-free algorithms
for lattice agreement and renaming. InProc. 17th Annual
ACM Symp. on Principles of Distributed Computing, pages
277–286, June 1998. Extended version available as Tech-
nion Computer Science Department Technical Report #0931,
April 1998.

[11] H. Attiya and A. Fouren. Adaptive long-lived renam-
ing with read and write operations. Technical Report
0956, Faculty of Computer Science, Technion, Haifa, 1999.
http://www.cs.technion.ac.il/�hagit/pubs/tr0956.ps.gz.

[12] J. E. Burns and G. L. Peterson. The ambiguity of choosing.
In Proc. of the 8th ACM Symp. on Principles of Distributed
Computing, pages 145–158, Edmonton, Alberta, Canada,
August 1989.

[13] M. Choy and A. K. Singh. Adaptive solutions to the mutual
exclusion problem. InProc. 12th ACM Symp. on Principles
of Distributed Computing, pages 183–194, August 1993.

[14] E. Gafni. Public communication. 17th Annual ACM Symp.
on Principles of Distributed Computing, July 1998.

[15] M. Herlihy. Wait-free synchronization.ACM Trans. on Pro-
gramming Languages and Systems, 13(1):124–149, January
1991.

[16] M. Herlihy. A methodology for implementing highly con-
current data structures.ACM Trans. on Programming Lan-
guages and Systems, 15(5):745–770, November 1993.

[17] M. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects.ACM Trans. on Program-
ming Languages and Systems, 12(3):463–492, July 1990.

[18] L. Lamport. A fast mutual exclusion algorithms.ACM Trans.
on Computer Systems, 5(1):1–11, February 1987.

[19] M. Merritt and G. Taubenfeld. Speeding Lamport’s fast mu-
tual exclusion algorithm. Information Processing Letters,
45:137–142, 1993.

[20] M. Moir and J. Anderson. Wait-free algorithms for fast,
long-lived renaming. Science of Computer Programming,
25(1):1–39, October 1995. Also in Proc. 8th Int. Workshop
on Distributed Algorithms, September 1994, 141-155.

