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ABSTRACT
We study the distributed complexity of computing a max-
imal independent set (MIS) in radio networks with com-
pletely unknown topology, asynchronous wake-up, and no
collision detection mechanism available. Specifically, we pro-
pose a novel randomized algorithm that computes a MIS in
time O(log2n) with high probability, where n is the num-
ber of nodes in the network. This significantly improving
on the best previously known solutions. A lower bound of
Ω(log2n/ log log n) given in [11] implies that our algorithm’s
running time is close to optimal. Our result shows that the
harsh radio network model imposes merely an additional
O(log n) factor compared to Luby’s MIS algorithm in the
message passing model. This has important implications in
the context of ad hoc and sensor networks whose charac-
teristics are closely captured by the radio network model.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
maximal independent sets, radio network, initialization, clus-
tering, asynchronous wake-up, ad hoc networks, sensor net-
works

1. INTRODUCTION
In many ways, familiar distributed computing communi-

cation models such as the message passing model do not
capture all the harsh conditions faced in wireless ad hoc and
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sensor networks. Ad hoc and sensor networks are multi-hop
radio networks and hence, messages being transmitted may
interfere with concurrent transmissions leading to collisions
and packet losses. Furthermore, all nodes sharing the same
wireless communication medium leads to an inherent broad-
cast nature of communication. A message sent by a node
can be received by all nodes in its transmission range. These
aspects of communication are modeled by the radio network
model [3, 4].

Communication primitives such as broadcast, wake-up, or
gossiping, have been extensively studied in the literature on
radio networks in both randomized and deterministic ver-
sions (e.g., [3, 1, 6, 8]). On the other hand, much less is
known about the computation of local network coordination
structures such as clusterings or colorings in the radio net-
work model (as opposed to, say, message passing models).
This is surprising when considering the particular impor-
tance of such structures in ad hoc and sensor networks.

In this paper, we study the problem of computing a max-
imal independent set (MIS) in the radio network model. In
a graph G = (V, E), a MIS is a subset S ⊆ V of the nodes
such that no two nodes v, u ∈ S are neighbors and every
node w /∈ S has at least one neighbor in S. The distributed
complexity of computing a MIS in different computation
models is of interest per se. However, the particular rele-
vance of the MIS in the context of the multi-hop radio net-
work model stems from the fact that the clustering induced
by the MIS can be used as an initial structure. Ad hoc or
sensor networks lack any fixed or built-in structure; it is
the nodes themselves that have to provide a communication
infrastructure in order to enable any reasonable communi-
cation. When being deployed, the quintessential difficulty in
obtaining such an infrastructure is that a protocol designed
for this task cannot rely on any previously established struc-
ture. The idea is to set up an initial structure based on
which more sophisticated network organization procedures
can subsequently be employed. Initializing ad hoc or sen-
sor networks efficiently is a well-known problem in practice.
Even in small-scale systems such as Bluetooth, the initial-
ization tends to be slow.

Previously, the efficiency of algorithms for computing struc-
tures that can serve as an initial structure (dominating sets,
MIS, coloring,. . . ) has often been studied in message pass-
ing models and under the assumptions that all nodes wake
up at the same time or that every node knows its neighbors,
e.g. [21, 9]. By abstracting away these technicalities, the
obtained solutions have often not been directly applicable
in practical settings.
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In this paper, we consider a radio network model described
in [13] that is harder than the standard radio network model.
Specifically, it derives its motivation from the realm of ad
hoc and sensor networks and makes the following assump-
tions.

• We consider multi-hop networks modeled as a unit disk
graph G = (V, E). Hence, it is possible that some neigh-
bors of a sending node receive a message, whereas others
experience a collision and do not receive the message.

• Nodes wake up asynchronously without access to a global
clock. In a wireless, multi-hop environment, it is realistic
to assume that some nodes wake up (become deployed, or
switched on, . . . ) later than others. In contrast to work
on the so-called wake-up problem [10, 11, 5], however,
nodes are not woken up by incoming messages. Sleeping
nodes do neither send nor receive any messages.

• We consider radio networks without collision detection.
That is, nodes are unable to distinguish background noise
from interference noise. A sender does not know how
many neighbors have received its transmission correctly.

• When waking up, nodes have no knowledge about other
nodes’ distribution or wake-up pattern. Particularly, a
node has no a-priori information about the number of its
neighbors and when waking up, it does not know whether
some neighbors are already executing the algorithm.

All these restrictions suggest that we deal with a particu-
larly harsh model of computation; one that closely captures
the reality of many real ad hoc and sensor systems (particu-
larly during and immediately after their deployment). What
makes this model appealing to the theory of distributed com-
puting, is the fact that it is still concise enough to allow for
stringent proofs, preventing simulations from being the last
resort to evaluate an algorithm’s performance.

In this paper, we show that even in this restricted model,
a MIS can be computed efficiently. Specifically, we present a
randomized algorithm that computes a MIS in time O(log2n)
with high probability in unit disk graphs, n being the num-
ber of nodes in the network. This significantly improves
the best previously known algorithm given in [18] that had
a running time of O(log9n/ log log n). Moreover, a lower
bound of Ω(log2n/ log log n) established in [11] shows that
our algorithm is asymptotically near optimal.

The paper is organized as follows. An overview of related
work is given in Section 2. Section 3 formally introduces the
model of computation. The algorithm is then presented and
analyzed in Sections 4 and 5, respectively. Finally, Section
6 concludes the paper.

2. RELATED WORK
The distributed (randomized and deterministic) complex-

ity of computing a MIS has been of fundamental interest to
the distributed computing community for various reasons
[17, 7, 2, 16]. A major breakthrough in the understanding
of the distributed computational complexity of MIS was the
elegant randomized algorithm by Luby [17] that has a run-
ning time of O(log n). On the other hand, [14] showed that
every distributed (possibly randomized) algorithm requires

at least time Ω(
√

log n/ log log n) and Ω(log ∆/ log log ∆) in
order to obtain a MIS, ∆ being the largest degree in the net-
work. Unfortunately, Luby’s algorithm cannot be directly
transformed to the radio network model since it assumes

synchronous wake-up, knowledge about the neighborhood,
and collision-free communication.

Radio networks have been extensively studied for over two
decades, resulting in a vast and rich literature. For a thor-
ough survey of the single-hop case, we refer to [4]. In the
multi-hop case, most work deals with the broadcast problem
[3, 1, 15, 8], as well as related problems such as gossiping
or the wake-up problem [10, 11, 5]. The harder version
of the radio network used in this paper was introduced in
[13] and subsequently refined in [12]. In [12], the authors
give an algorithm that computes a constant approximation
for the minimum dominating set problem and runs in time
O(log6n). In unit disk graphs, a MIS is a constant approxi-
mation to the minimum dominating set problem and there-
fore our O(log2n) algorithm significantly outperforms the
solution presented in [12]. Finally, an algorithm for color-
ing an unstructured radio network with O(∆) colors in time
O(∆ log n) was recently proposed in [19].

The problem of computing a MIS in radio network models
was first investigated in the context of backbone (connected
dominating set) formation in wireless ad hoc and sensor net-
works, e.g. [21, 9]. However, these algorithms either have
linear running time [21], or are based on strong assumptions,
e.g. that nodes wake up at the same time, or that every node
knows its one-hop or even two-hop neighborhood when wak-
ing up [9]. As for the harsh version of the radio network
model, [18] proposes a randomized algorithm for comput-
ing a MIS in time O(log9n/ log log n). The algorithm in [18]
was presented using three independent communication chan-
nels. That is, messages sent on different channels do neither
interfere nor cause any collisions. Having independent com-
munication channels allows for simpler algorithmic solutions
and particularly, facilitates the analysis because events on
different channels can be analyzed independently. The ac-
tual single-channel algorithm was then derived by using a
generic procedure for simulating a multi-channel system in
a single-channel system. In contrast, we design and analyze
our algorithm in a single-channel setting directly, which al-
lows us to achieve drastic improvements.

One characteristic feature of our radio network model is
that nodes can wake up asynchronously at any time. There
is a body of work dealing with a different form of asyn-
chronous wake-up in radio networks. In the wake-up prob-
lem the time when each node joins the protocol is controlled
by an adversary, and the goal of the algorithm is to perform
a broadcast as quickly as possible [10, 11, 6, 5]. However,
in contrast to our model, sleeping nodes are woken up upon
receiving a neighbors’ message. In the context of this pa-
per, the Ω(log2n/ log log n) time-lower bound in [11] for the
time required until one node can send without collision in a
single-hop radio network is of particular interest because it
is a lower bound for our MIS problem. In general, however,
we do not believe that ad hoc and sensor nodes are woken
up by incoming messages. Instead, a node simply wakes up
when being deployed or switched on.

3. MODEL AND NOTATION
We study the radio network model as described in [13].

The wireless nature of the network is modeled as a unit disk
graph (UDG) G = (V, E). In a UDG, nodes are considered
to be located in the Euclidean plane and there is an edge
(communication link) between two nodes u and v iff the
Euclidean distance between u and v is at most 1. A node
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receives a message only if exactly one of its neighbors sends.
Moreover, having no collision detection, nodes are unable
to distinguish between the situation in which two or more
neighbors are sending and the situation in which no neighbor
is sending. Every node v ∈ V is assumed to have a unique
identifier (not necessarily in the range [1, . . . , n]). The size of
a message is restricted to O(log n) bits under the assumption
that the nodes’ ID space is polynomial in n.

Nodes wake up asynchronously at any time; formally, ev-
ery node v ∈ V has a wake-up time tv. Before waking up,
a node does neither send nor receive any messages. At time
tv, node v does not know a) how many neighbors it has and
b) whether (and if yes, when) some of its neighbors have wo-
ken up and started executing the algorithm. We assume that
both time and location of a node’s wake-up is determined
by an adversary, i.e., we consider worst case distributions in
time and space.

As motivated in the introduction, asynchronous wake-up
and lack of knowledge are two important features of the un-
structured radio network model. The only a-priori knowl-
edge given to the nodes is an upper bound for the total
number of nodes |V | = n in the network. It has been shown
in [11] that without any such estimate of n, every algorithm
requires at least time Ω(n/ log n) until one single message
can be transmitted without collision. In practice, the num-
ber of nodes in a network may not be known exactly, but it
can roughly be estimated in advance.

For the sake of the analysis, we assume time to be divided
into time-slots that are synchronized among all nodes. How-
ever, our algorithm does not rely on synchronization in any
way. By the standard argument introduced in [20] for slot-
ted vs. unslotted ALOHA, the realistic unslotted case and
the idealized slotted case differ only by a constant factor. A
node v’s running time Tv is defined as the number of time-
slots between its wake-up and its (irrevocable) decision of
whether or not to become a MIS node. The algorithm’s
running time R is R = maxv∈V Tv.

We denote by Nv the set of neighbors of node v and define
N+

v = Nv∪{v}. In each time-slot, a node can either send or
not send. A node v receives a message in a time-slot t only
if exactly one node in Nv has sent a message in t. We write
pv(t) to denote node v’s sending probability in time-slot t.
If it is clear from the context which time-slot is considered,
we will also use the short form pv. Finally, we say that node
v sends successfully in time-slot t if all its neighbors receive
v’s message. During the execution of the algorithm, we call
node v covered if there is a node w ∈ N+

v that has decided
to become a MIS node. Note that a covered node may not
know of its being covered.

In this paper, we use the term “with high probability” for
events that occur with probability 1 − n−c for a constant
c which can be made arbitrarily large by setting the corre-
sponding parameters to large enough values. We conclude
the section with two facts. The first was proven in [11] and
the second can be found in mathematical textbooks.

Fact 1. Given a set of probabilities p1 . . . pn with ∀i :
pi ∈ [0, 1

2
], the following inequalities hold:

(1/4)
∑n

k=1 pk ≤
n∏

k=1

(1− pk) ≤ (1/e)
∑n

k=1 pk .

Fact 2. For all n, t, with n ≥ 1 and |t| ≤ n, it holds that

et (
1− t2/n

) ≤ (1 + t/n)n ≤ et.

4. ALGORITHM
In this section, we present Algorithm 1. Every time-slot

corresponds to one iteration of the main loop. The Receive
Triggers are executed immediately after the receipt of a mes-
sage, regardless of the current state of the algorithm. In
accordance to the model given in the previous section, how-
ever, a node receives a message only if it does not send a
message itself in the same time-slot. Throughout the paper,
Greek letters represent constants.

At any time during the execution of Algorithm 1, a node
can be in one of five states. Upon waking up, a node is in
the waiting state W in which it only listens. If a node does
not become covered by a MIS node in this state already, it
will become active. Active nodes are in state A. An active
node v tries to join the MIS by increasing its probability pv

of becoming a candidate. Eventually, some active nodes will
become candidates by entering state C, whereas others will
restart the algorithm, returning to the initial waiting state
W. Finally, MIS nodes are elected from among neighboring
candidates. Nodes that have decided to be a MIS node end
up in state M, nodes that are covered become slaves and
enter state S. Throughout the paper, we will use the ex-
pression W to denote both the state in which the algorithm
is currently in, as well as the subset of nodes v ∈ V that
are currently in the state W. The same holds for all other
states/sets. Next, we describe each of the five states in more
detail. In the waiting state W, a node listens for messages
and increases the counter step in each time-slot. The pur-
pose of state W is that newly awakening or restarting nodes
should not interfere with nodes that are actively competing
for becoming a MIS node.

Once the step counter of a node v ∈ W reaches the thresh-
old 4µδ log2n (Line 3), it proceeds to the active state A.
Every active node has a sending probability pv which is the
probability that it sends a message mA and becomes a candi-
date in a given time-slot (Lines 9-11). Starting from a small
initial probability pv, a node v ∈ A doubles pv every λ log n
time-slots, thereby exponentially increasing its chance to be-
come a candidate (Lines 6 and 7). If however, an active node
v ∈ A receives a message mA from another active node, it
returns to the start of the algorithm, i.e., it sets its state to
W and resets step to 0 (Receive Trigger 1). Such nodes may
again try to become a candidate subsequently. State A is
designed to bound the number of candidates simultaneously
being in state C in a certain area of the graph. This enables
a quick election of MIS nodes among the limited number of
candidates. In other words, state A allows for a first rough
selection on the way towards picking MIS nodes.

Having bounded the number of candidates, it remains to
select MIS nodes from among the candidates. The idea is
that neighboring candidates compete with each other such
that no two neighboring nodes join state M. They do so by
means of a count variable. Intuitively, the current value
of the count describes a node’s progress towards joining
the MIS. In each time-slot, a candidate sends a message
mC(count) containing its current count value with probabil-
ity q. Candidates increase their count value in every time-
slot. When receiving a message mC(count′) from another
candidate, the receiver compares the sender’s count′ to its
own. If the two values are within δ log n of each other, the
receiver resets its own count (Receive Trigger 2). The idea
is that a candidate v resets its count if the progress of v and
w are too close to one another. As we will show in Section
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Algorithm 1 MIS-Algorithm (Code of node v)

step := count := 0; state := W; pv := 2−α−1

n
;

upon wake-up do:
1: loop
2: case state do
3: W : if step ≥ 4µδ log2n then
4: state := A; step := 0;
5: end if
6: A : if step ≥ λ log n then
7: pv := 2pv; step := 0;
8: else

9: s :=

{
1 with probability pv

0 with probability 1− pv

10: if s = 1 then
11: send(mA); state := C;
12: end if
13: end if
14: C : count := count + 1;

15: s :=

{
1 with prob. qC = τ

2α log n

0 with prob. 1− qC

16: if count ≥ δ log2n then
17: state := M {∗ v joins MIS ∗}
18: else if s = 1 then
19: count :=max {count, δ log n+1};
20: send mC(count);
21: end if
22: M : send mM with probability qM = 2−α

23: end case
24: step := step + 1;
25: end loop

Receive Triggers (only when not sending):
1: upon receiving mA do:

if state = W or state = A then
state := W; step := 0

end if
2: upon receiving mC(count′) do:

∆c := |count′ − count|;
if state = C and ∆c ≤ δ log n then

count := 0;
end if

3: upon receiving mM do:
state := S; stop(); {∗ v becomes slave ∗}

5, this method of comparing counters prevents two neigh-
boring nodes from joining the MIS shortly in succession and
consequently ensures the correctness of the resulting MIS.
On the other hand, it also allows the nodes to make fast
progress in all parts of the network graph. Specifically, it
avoids long cascading chains of resets that slow down the
algorithm’s running time. Once a candidate’s count reaches
the threshold δ log2n, it becomes a MIS node and enters its
final state M (Line 17). MIS nodes continue to send mes-
sages mM with a probability qM in order to inform their
neighbors that they are covered. Regardless of its current
state, if a node receives a messages mM during the algorithm
(Receive Trigger 3), it decides to become a slave.

The constants µ and α are defined as µ = 19 and α = 6.4,
respectively. The other constant parameters can be cho-
sen to fine-tune the trade-off between running time and
the probability of a correct execution. In particular, the

larger λ and δ, the more probable it becomes that Algo-
rithm 1 performs correctly. In order to obtain the high

probability results in Section 5, we set λ = 3 · 2α+24
9/4+3µ

2α ,

δ = 8·2α

τ
· 4 6µ

2α , and τ = 9000−1. Finally, note that due
to asynchronous wake-up, different nodes may be in com-
pletely different states at the same time. To make things
worse, a node has no a-priori knowledge in which states its
(potential) neighbors are. Overcoming the absence of any
such knowledge is one of the key challenges of this paper.

5. ANALYSIS
In this section, we prove that Algorithm 1 computes a cor-

rect MIS in time O(log2n) with high probability. Following
the approach in [18], we make use of an imaginary covering
of the plane by disks Di of radius 1/2 as shown in Figure
1. By placing these disks on a hexagonal lattice, the entire
Euclidean plane is covered. By Er

i , we denote the disk with
radius r centered at the center of Di. Observe that all nodes
within a disk Di can hear each other. On the other hand, a
node outside E1.5

i cannot cause a collision at a node v ∈ Di.
We will use the following simple geometric facts which can
be proven by standard area arguments.

Di

Ei

� �
� �

�
�

2.5

iE
1.5

2.5

0.5

1.5

Figure 1: Circles Di, E1.5
i , and E2.5

i

Fact 3. Disks E1.5
i and E2.5

i can be fully covered by µ
and 2µ smaller disks Di, respectively, where µ = 19. Also,
the number of independent nodes in E1.5

i , and E2.5
i is at

most µ and 2µ, respectively.

A main difficulty of the analysis is that nodes can unin-
tentionally interfere with neighbors in different states. For
instance, an active node v may cause a collision at a candi-
date node w in C. This results in w not receiving a message
mC or mM from a neighboring node, potentially causing a
violation of the MIS condition. Or, a collision caused by
a MIS message mM may cause that a node in A does not
receive a message mA, which could lead to too many candi-
dates. In view of the dependencies between all states, prov-
ing the impossibility (or the low probability) of the above
examples is not trivial.
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Throughout the proof, we denote by Ai and Ar
i the set

of active nodes in Di and Er
i , respectively. Wi, Ci, and

the other sets are defined analogously. We begin with a
definition and a simple observation that follows directly from
the definition of Algorithm 1.

Definition 5.1. Let t be a time-slot in which a message
mA is sent by a node v ∈ Ai and received without collision
by all nodes w ∈ Di \{v}. We call t a clearance of Di. Two
subsequent clearances are independent if they are not caused
by the same node.

Lemma 5.2. Consider a disk Di. After a clearance, no
node v ∈ Di is in state A for the next 4µδ log2n time-slots.
Consequently, two independent clearances in the same disk
Di must be at least 4µδ log2n time-slots apart.

A critical ingredient of the analysis is to bootstrap the ar-
gument. In this section, we will show that with high proba-
bility the algorithm maintains three properties (probabilis-
tic invariants) throughout its execution. The first property
states that the sum of sending probabilities by active nodes
does not exceed a certain constant. This helps to bound the
“noise” caused by such nodes when analyzing other aspects
of the algorithm.

Property 1 (P1). For all disks Di and at any time-
slot t throughout the execution of the algorithm, it holds that∑

v∈Ai
pv(t) ≤ 2−α.

The second and third properties state that the number of
simultaneous candidates is bounded and that M forms a
correct independent set, respectively

Property 2 (P2). For all disks Di and at any time-
slot t throughout the execution of Algorithm 1, it holds that
|Ci| ≤ κ log n, for a constant κ = τ−1.

Property 3 (P3). Throughout the execution of the al-
gorithm, the set M forms a correct independent set.

The first technical lemma shows that MIS nodes are capa-
ble of quickly informing their neighbors that they are cov-
ered. This is necessary to ensure the independence of the
resulting set M. For now, we can formalize this intuition
only under the assumption that all three Properties hold.

Lemma 5.3. Assume Properties 1, 2, and 3 hold. With
probability 1−n−3, every node v ∈ V joins S and terminates
the algorithm by the time tv + δ log n, where tv is the first
time-slot in which v becomes covered by a MIS node w ∈
M∩N+

v .

Proof. Consider a node v ∈ Di and let tv be the time-
slot defined in the lemma. The probability P1 that in an
arbitrary time-slot t ∈ [tv + 1, . . . , tv + δ log n] MIS node
w ∈ N+

v ∩M sends and no other node in N+
v sends (i.e.,

that v receives w’s message mM ) is at least

P1 ≥ qM

∏

u∈N+
v

(1− pu) ≥
Fact 1

1

2α

(
1

4

)∑
u∈N

+
v

pu

.

To bound
∑

u∈N+
v

pu, we make use of the assumption that

the three Properties hold and that nodes in W ∪ S do not

send. It follows that the sum of sending probabilities in N+
v

is lower bounded by
∑

u∈N+
v

pu =
∑

u∈A∩N+
v

pu +
∑

u∈C∩N+
v

pu +
∑

u∈M∩N+
v

pu

≤
∑

Dj∈E1.5
i


 ∑

u∈Aj

pu +
∑
u∈Cj

qC +
∑

u∈Mj

qM




≤
∑

Dj∈E1.5
i

(
1

2α
+ κ log n · τ

2α log n
+

1

2α

)

≤ µ

(
1

2α
+

τκ log n

2α log n
+

1

2α

)
=

3µ

2α
,

where we derive the second inequality by replacing qC =
τ

2α log n
and qM = 2−α as defined in Algorithm 1. The sec-

ond inequality follows from Fact 3. Plugging this in the

expression for P1 yields P1 ≥ 2−α (1/4)
3µ
2α . The probabil-

ity Pno that none of the δ log n time-slots in the interval
[tv + 1, . . . , tv + δ log n] is successful is at most

Pno ≤
(

1− 1

2α

(
1

4

) 3µ
2α

)δ log n

≤ e−δ log n· 1
2α (1/4)

3µ
2α

which is, by the definitions of α, µ, and δ, Pno ∈ O(n−4).
Finally, the argument is concluded by the observation that
every node needs to be informed about its being covered at
most once. That is, the claim holds for all nodes v ∈ V with
probability 1−O(n−3).

One difficulty when proving that the three Properties hold
will be that our results depend on arguments of the follow-
ing kind: Before a particular Property can be violated, there
must exist some time-interval in which certain critical con-
ditions hold. We can prove that in any interval exhibiting
these conditions, the Property will not be violated with high
probability. However, such an argument is useless if there
can be infinitely many time-intervals having these critical
conditions. To bound the number of critical time-intervals,
the next lemma lower bounds the progress made by the al-
gorithm in case all three properties hold.

Lemma 5.4. Assume Properties 1, 2, and 3 hold. Let
tc be a time-slot in which an uncovered node v ∈ Di is a
candidate, i.e., v ∈ C. In the interval [tc − δ log n, . . . , tc +
2δ log2n], a new MIS node emerges in E2.5

i with probability
1−O(n−3).

Proof. We first show that unless all candidates in Di

become covered by a MIS node (in which case the lemma
clearly holds), there is at least one candidate that can send
successfully in the interval I1 = [tc + 1, . . . , tc + δ log2n].
Clearly, if a node w ∈ N+

v ∩ C sends and no other node in
E2.5

i sends, then w sends successfully. Hence, the probability
P1 that there is a candidate w ∈ N+

v ∩C sending successfully
in a time-slot t ∈ I1 is at least

P1 ≥
∑

w∈N+
v ∩C


pw ·

∏

u∈E2.5
i \{w}

(1− pu)




≥
∑

w∈N+
v ∩C

pw ·
∏

u∈E2.5
i

(1− pu)

≥
Fact 1

∑

w∈N+
v ∩C

pw · (1/4)
∑

u∈E2.5
i

pu
.
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Similar to the proof of Lemma 5.3, we can bound the sum
in the exponent as

∑

u∈E2.5
i

pu =
∑

u∈A2.5
i

pu +
∑

u∈C2.5
i

pu +
∑

u∈M2.5
i

pu

≤
∑

Dj∈E2.5
i

(
1

2α
+

κτ log n

2α log n
+

1

2α

)
≤ 6µ

2α
.

Unless all candidates receive a message mM and join the set
S in I1, there is at least one candidate node in N+

v ∩ C and
therefore

∑
w∈N+

v ∩C pw ≥ qC . Plugging these results into

the above expression for P1 gives P1 ≥ τ
(2α log n)

(1/4)
6µ
2α

and the probability Pno that none of the δ log2n time-slots
in I1 is successful is at most

Pno ≤
(

1− τ

(2α log n)
·
(

1

4

) 6µ
2α

)δ log2n

≤
Fact 2

e−δ log n· τ
2α (1/4)

6µ
2α ∈ O(n−3).

Therefore, with probability 1 − O(n−3), there exists a can-
didate w which manages to send successfully at a time-slot
t∗w ∈ I1. Since time-slot t∗w was successful, all neighbor-
ing candidates of w received w’s message mC(countw). Ac-
cording to Receive Trigger 2, all nodes u in w’s neighbor-
hood that are candidates at time t∗w and whose countu at
time t∗w (abbreviated by cu(t∗w)) is in the range cu(t∗w) ∈
|cw(t∗w)− δ log n, . . . , cw(t∗w) + δ log n| will reset their count
to 0. Moreover, by Line 19 of Algorithm 1, w has a count
value of at least δ log n+1. Therefore, for all existing candi-
dates u ∈ C ∩Nw as well as for all potential new candidates
(which set count = 0 when becoming candidate), it holds
that after t∗w,

|cu(t∗w + 1)− cw(t∗w + 1)| > δ log n.

By the definition of Algorithm 1 (Receive Trigger 2), this
means that no node u ∈ C adjacent to w is able to prevent
w from incessantly increasing its count until it eventually
reaches the threshold δ log2n, which enables to join the MIS.
The only possible way for w to be stopped from joining M
is if it receives a message mM from a node x ∈ Nw that has
joined M before w. If x had already been a MIS node before
time tc − δ log n, it could have informed w in the interval
I2 = [tc− δ log n, . . . , tc− 1] with probability 1−O(n−3) by
Lemma 5.3.

In other words, either w sends successfully before tc +
δ log2n, increases its count to δ log2n, and therefore joins the
MIS before time tc+2δ log2n; or there is a node x that joined
M after tc − δ log n. This claim holds with probability (1−
O(n−3))2 ∈ 1−O(n−3). Finally, the proof is concluded using
the fact that w ∈ N+

v and x ∈ N2
v , thus w, x ∈ E2.5

i .

Having proven Lemma 5.4 allows us derive that once a
node becomes a candidate, it either joins the MIS or becomes
covered shortly thereafter, if all three Properties hold.

Lemma 5.5. Assume Properties 1, 2, and 3 hold. Let t be
an arbitrary time-slot. Every node v that is a candidate at
time t, i.e., v ∈ C, will either have joined M or be covered
by time t + 4µδ log2n with probability 1−O(n−2).

Proof. Because all three Properties are assumed to be
true, we can prove the claim by repeatedly applying Lemma

5.4. Consider a node v ∈ Di that is a candidate at time
t. We know by Lemma 5.4 that there is at least one MIS
node in E2.5

i by t + 2δ log2n with probability 1 − O(n−3).
If v is covered by this new MIS node, the lemma holds. If
not, v is still a candidate and hence, again by Lemma 5.4,
there is a MIS node emerging in the interval [t + 2δ log2n−
δ log n, . . . , t + 4δ log2n] with high probability. Thus apply-
ing Lemma 5.4 repeatedly yields that a MIS node emerges in
the interval [t+2iδ log2n−δ log n, . . . , t+2(i+1)δ log2n] with
probability 1 − O(n−3) for every i ≥ 0, as long as v is un-
covered. Since every emerging MIS node can cover only two
“adjacent” intervals, it holds with probability (1−O(n−3))i

that there are at least di/2e new MIS nodes emerging in E2.5
i

if v is still uncovered by time t + 2iδ log2n. Due to Prop-
erty 3, we assume the set M to be a correct independent set
which means that there can be at most 2µ MIS nodes in E2.5

i .
Hence, it follows that with probability (1 − O(n−3))2µ ∈
1 − O(n−3), v is covered by the time t + 4µδ log2n. Since
there are at most n candidates, the Lemma holds for all
nodes with probability (1−O(n−3))n ∈ 1−O(n−2).

We now return to the notion of a clearance which will
be crucial in proving the validity of Properties 1 and 2. In
particular, we use the two previous Lemmas to bound the
number of clearances that can occur in a disk Di during the
execution of the algorithm.

Lemma 5.6. Assume Properties 1, 2, and 3 hold. For all
disks Di, there are no more than µ independent clearances
in Di with probability 1−O(n−2).

Proof. By Lemma 5.2, there can be at most one inde-
pendent clearance every 4µδ log2n time-slots in a disk Di.
Let tc be a clearance of Di. By definition, exactly one active
node v ∈ Ai sends successfully in time-slot tc. By defini-
tion of Algorithm 1, this node becomes a candidate and by
Lemma 5.4, there is a node w ∈ E2.5

i that joins the MIS
in the interval [tc − δ log n, . . . , tc + 2δ log2n] with probabil-
ity 1 − O(n−3). Hence, after µ independent clearances, at
least µ MIS nodes have emerged in E2.5

i with probability
(1 − O(n−3))µ ∈ 1 − O(n−3). By Fact 3 and under the as-
sumption of Property 3, these µ MIS nodes entirely cover
E2.5

i and all nodes located therein. Moreover, it follows from
Lemma 5.3 that every such node receives a message mM

δ log n time-slots after its becoming covered with probabil-
ity 1 − n−3. That is, no node will be in the active state A
once all of E2.5

i is covered. With probability 1 − O(n−3),
this is the case after µ clearance.

All previous lemmas were derived under the condition that
Properties 1, 2, and 3 hold. In the following sequence of
Theorems 5.7, 5.8, and 5.10, we will show that with high
probability none of them is the first to be violated.

Theorem 5.7. Assume Property 1 is the first property
to be violated and let t1 be the first time-slot in which the
violation occurs. The probability that there exists such a
time-slot t1 during the execution of Algorithm 1 is at most
Pfail ∈ O(n−1).

Proof. If t1 is the first time-slot in which the viola-
tion occurs in a disk Di, it holds

∑
v∈Ai

pv(t1−1) ≤ 2−α

and
∑

v∈Ai
pv(t1) > 2−α. Consider the interval I = [t1 −

λ log n, . . . , t1 − 1]. By the definition of Algorithm 1 (Lines
6 and 7), every active node v ∈ Ai doubles its sending prob-
ability pv exactly once during this interval I. Additionally,
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new nodes that were previously in state Wi may join the set
Ai during I, but these nodes’ combined sending probability

is at most n · 2−α−1

n
= 2−α−1, according to the definition

of a node’s initial sending probability. That is, the sum of
sending probabilities at time t1 − λ log n is at least

∑
v∈Ai

pv(t1 − λ log n) ≥ 1

2
(2−α − 2−α−1) = 2−α−2.

Consequently if Property 1 is violated, there must be an
interval I preceding the violation during which the sum of
the sending probabilities is in the range

2−α−2 ≤
∑

v∈Ai

pv(t) ≤ 2−α ∀t ∈ I. (1)

In all neighboring disks Dj ∈ E1.5
i , the sum of sending prob-

abilities is

0 ≤
∑

v∈Aj

pv(t) ≤ 2−α ∀t ∈ I (2)

because t1 is the first time-slot violating Property 1.
We continue the proof by showing that with high proba-

bility, a clearance occurs in the interval I. For that purpose,
let Pno be the probability that in a given time-slot t ∈ I no
node in E1.5

i \ Di sends. By Pone we denote the probabil-
ity that exactly one node in Di sends in t. The probability
Pclear of a clearance at time t is Pclear = Pone · Pno. Using
Fact 1, the probabilities Pone and Pno can be bounded as
follows:

Pone =
∑

v∈Ai


pv

∏

w∈Di\{v}
(1− pw)




≥
∑

v∈Ai

pv

∏
w∈Di

(1− pw)

≥
Fact 1

∑
v∈Ai

pv(1/4)
∑

w∈Di
pw

≥
∑

v∈Ai

pv(1/4)
∑

w∈Ai
pw+ 1

2α−1 ,

where the last inequality is valid because of
∑

w∈Ci
pw ≤

1/2α and
∑

w∈Mi
pw ≤ 1/2α under the assumption that

Properties 2 and 3 hold.

Pno ≥
∏

v∈E1.5
i

(1− pv) ≥
∏

Dj∈E1.5
i

∏
v∈Dj

(1− pv)

≥
∏

Dj∈E1.5
i

(1/4)
∑

v∈Dj
pv

≥
[
(1/4)

∑
v∈Aj

pv+ 1
2α−1

]µ

≥ (1/4)
3µ
2α

where the last step follows from (2). The probability of t ∈ I
being a clearance is therefore at least

Pclear ≥
∑

v∈Ai

pv(1/4)
∑

w∈Ai
pw+ 1

2α−1 · (1/4)
3µ
2α .

For x ∈ [2−α−2, . . . , 2−α], the function x(1/4)
x+ 1

2α−1 is min-
imized for x = 2−α−2 and hence, when applying (1), we get

Pclear ≥ 2−α−2(1/4)
2−α−2+ 1

2α−1 · (1/4)
3µ
2α

= 2−α−2(1/4)
9
4 +3µ

2α .

The probability Px that none of the λ log n time-slots t ∈ I
is a clearance is therefore at most Px ≥ (1− Pclear)

λ log n ∈
O(n−3) by the definitions of λ and τ . Notice that the reason
for defining α = 6.4 is that this value maximizes Pclear.

Unfortunately, the argument that in every critical inter-
val I a clearance occurs with probability 1−O(n−3) is not
sufficient. Potentially, the number of intervals I could be in-
finitely large, rendering the high probability result useless.
However, the probability that in the first µ intervals I in Di,
there is at least one without a clearance is at most O(n−3).
By Lemma 5.6, there are no more than µ clearances in Di

with probability 1− O(n−2). Thus, there is no time-slot t1
in Di during the execution of Algorithm 1 with probability
at least 1 − O(n−2). Because the same argument can be
applied for all Di and because all v ∈ V are covered by at
most n disks, the claim holds for all disks with probability
1−O(n−1).

We continue by showing that Property 2 holds under the
assumption that the two other Properties hold.

Theorem 5.8. Assume Property 2 is the first property
to be violated and let t2 be the first time-slot in which the
violation occurs. The probability that there exists such a
time-slot t2 during the execution of Algorithm 1 is at most
Pfail ∈ O(n−1).

Before proving Theorem 5.8, we introduce some notation
and establish a key lemma. Assume that Tc is an interval
either between a) two subsequent independent clearances in
a disk Di, or b) between a clearance and the end of the
algorithm, or c) between a clearance and time-slot t2 (i.e.,
the first violation of Property 2), depending on which comes
first. Further, let tc be the clearance that has initiated Tc.
We show that the probability of Property 2 being violated
in this interval (i.e., t2 ∈ Tc) is 1−O(n−3). By Lemma 5.2,
there is no new candidate emerging in Di in the interval
[tc, . . . , tc + 4µδ log2n]. We therefore need to analyze only
the interval [tc + 4µδ log2n, . . . , tq], where tq is the time-slot
of a) the subsequent clearance, b) the end of the algorithm,
or c) time-slot t2.

Let a failure be a time-slot in which at least one new
candidate in Di emerges, but no clearance occurs. The next
lemma bounds the number of failures.

Lemma 5.9. There are no more than 1
6e

κ log n failures

in Di in the interval [tc + 4µδ log2n, . . . , tq] with probability
1− n−3.

Proof. We prove that before 1
6e

κ log n failures can occur,
there is with high probability at least one clearance. The
argument is completed by the fact that, by definition, tq

must take place before or at the time of such a clearance.
We define the following events. Ec(t) denotes the event of

a clearance in Di at time-slot t and E0(t) is the event of no
node in Ai sending in time-slot t. Observe that Ec(t) can
only be true if E0(t) is false. In the sequel, we want to find
a bound on the probability P [Ec(t)|E0(t)]. Clearly, if in a
time-slot exactly one node in Di sends and no other node in
E1.5

i sends, then a clearance occurs. Hence, P [Ec(t)|E0(t)] ≥
P [E1(t)|E0(t)] · P [Ee(t)] where E1(t) is the event of at most
one node sending in Ai, and Ee(t) is the event of no node
sending in E1.5

i \Ai. It will be convenient to state the above
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expression in terms of E+(t) which is the event that 2 or
more nodes in Ai send. Thus,

P [Ec(t)|E0(t)] ≥ P [Ee(t)] · (1− P [E1(t)|E0(t)])

= P [Ee(t)] · (1− P [E+(t)|E0(t)])

= P [Ee(t)] ·
(

1− P [E+(t)]

P [E0(t)]

)
,

because of P [E0(t)|E+(t)] = 1. By the definition of tq (which
is t2 or earlier), we can assume that in the interval [tc +
4µδ log2n, . . . , tq], all three properties hold. Thus, we are
allowed to reuse some results that we have established based
on the assumption that all three properties hold. First, we
need a bound on P [Ee(t)] from the proof of Theorem 5.7:

P [Ee(t)] ≥
∏

v∈E1.5
i

(1− pv) ≥ (1/4)
3µ
2α .

For succinctness, let XA =
∑

v∈Ai
pv. We obtain the follow-

ing lower bound for P [E0(t)],

P [E0(t)] = 1−
∏

v∈Ai

(1− pv(t))

≥ 1− (1/e)
∑

v∈Ai
pv ≥ 1− (1/e)XA .

Finally, we consider P [E+(t)],

P [E+(t)] ≤ P [E0(t)]−
∑

v∈Ai


pv

∏

w∈Ai\{v}
(1− pw)




≤ 1−
∏

v∈Ai

(1− pv)−
∑

v∈Ai

pv · (1/4)
∑

v∈Ai
pv

≤ 1− (1/4)
∑

v∈Ai
pv −

∑
v∈Ai

pv · (1/4)
∑

v∈Ai
pv

≤ 1− (1 + XA) (1/4)XA .

Plugging everything together, the probability P [Ec(t)|E0(t)]
that there is a clearance if a new candidate emerges in Di

is at least P [Ec(t)|E0(t)] ≥ Q where Q is

Q = (1/4)
3µ
2α ·

(
1− 1− (1 + XA) (1/4)XA

1− (1/e)XA

)
.

By Property 1, we know that the expression XA =
∑

v∈Ai
pv

is in the range [0, . . . , 2−α]. Under this condition, the above
function is minimized for X = 2−α, hence P [Ec(t)|E0(t)] ≥
0.23 · (1/4)

3µ
2α . Finally, if t2 ∈ Tc, the probability Pf that

there are more than 1
6e

κ log n failures in Di in the interval

[tc + 4µδ log2n, . . . , tq] is asymptotically in

Pf ≤ (1− P [Ec(t)|E0(t)])
1
6e

κ log n ≤ O(n−3)

by the definition of κ.
That is, with probability 1−O(n−3), if as many as 1

6e
κ log n

failures had occurred before tq, there would have been an-
other clearance before tq, contradicting the definition of tq.

Proof of Theorem 5.8. We begin by showing that in
expectation, there are only a constant number of new can-
didates emerging in Di per failure time-slot. We denote
by C(t) the number of active nodes that send at time t
(new candidates) and write Ef (t) for the event of a failure.
The conditional expected value of C(t) given a failure is

E[C(t)|Ef (t)] ≤ E[C(t)]+2 ≤ ∑
v∈Ai

pv +2. Because Prop-

erty 1 is assumed to hold, this is at most E[C(t)|Ef (t)] ≤
2−α + 2.

In the following, we bound the number of candidates C(TC)
emerging during TC in the case in which during the inter-
val TC = [tc + 4µδ log2n, . . . , tq], there are no more than
1
6e

κ log n failures. Observe that bounding C(TC) suffices to
prove the theorem because by Lemma 5.5, all candidates ex-
isting at time tc are covered by the time tc +4µδ log2n with
probability 1 − n−2. Consequently, we only need to bound
the number of new emerging candidates when analyzing the
interval [tc + 4µδ log2n, . . . , t2].

The following random experiment allows us to derive a
high probability bound on C(TC). We consider random vari-
ables Xij for i = 1 . . . n and j = 1 . . . |C|, where |C| is de-
fined as the number of failures in TC , formally |C| = |{t ∈
TC |Ef (t)}|. Further, we define X :=

∑|C|
j=1

∑
i∈Ai(tj) Xij as

the sum of all Xij . The semantic meaning of Xij is that
Xij = 1, if node i sends (and becomes a candidate) in the
jth failure of TC , and Xij = 0 otherwise. Therefore, X rep-
resents an upper bound on the number of new candidates
emerging in Di during TC . Considering the Xij as being
independently distributed Bernoulli trials is not precise be-
cause of dependencies between different Xij . Specifically,
Xij = 1 ⇒ Xij′ = 0, for all j′ > j because an active node
that sends becomes a candidate. Note that these depen-
dencies cause X to be strictly smaller or equal as compared
to the case in which all Xij that are depending on previ-
ous events were chosen randomly and independently with
an arbitrary probability distribution. Thus, when assuming
all Xij to be independent Bernoulli trials, X is an upper
bound for C(TC).

We know from the above argument, that in expectation,
at most 2−α + 2 active nodes send per failure. With our
assumption that there are no more than 1

6e
κ log n failures,

we get

E[X] =

|C|∑
j=1

E


 ∑

i∈Ai(tj)

Xij


 =

|C|∑
j=1

E[C(tj)|Ef (tj)]

≤ (2−α + 2)
1

6e
κ log n <

1

2e + 1
κ log n.

As mentioned before, assuming Xij to be randomly and in-
dependently distributed Bernoulli variables yields an upper
bound on C(TC), i.e., E[C(TC)] ≤ E[X]. Hence, we can use
the Chernoff bound with E[X] = κ log n

2e+1
. In particular, the

probability Px that X is larger than (2e+1)κ log n
2e+1

= κ log n
is at most

P [C(TC) > κ log] ≤
(

e2e

(2e+1)2e+1

) κ log n
2e+1

∈ O(n−2).

That is, if there are at most 1
6e

κ log n failures in TC , then at
most κ log n candidates emerge in TC with probability 1 −
O(n−2). As shown, this bound suffices to prove that Prop-
erty 2 is not violated in TC with probability 1−O(n−2). On
the other hand, we know by Lemma 5.9 that the probability
of having more than 1

6e
κ log n failures in TC is 1−O(n−2).

That is, the probability that in an arbitrary interval TC af-
ter a clearance, Property 2 is indeed violated before the next
clearance is at most 1− 2O(n−2) ∈ 1−O(n−2).

Now, consider the first µ intervals TC in every disk Di.
The probability that there is at least one interval in which

155



there are more than κ log n new candidates is at most nµ ·
O(n−2) ∈ O(n−1). That is, with probability 1 − O(n−1),
Property 2 is not violated after the first µ intervals TC in
every disk Di. By Lemma 5.6, there are no more than µ
clearances (and hence inter-clearance intervals TC) per disk
with probability 1 − O(n−2) if all three Properties hold.
Thus, Property 2 is not the first Property to be violated
with probability 1−O(n−1).

Finally, we prove the correctness of Property 3.

Theorem 5.10. Assume Property 3 is the first property
to be violated and let t3 be the first time-slot in which the
violation occurs. The probability that there exists a time-
slot t3 during the execution of Algorithm 1 is at most Pfail ∈
O(n−2).

Proof. We show that if a node joins M, the count value
of all neighboring candidates are at least δ log n away from
the threshold that enables to join M. Applying Lemma
5.3 then concludes the proof. Let vv be the node that vio-
lates Property 3 at time tv = t3 and let vm be the neighbor
of vv that has previously joined M, say at time tm ≤ tv.
We claim that at time tm, the count value of all neighbors
vx ∈ Nm of vm (including vv) is at most δ log2n − δ log n.
By the definition of the algorithm, vm must have started in-
creasing its count by the time tm−δ log2n+δ log n, because
it could “skip” at most the first δ log n values. Similarly,
every potential node vx that ends up having a count value
larger than δ log2n − δ log n at time tm must have started
increasing its count by the time tm − δ log2n + 2δ log n. By
the definition of the critical range δ log n in Receive Trigger
2, such a node vx has not received a message mC from vm

in the interval [tm − δ log2n + 2δ log n, . . . , tm] because if it
had, it would have reset its count.

The probability Pt that vx ∈ Di receives a message mC

from vm in an arbitrary time-slot t in the interval [tm −
δ log2n + 2δ log n, . . . , tm] is at least

Pt ≥ pm ·
∏

v∈E1.5
i

(1− pv)

≥ qC

∏

Dj∈E1.5
i

(1/4)
∑

v∈Cj∪Aj
pv+

∑
v∈Mj

pv

≥
Properties 1, 2

τ

2α log n

[
(1/4)

1
2α−1 +

∑
v∈Mj

pv
]µ

.

Because vv is the first node violating Property 3, it holds
that before tm, the set M forms a correct independent set.
Therefore, due to Fact 3,

∑
v∈Mj

pv ≤ 1
2α , and hence Pt ≥

2−ατ(log n)−1 (1/4)
3µ
2α . The probability Pn that a node

vx does not receive any message mC from vm during the
δ log2n− 2δ log n remaining time-slots before tm joins M is
for n ≥ 16,

Pn ≤
(

1− τ

2α log n
(1/4)

3µ
2α

)δ log2n−2δ log n

≤
(

1−
τ log n

2α

log2n
(1/4)

3µ
2α

) 1
2 δ log2n

≤ e−
1
2 δ log n· τ

2α (1/4)
3µ
2α ∈ O(n−4).

Because there are n2 pairs of nodes (vm, vx) ∈ V × V , the
probability that the “count-difference” claim holds for all
nodes vm and vx is at least 1−O(n−2).

We now have all ingredients to prove the theorem. Assume
for contradiction that vv is the first node to violate the MIS
condition (Property 3) at time t3 and let vm be vv’s neighbor
that has correctly joined M at time tm ≤ t3. By definition
of vv, Property 3 holds until t3. Therefore, we can apply
the result obtained above. In particular, with probability
1−O(n−2), there are at least δ log n time-slots between vm

and any potential node vv causing the violation. Because
all properties hold before t3, it follows from Lemma 5.3 that
vv receives a message mC by vm ∈ M with probability 1−
O(n−3). Hence, the probability that there exists a time-slot
t3 is bounded by O(n−2).

When the first node wakes up, all three Properties are
valid. Theorems 5.7, 5.8, and 5.10 show that none of them
is the first to be violated, thus establishing the algorithm’s
correctness. For the running-time, we show that every node
decides in time O(log2n) whether to become a MIS node or
a slave.

Theorem 5.11. Properties 1, 2, and 3 hold with proba-
bility 1 − O(n−1). Particularly, the set M as computed by
Algorithm 1 is a correct maximal independent set with prob-
ability 1−O(n−1).

Proof. By Theorem 5.7, Property 1 is not the first to
be violated with probability 1−O(n−1). Similarly, by The-
orems 5.8 and 5.10, Properties 2 and 3 are not the first to
be violated with probabilities 1 − O(n−1) and 1 − O(n−2),
respectively. Hence, with probability (1 − O(n−1))2 · (1 −
O(n−2)) ∈ 1 − O(n−1), none of the three properties is vi-
olated during the execution of the algorithm. If all three
Properties hold, Property 3 implies that with probability
1−O(n−1), the resulting set M forms a correct independent
set. The maximality of the independent set stems from the
fact that a node joins set S only upon receiving a message
mM from a neighboring MIS node. That is, every non-MIS
node has at least one MIS node in its neighborhood.

Theorem 5.12. With probability 1−O(n−1), every node
v ∈ V decides irrevocably whether it joins set M or S within
time O(log2n) after its wake-up.

Proof. Consider an arbitrary node v ∈ Di and let TW ,
TA, and TC be the total time node v spends in the corre-
sponding state during its execution of Algorithm 1. Assume
that all three Properties hold. Once node v becomes a can-
didate at time tv, it will decide to become a MIS node or a
slave within time tv + 4µδ log2n by Lemma 5.5 with proba-
bility 1 − O(n−2). Hence, TC ≤ 4µδ log2n. It thus remains
to bound the time that v spends in states W and A.

If v does not receive a message mA from a neighboring
node for 4µδ log2n time-slots after its wake-up (or after be-
ing reset to state W in Receive Trigger 1), it becomes active
and joins A. Unless it receives a message mA thereafter,
its sending probability reaches the value pv(t) = 2−α−2 at
most (log n − 1) · λ log n time-slots after becoming active.
This is because the sending probability is initially 2−α−1/n
and is doubled once per λ log n time-slots. So, either there is
a node w ∈ N+

v whose message mA v has received and who
subsequently becomes a candidate, or the sending probabil-
ity of v ∈ A exceeds the value pv(t) = 2−α−2. If the latter
is the case, conditions (1) and (2) are fulfilled. It follows
by the same argument as in the proof of Theorem 5.7 that
there is a clearance in the subsequent δ log n time-slots with
probability 1−O(n−3).
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Putting things together, it holds that 4µδ log2n + λ log2n
time-slots after wake-up or a reset because of Receive Trigger
1, there exists a node w ∈ N+

v that becomes a candidate,
say at time tc. If w = v, we are done because v joins C and
TC ≤ 4µδ log2n. If w 6= v, a new MIS node appears in the
interval [tc−δ log n, . . . , tc+δ log2n] in E3.5

i with probability
1 − O(n−2) by Lemma 5.4. Because there can be at most
4µ MIS nodes in E3.5

i , the total time spent by v in states W
and A is bounded by

TW + TA ≤ 4µ · (4µδ + λ) log2n ∈ O(log2n)

Together with the above bound on TC, this shows that if
all three Properties hold, every node v decides within time
O(log2n) upon its wake-up with probability (1−O(n−2))n ∈
1−O(n−1). By Theorem 5.11, all three properties hold with
probability 1−O(n−1) which concludes the proof.

Theorems 5.11 and 5.12 show that with high probability,
Algorithm 1 computes a correct maximal independent set in
time O(log2n).

6. CONCLUSIONS
The Ω(log2n/ log log n) lower bound of [11] even holds for

the restricted problem of having one node send alone once
in a single-hop environment. It is intriguing that O(log2n)
time-slots suffice to compute a sophisticated network struc-
ture like a MIS. We believe that our algorithm is asymptot-
ically optimal, but closing the remaining gap of O(log log n)
in either way remains a challenging task. Besides studying
other initial network structures, it will also be interesting
to investigate the respective power of deterministic and ran-
domized MIS algorithms.

Whereas in the message passing model, Luby’s algorithm
[17] computes a MIS in time O(log n), our algorithm re-
quires time O(log2n) in the radio network model. This sheds
an interesting new light on the relation between these two
models of distributed computing, particularly because both
algorithms are close from optimal [14, 11].
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