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Abstract

We show that for any randomized broadcast pro-

tocol for radio networks, there exists a network

in which the expected time to broadcast a mes-

sage is Q(ll log(N/11)), where D is the diameter

of the network and N is the number of nodes. This

implies a tight lower bound of Q( D log N) for all

D S N1-e, where s >0 is any constant.

1 Introduction

Traditionally, radio networks received a consider-

able attention due to their military significance.

The growing interest in cellular telephones and

wireless communication networks has reinforced

the interest in radio networks. The basic feature of

radio networks, that distinguishes them from other
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networks, is that a processor can receive a message

only from a single neighbor at a certain time. If

two (or more) neighbors of a processor transmit

concurrently, then the processor would not receive

either messages.

In many applications, the users of the radio net-

work are mobile, and therefore the topology is in-

stable. For this reason, it is desirable for radio-

networks algorithms to refrain from making as-

sumptions about the network topology, or about

the information that processors have concerning

the topology. In this work we assume that none of

the processors have initially any topological infor-

mation, except for the size of the network and its

diameter.1 See [Ten81, Ga185, BG192, BG191] for

a discussion on this model and related models.

We study broadcast protocols; those protocols

are initiated by a single processor (the originator)

that has a message M he wishes to propagate to

all the other processors in the network. In many

of the radio networks applications (e.g. cellular

phones ) broadcast is a central primitive which is

frequently used, for example to perform a network-

wide search for a user.

Bar-Yehuda et al. [BG192] present a random-

1Usually, when the topology is instable, the diameter is

unknown to the processors and only a bound on the size of

the network is available. However, since we are proving a

/ower bownd this assumption only makes the result stronger.
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ized broadcast algorithm, that runs in expected

0(11 log N + log2 iV) time slots, where N is the

number of processors in the network and D is its

diameter. In contrast they show that for any de-

terministic broadcast algorithm there are networks

of constant diameter on which the algorithm needs

Q(N) time slots.

Alon et al. [ABLP91] made the first step to-

wards proving the optimality of the upper bound

of [B G192]. Their result can be viewed as a graph-

theoretic result; they show that there exist net-

works of diameter D = 3 on which any schedule

needs at least Q(log2 IV) time slots. This lower

bound shows that there are networks on which

broadcast requires this many time-slots, and it

matches the known upper bounds [BG192, CW87],

in the case of constant-diameter networks.

In this work we complete the picture by prov-

ing an Q(ll log(lV/D)) lower bound. Our result is

of a different nature; we show that for any ran-

domized broadcast algorithm and parameters ill

and D there is an ordering of the IV processors

in a network of diameter D such that the expected

number of time slots, used by the algorithm, is

Q(lJlog(lV/.D)). For D s JV1-e this gives an

Q(ll log N) lower bound. Hence, it proves the

tightness of the upper bound of [BG192] for all iV

and D ~ jV1-e. Moreover, the lower bound holds

even if each of the iV processors is allowed to use

a diflerent program (e.g. the processors can use

their IDs). On the other hand, it is worth point-

ing out that it remains an open problem whether

there exists a network for which any algorithm re-

quires Q(D log( lV/11 ) ) time-slots. Namely, it may

be the case that for any network there is a. sched-

ule that completes in 0(log2 N + D ) time slots.

In fact, the networks constructed in our lower-

bound proof have this property, which hints that

the lower bound heavily relies on the lack of topo-

logical knowledge at the processors.

Broadcast in radio networks has received con-

siderable attention in previous works. [CW87]

present a deterministic sequential algorithm that

given the network finds, in polynomial time, a legal

schedule that requires at most O ( D log2 N) time

slots. Broadcast that is based on using a spanning

tree was suggested in [CK85a, CK87]. In [BI189]

it is shown how to reduce the amortized cost per

broadcast by using a BFS tree. Simulation of point

to point networks on radio networks is found in

[CIi85b, ABLP92, B&91].

An important issue in the study of radio

networks is whether collisions can be detected;

namely, whether a listener can distinguish between

the case that none of its neighbors transmit and

the case that two or more oft hem transmit. In our

model it is assumed that the listener cannot dis-

tinguish between the two cases (say, it hears noise

in both cases). There is another common model in

which it is assumed that the two cases are distill-

guishable (say, if no neighbor transmits the listener

hears silence while if two or more neighbors trans-

mit the listener hears noise). A discussion justify-

ing both models can be found in [Ga185, BG192].

Willard [Wi186] studies a broadcast problem, in

a single multi-access channel under this second

model (i.e., when collision-detection is available).

He shows matching upper and lower bounds of

@(log log n) expected time slots2 in this model.

‘Willard shows an Cl(log log n) lower bound in the single

multi-access channel model. Although this bound applies to

a different model, it should be noted that his bound is also

significantly restricted by the types of algorithms for which

it applies. In particular, he requires independence between

the decision whether to transmit in a certain time slot and

the decisions made in previous time slots. In our case such

a restriction is unacceptable as the upper bound of [BG192]

has such dependencies, Also he does not handle the case

where each processol may use different, program.
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for the same problem in our model. Again, this

lower bound holds even if the processors may use

different programs. Hence, we demonstrate a prov-

able exponential gap between these two models.

The rest of this paper is organized as follows:

Section 2 contains some necessary definitions. Sec-

tion 3 contains the proof of the main lemma in the

uniform case, where all the processors use the same

program. Section 4 contains the proof of the main

lemma in the non-unijorm case, where processors

may use different programs. The proof for this

case is based on a probabilistic reduction to the

uniform case. Finally in Section 5 we prove the

main theorem. The proof involves constructing a

“difficult” network in a probabilistic way.

2 Preliminaries

A radio network is described by an undirected

graph G(V, E).3 The nodes of the graph represent

processors of the network, and an edge between

nodes v and u implies that v can send messages to

u (and vice-versa). The neighborhood of a node u

includes all the nodes t) such that there is an edge

(u, v) in E.

The time is viewed as divided into slots (or

rounds), and a node can either transmit or not

in a given slot. A radio network has the property

that if two or more nodes in the neighborhood of a

node u transmit at the same time slot then none of

the messages is received at u. I.e. a node receives

successfully a transmission at time t,if exactly one

of its neighbors broadcasts at time t.

Each processor in the radio network uses a prob-

abilistic program. This program defines whether

3 None of the results presented in this work will be

changed if the network is a directed one. However, it is com-

mon in this area to assume that the network is undirected.

not. As we are not concerned with the computa-

tional power of the processors we can simply view

this program as a probability distribution, which

may depend on the history, A protocol is uniform

if all processors use the same program. Otherwise,

if each processor may have a different program, the

protocol is non-uniform.

A broadcast protocol is a protocol that is initi-

ated by a single processor, called originator, that

holds a message M (any other processor is inactive

until receiving a message for the first time). The

aim of the protocol is that each processor in the

net work will receive a copy of the message M.

3 Uniform Processors

In this section we prove the main lemma for the

uniform case, where all processors use the same

program. It shows that if there are n processors

arranged in a clique, then there exists a t (2 <

t < n) such that if t processors wish to transmit

(we call these t processors the participants) then

the expected number of rounds (time slots) until

a round in which exactly one of them transmits is

fl(log n ). In fact, we show that this is the case for

most of the t’s of the form t = 2’. Note that the

assumption that the topology is not known to the

processors, in the context of this lemma, means

that t,the number of processors that are trying to

transmit, is not known to any processor. We can

view the scenario as having a family of networks

with n + 1 nodes, composed from a clique of size

n and an originator which is connected to t of the

nodes in the clique. The ( unknown) topology is

chosen to be one of these networks.

4Note that we use here n (and not N) as the number of

processors. This will be convenient while using the lemma

in the proof of the theorem.
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Lemma 1 Let II be a broadcast protocol, let the

network be as above, and let n be an upper bound

on the number of participants. We cull a round

successful if exactly one processor transmits. Let

E(T~) denotes the expected number of rounds until

the first successful round, given that the number of

participants is 2e (the expectation is taken over the

probabilistic choices of the processors). Then,

El[E(T’~)] = Q(logn),

where ~ is chosen uniformly from the range 1 <

4< logn.

Proof: The first observation that we make is

that the lemma deals only with the first success.

Therefore, we can assume that the (probabilistic)

decision in which rounds a processor tries to trans-

mit is made at the beginning of the protocol. This

is done by letting each of the 2e processors to

choose whether to transmit in round s or not in

the same way as it chooses in the original proto-

col, in the case that all previous rounds were un-

successful. Clearly, as far as the first success is con-

cerned this modification has no effect on the pro-

tocol. Hence, the decision of a processor whether

to transmit in round s may depend on the round

number, S, and the probabilistic choices of the pro-

cessor in first s – 1 rounds but it does not depend

on choices made by other processors.5 Therefore,

we can think about the processors as if they choose

in advance, for every round s = 1,2, . . .. whether

they will try to transnlit.6

5The message that the processors need to t~ansmit also

has influence on their decisions. However, it can be thought

as part of the program used by’ the processors.

‘To avoid measurability concerns it is convenient to as-

sume that the protocol is such that s is in the range 1, . . . . F,

for some finite F. If this is not the case, we can always

choose F such that the probability of choosing only in the

range 1, . . . . F is arbitrarily close to 1. This will cause minor

changes in our proof.

For simplicity of notations, we assume that n is

a power of 2. Define,

PS,C : Pr ( failure in rounds 1,. . .,s – 1 and

success in round .s12t participants).

As the events described in the definition are dis-

joint (for jixed 1 and different s ‘s), and assuming

that the protocol succeeds with probability 1 (no

matter what 1 is), we have for all /

2 P.,e = 1. (1)

S=l

At some point in the proof below, it will be in-

convenient that p~,e depends on events happen in

previous rounds. However, we can get rid of this

dependency simply by writing

P,,t < ~r( success in round S12P participants).

(2)

Now, let A be a parameter (to be fixed later). By

the definition of E(Ttn), we have

.s=1

.\.10g n- I w

= x ‘“1’s(+- E ‘“ps~
.$=1 s=,\.10gn

,\.10gn–l

+ E ~“logn”f-’s~
s=,\.log n

By equation ( 1),

A.1ogn-1

= A.logn+ ~ (s– A.logn). ps,/
.s=1

,\.10gn–l

.s’=1
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To complete the proof of the lemma it is enough

to show that, for a random /, a(l) s c log n, where

c < A is a constant. To this end we consider

the sum of the a(.t)’s and show that this sum is

bounded by

A
a* =

=

c log2 n. Formally, define

log n

~ cl(e)

e= 1

log n A.1ogn–1

~ ~ (Alog~-s)P .,,

e=l S=l

We now use equation (2) and change the order of

summation and we get

A.10Kn-l

(4)

.9=1

log n

~ P~(success in round s [ 2’ participants)

e=l

The next claim gives a bound on the last sum.

Intuitively it says that you cannot have high prob-

ability of success in ( a fixed) round s, for more

than a few values of 2C. Formally,

Claim 2 For any s,

log n

~ Pr(success in round s I 2( pcmticipants) <2.

e=l

Proof: Fix s. As already discussed, we assume

that the processors make all their choices in ad-

vance. The history of choices of a processor is a

string in {O, l}s–l, where the value of the ith bit

means trying (“l” ) or not trying ( “O”). Define

q(s) : Pr(trying in round s)

——
x Pr(h) . Pr(trying in round .s[h).

history ~

Note that q(s) does not depend on t’. We assume,

without loss of generality, that q(s) > 0 ( rounds

with q(s) = O can be omitted from the protocol).

Recall that a successful round is one in which ex-

actly one processor is trying to transmit. There-

fore,

Pr(success in round s [

——

We get

log n

~Pr(success in round

e=l

log n

= ~ 2’q(s)(l -

e= 1
log n

24 ~~rtiCipantS) 21_1

2e . q(s) . (1 – q(s)) .

s/2~ participants)

q(s))ze-l

= q(s) ~ 2~(1 – q(s))z’-’

e= I

n—1

< 2“q(s)~(l–q(s))J

J=l

= 2.q(s).
1 – (1 –q(s))n <

q(s)
2

which completes the proof of the claim.

Using this claim and equation (4) we have

log n A.1ogn–1

~ cl(l)= a“ < 2 ~ (A”logn–s)

P=l .5=1

< AZ olog2 ?2. (5)

By the definitions, and equation (3) we have,

By equation (5), this is greater than

A log 71 –
AZ log2 ?1

log n
=( A–A2).log7t.

By choosing A = 1/2 we get Ee[13(Ty)] > l/4.log n

as desired. •1
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4 Non-Uniform Processors

In this section we prove the main lemma for the

non-uniform case, where the n processors may use

d~flerent programs. The main idea of the proof

is to “reduce” the non-uniform case to the uni-

form one, and use the result of the previous section

(IJemma 1).

L,emma 3 Let R be a protocol for n distinct pro-

Ct:ssors PI ,. ... Pn that run (possibly} da’’erent pro-

grams. Let E(T~) denotes the expected number of

rounds until the first successful round, given that

a random set of 2e processors participates (the ex-

pectation is taken over the choice of the set and

the probabilistic choices made by the processors).

Then,

Ef[E(T~)] = !l(logn),

where / is chosen uniformly from the ranqe 1 <

/ < logn.

Proof: As argued in the previous section each

program can be thought of as a “schedule” – a

choice of a subset of rounds in which the processor

will transmit. Processor Pi chooses its schedule

from a distribution pi.

We now define, based on the ( possibly differ-

ent) programs used by PI, . . . . Pn, a new program

that will be used by each of L uniform proces-

sors Ql, . . ., QL: Processor Qj chooses at random

1 ~ i ~ n and simulates the program of processor

Pi. Namely, it chooses a schedule s with probabil-

ity ~z~=l~i(s), where ~i(s ) is the probability that

processor Pi chooses the schedule s. We denote by

c(Qj) the processor Pi that Qj chose to simulate.

We emphasize that all the Qj’s run the same pro-

gram (i.e. they are uniform ). and that different

Qj’S may choose to simulate the same processor

j~i (we will choose L “small enough” so that this

will happen only with a “small” probability y ).

The following claim says that given that for

Q1 ,..., Q2e all the corresponding c(Qj)’s are dis-

tinct, then the probability distribution of the

schedules chosen by the Qj’s is the same as that

of a random set of 2e processors Pi.

Claim 4 Let Q = {Ql,. . ., Q2t}. For every Qj c

Q, let c(Q j) be a random processor Pi. l$V~l, ~2 :

4Qjl) # c(Qj2)~ then p = {4 Qj)l Qj E Q} is

a rondom set of 2P processors (in PI, . . . . Pn), and

the following holds: for every choice of 2e schedules

Fzf = (Sl, . . ..szt)

Pr[3’2t Iprocessors Q run ]

= Pr[.12t5 Iprocessors P run ].

The following claim is the main tool in the re-

duction from the non-uniform case to the uniform

case.

Claim 5 Let Q be a.s above, and let Q’ =

{Q; ,..., Q;, } be o set of 2e processors. Each

processor Q~ run the program of Qj at the odd

steps and the [BG192] program at the even steps

(note that the [BG192] program is also a uniform

program, and therefore so is the program run by

the processors Q’). Let /3t be the probability y that

Qjl , j2 : c(Qjl) # c(Q~2). Let T~Q’ be the ran-

don2 variable indicating the time of first success

when the 2( identical programs in Q’ run, and re-

call that T~ is a random variable indicating the

time of first success when a random subset

distinct programs Pi, ,. ... Pi,t run. Then,

E[T$’] ~ 2/3pE[T~] + 8(1 – fll)logn.

In the above claim we mixed the given

known ) protocol with the [B G192] protocol.

of 2f

( un-

This

is because we have no guarantee about the run-

ning time of the simulation, in case that some Qj’s

choose to simulate the same Pi. For example, a
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protocol that lets processor Pi transmit at time

~lot i would not terminate if al] the Qj Sinlu]ate

the same processor Pi.

Proof: Let unique be the event that VQjl, Qj, <

Q’ : c(Qi ) # C(Qj2 ). Then,

E[Tf’] = E[T~’(unique] . Pr[unique]

+ E[T~’1 not unique] . Pr[not unique]

By definition

Pr[unz@e] = ,B/.

Ely claim 4,

In the case that the choices of C(Qj ) are not unique

we cannot use the properties of the original proto-

CO1. However, we can use the fact that the [B G192]

protocol has expected time until first success of at

most 4 log n. Therefore,

EITIQ’ Inot unique] ~ 8 log n

which completes the proof of the claim. ●

The next claim says that with “high probability”

the choices c(Qj) are unique.

Claim 6 Let /?e be the probability that Vjl # jx :

C( Qjl ) # c(Qjz ) and assume that 2! S 711/4. Then,

‘p+
Proof: Note that

Pr[jl # jz and C(Qjl ) = c(Qj2 )1= ~.

Therefore,

Oe = ~r[vi # .h : c(Qj, ) # c(Qj, )]

Since 2e s n114 the lemma follows.

Let L = nl/4. By Claims 5 and 6,

E[T~’] s 2~t-E[Tj7 + (1 – ~t)810g n

8 log n

s 2E[TY] + fi

or
4 log n

E[T?] z ~~[~~’] – ~.

We now take the expectation over all values 1 s

1 S log L and get

&[E[T~]] ~ &[E[T~’]] -%.

By Lemma 1

E&E[T~’]] = Q(log L) = Q(logn),

which implies that

Et[E[T~]] = fl(log n)

as desired.

5 Main Theorem

❑

In this section we prove the main theorem. We

show that for every broadcast algorithm that does

not know the topology oft he network, for every N,

and every D, there exist networks of IV processors

and diameter D such that the expected running

time of the algorithm (until all processors receive

the message) is Q(D log(fV/D )). This implies a

similar lower bound for the case where the worst

case running time is considered and a small prob-

ability of error is allowed (which is the scenario in

which the upper bound of [B G192] is described).

CJiven an algorithm, and the values N and D we

construct a network as follows. Let n = iV/D, and

assume for simplicity that n is a power of 2. We

construct a complete layered network of D + 2 lay-

ers. The first layer (layer O) contains one node, s,
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which will be the originator of the broadcast. Each

of the next D layers (layers 1,2, . . . . D ) consists of

“ < n nodes, where li is chosen uniformlyn~=2_

(and independently for each layer i) in the range

1,..., log n. The last layer contains all the other

nodes (so that the total number of nodes will be

IV). Each node in layer i is connected to all nodes

in layers i – 1 and i + 1.

Recall that the topology of the network is not

known to the processors (If the topology was

known, then an efficient uniform protocol would be

to let a processor at layer i broadcast with prob-

ability l/ni, the expected time is 0(D). A non-

uniform protocol that knows the topology simply

lets one node in each layer to transmit). The al-

gorithm can depend however on other information

that the processors have, in particular – the clock,

the content of the message, etc.

We discuss the uniform case, in the sense that

all the processors at layer i have the same protocol.

The extension to the non-uniform case employs the

techniques of the previous section, and the proof is

the same but the notation becomes cumbersome.

(In particular, in the non-uniform case, at each

layer i we will choose not only n, but also a ran-

dom set of ni processors. ) The main property that

this construction has is the following: For all i,

and all runs of the protocol, all the processors in

layer i have the same view; every message received

at one of these processors, is received by all other

processors at the same time. Therefore the broad-

cast progresses in a layer-by-layer fashion. More-

over, this implies that all the processors in layer

i choose schedules according to the same distribu-

tion p (the choice of p depends on the history but

all the processors of layer i share the mme history),

which allows us using Lemma 1.

Finally, before going into the details, we make

one more assumption that makes our argument

simpler. We give the processors of layer i, at the

time they get the first message from a processor in

layer i – 1, all the other messages they will get from

layer i – 1 at the future as well as the actual values

Of (l,..., /i-l. As this extra information can only

help the processors to make the broadcast faster

we are allowed to make this assumption.

Let ti be the random variable indicating the

number of rounds since the processors of layer i get

the message (and become active) until their suc-

cess (the first time that a single processor in layer i

transmits). We need to show that for some choice

of fl,...,l~ we get En(~~l G) = Q(~log(~/D)),

where the expectation is taken over the ran-

dom choices of the algorithm II. Certainly, it

is enough to show that Ell ,...,t~,n(~~l ti) =

0( D log( lV/D ) ). By linearity of expectation we

get

D D

1=1 1=1

So all we have to bound now is EC,,...,cD,n (L).

(~learly, the ChOiCe of ~z+l, . . . . fD has no influence

on the expectation of t,, i.e.

JM1,...,D,rI(~i)i) = J%,...,L,JI(L).

Also, by the discussion above, with every history

(which depends on the random choices made in the

first i – 1 layers, including the choice of /1, . . . . I,_l )

we can associate a probability distribution ~ used

by the processors in layer i to choose their sched-

ules (note that since we assume that the proces-

sors of layer i get all the future information with

the first message, they can make all their random

choices at this time). Therefore, we can write

~tl,...,i!,,rI(~,)

= ~ E,t,rI(t,p, = bl,,l t-, = L,)
bl,..., bl–l

.P7’[t* = bl, . . .,/t_l = bt_l]
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= ~ J5,t,rI(L\t, = h,, t,-, = b,-,)
b, ,...,bl–l

i—l

o ~ P,[l!j = b,]
j=l

= (log :),-1
“x E/,,~(t~ll~ = I)*,. . .,ci_l = Z&l)
bl ,,..,b,-l

It remains to bound the expression J?[,,n (t, Itl =

bl,. . . , f2i_1 = bi_l ). As mentioned, we allow the

processors at layer i to have access to hl,...,bl–l

(the actual values ofll ,.. .,ll)l). Therefore we

need to evaluate .E1,,n, (t;), where II; is the protocol

at layer i with the additional information about

the lower layers. By Lemma 1. for each such IIi,

E/,,n, (t,) > clog’??,

for some constant c. We get.

—— c log 72

This implies

E/l,...,lD,n(&) = Q(lllogn) = Q(D@(.~/~)).

i=l

which completes the proof of our main t heorenl:

Theorem 7 For any non-uniform broadcast pro-

tocol, there exists a network in which the expected

time to complete c1 brofldcas[ is Q( D log( J1’/D ) ),

where N is the number of processors. and D i.~ th~

diameter.

In case that D < N1-’, the above proof shows a

lower bound of Q(D log N). Combining our result

with the results of Alon et al. [ABLP91] and Bar-

Yehuda et al. [BGI!M] we have the following result.

Corollary 8 For a12y non-uniform broadcast pro-

tocol, there exists a network in which the time to

complete a broadcast is fl(log2 N + D log(N/D))j

where N is the number of processors in the net-

work and D is the diameter. Furthermore, there is

a (uniform) protocol that requires only O (log2 N +

D log N) expected time (which is tight for all D <

N1-E
).

Note that unlike [ABLP91] we show that for any

protocol there exists a network for which the lower

bound holds, while they prove that there exists a

network on which any protocol requires the lower

bound.
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