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TIME OF DETERMINISTIC BROADCASTING IN
RADIO NETWORKS WITH LOCAL KNOWLEDGE*

DARIUSZ R. KOWALSKIT AND ANDRZEJ PELC*

Abstract. We consider broadcasting in radio networks, modeled as undirected graphs, whose
nodes know only their own label and labels of their neighbors. In every step every node acts either as
a transmitter or as a receiver. A node acting as a transmitter sends a message which can potentially
reach all of its neighbors. A node acting as a receiver in a given step gets a message if and only if
exactly one of its neighbors transmits in this step.

Bar-Yehuda, Goldreich, and Itai [J. Comput. System Sci., 45 (1992), pp. 104-126] considered
broadcasting in this model. They claimed a linear lower bound on the time of deterministic broad-
casting in such radio networks of diameter 3. This claim turns out to be incorrect in this model
(although it is valid in a more pessimistic model [R. Bar-Yehuda, O. Goldreich, and A. Itai, Errata
Regarding “On the time complexity of broadcast in radio metworks: An exponential gap between
determinism and randomization,” http://www.wisdom.weizmann.ac.il/mathusers/oded/p_bgi.html,
2002]). We construct an algorithm that broadcasts in logarithmic time on all graphs from the Bar-
Yehuda, Goldreich, and Itai paper (BGI). Moreover, we show how to broadcast in sublinear time
on all n-node graphs of diameter o(loglogn). On the other hand, we construct a class of graphs of
diameter 4, such that every broadcasting algorithm requires time Q(/n) on these graphs. In view
of the randomized algorithm from BGI, running in expected time O(D logn + log? n) on all n-node
graphs of diameter D (cf. also a recent O(D log(n/D) + log? n)-time algorithm from [D. Kowalski
and A. Pelc, Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Com-
puting, Boston, 2003, pp. 73-82; A. Czumaj and W. Rytter, Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, Cambridge, MA, 2003, pp. 492-501]), our lower
bound gives the first correct proof of an exponential gap between determinism and randomization in
the time of radio broadcasting, under the considered model of radio communication.
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1. Introduction. A radio network is modeled as an undirected connected graph
whose nodes are transmitter-receiver devices. An edge e between two nodes means
that the transmitter of one end of e can reach the other end. Nodes send messages in
synchronous steps (time slots), measured by a global clock which indicates the current
step number. In every step every node acts either as a transmitter or as a receiver.
A node acting as a transmitter sends a message which can potentially reach all of its
neighbors. A node acting as a receiver in a given step gets a message if and only if
exactly one of its neighbors transmits in this step. The message received in this case is
the one that was transmitted. If at least two neighbors of u transmit simultaneously
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in a given step, none of the messages is received by w in this step. In this case we say
that a collision occurred at u. It is assumed that the effect at node u of more than
one of its neighbors transmitting is the same as that of no neighbor transmitting (i.e.,
a node cannot distinguish a collision from silence). We assume that nodes know only
their own label and the labels of their neighbors. Apart from that, the only a priori
information on the network available to nodes is a polynomial upper bound on the
number of nodes.

One of the fundamental tasks in network communication is broadcasting. Its goal
is to transmit a message from one node of the network, called the source, to all other
nodes. Remote nodes get the source message via intermediate nodes, along paths in
the network. In this paper we concentrate on one of the most important and widely
studied performance parameters of a broadcasting scheme, which is the total time—
that is, the number of steps it uses to inform all the nodes of the network. We measure
complexity in terms of the number of nodes in the network.

1.1. Our results. In a seminal paper [3], Bar-Yehuda, Goldreich, and Itai con-
sidered broadcasting in radio networks in the model described above. They claimed a
linear lower bound on the time of deterministic broadcasting in such radio networks
of diameter 3. This claim turns out to be incorrect, although it is valid in a more pes-
simistic model [4]. In fact, as pointed out in [4], the error is due to a gap between two
models handling collisions in radio broadcasting: that from [3] and a more pessimistic
but equally reasonable one. (See more comments on this point in subsection 1.2.) As
discussed below, a lot of work on radio broadcasting has been done following [3], most
of it modeling collisions as in [3].

Using the same model as in [3], we construct an algorithm that broadcasts in log-
arithmic time on all graphs from [3]. Moreover, we show how to broadcast in sublinear
time on all n-node graphs of diameter o(loglogn). On the other hand, we construct
a class of graphs of diameter 4, such that every broadcasting algorithm requires time
Q(/n) on one of these graphs. In view of the randomized algorithm from [3] running
in expected time O(Dlogn + log”n) on all n-node graphs of diameter D (cf. also a
recent O(Dlog(n/D) + log® n)-time algorithm from [23, 15]), our lower bound gives
the first correct proof of an exponential gap between determinism and randomization
in the time of radio broadcasting, in the model from [3].

1.2. Related work. Most of the results concerning broadcasting in radio net-
works can be divided into two parts: those which assume complete knowledge of the
topology of the network at all nodes, or equivalently, dealing with centralized broad-
casting for a given network, and those assuming only limited knowledge of the network
at all nodes and dealing with distributed broadcasting in arbitrary networks.

Deterministic centralized broadcasting assuming complete knowledge of the net-
work was first considered in [10], where a (Q(Dlog2 n)-time broadcasting algorithm
was given for all n-node networks of diameter D. In [18], O(D + log® n)-time broad-
casting was proposed. On the other hand, in [1] the authors proved the existence
of a family of n-node networks of radius 2, for which any broadcast requires time
Q(log? n).

The study of deterministic distributed broadcasting in radio networks whose nodes
have only limited knowledge of the topology was initiated in [3]. The authors assumed
that nodes know only their own label and the labels of their neighbors (and that
collision at a node has the same effect as silence). Under this scenario, a simple
O(n)-time broadcasting algorithm based on depth-first search (DFS) follows from [2].
In [3] the authors constructed a class of n-node graphs of diameter 3, and claimed
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that every broadcasting algorithm requires time €2(n) on one of these graphs. In [19]
this claim was further strengthened to a lower bound of n — 1 on broadcasting time
required on one of these graphs. It follows from the present paper that both these
claims (concerning lower bounds) are incorrect.

As pointed out in [4], the linear lower bound from [3] is valid in a more pessimistic
model than that of [3]. Namely, one could assume that in the case of a collision at u the
effect can be either the same as if no neighbor of u transmitted or the same as if any
single neighbor of u transmitted, the choice of the effect being left to the adversary.
That is, either noise caused by many transmitting neighbors may be undistinguishable
from background noise or else one of the competing neighbors may prevail, and it is
impossible to predict which situation occurs for a given collision. For this model,
which seems equally reasonable to that from [3], the argument and the linear lower
bound of [3] are valid (cf. [4]). In fact, as explained in [4], the error in [3] is due to
the gap between these two models.

Many authors [5, 7, 8, 9, 11, 12, 13, 14, 16, 26] studied deterministic distributed
broadcasting in radio networks under the even weaker assumption that nodes know
only their own label (but do not know the labels of their neighbors). In all these
papers the collision issue was modeled as in [3]. In [11] the authors gave a broadcasting
algorithm working in time O(n) for arbitrary n-node networks, assuming that nodes
can transmit spontaneously before getting the source message. It was shown in [24]
that if nodes know only their own label, the argument from [3] can be modified to
prove a lower bound Q(n) on broadcasting time for networks of radius 2. Thus the
algorithm from [11] is optimal.

In[11, 12, 13, 14, 16, 26] the model of directed graphs was used. Increasingly faster
broadcasting algorithms working on arbitrary n-node (directed) radio networks were
constructed, culminating with the O(nlog® n)-time algorithm from [13]. Recently, a
O(nlognlog D)-time broadcasting algorithm was shown in [22] for n-node networks of
radius D. This was further improved to O(n log® D) in [15]. In [14] the authors showed
a lower bound §2(nlog D) on broadcasting time for n-node networks of radius D. On
the other hand, in [5, 7, 8, 9, 12, 14] the problem was to find efficient broadcasting
algorithms on radio networks of maximum in-degree A.

Finally, randomized broadcasting algorithms in radio networks were studied, e.g.,
in [3, 15, 25, 23]. For these algorithms no topological knowledge of the network was
assumed. In [3] the authors showed a randomized broadcasting algorithm running
in expected time O(Dlogn + log?n). A faster algorithm, running in expected time
O(Dlog(n/D)+log® n) was presented in [23] (see also [15]). In [25] it was shown that
for any randomized broadcasting algorithm (and parameters D < n), there exists an
n-node network of diameter D requiring expected time Q(D log(n/D)). It should be
noted that the lower bound Q(log? n) from [1], for some networks of radius 2, holds for
randomized algorithms as well. This shows that the algorithm from [23] is optimal.

1.3. Organization of the paper. In section 2 we summarize the communi-
cation model (taken from [3]) and the terminology used in this paper. Section 3 is
devoted to showing a logarithmic broadcasting algorithm for the class of networks
for which a linear lower bound was claimed in [3]. In this section we first describe
the novel Procedure Echo, which is later used for more complicated algorithms. In
section 4 we describe and analyze a broadcasting algorithm working in sublinear time
on all shallow networks. This indicates that if a linear lower bound on broadcasting
time can at all be proved (for networks of sublinear diameter), then it requires the
construction of quite complicated networks. Section 5 is devoted to the proof of the
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lower bound Q(+/n) on broadcasting time in networks of bounded diameter. Finally,
section 6 contains concluding remarks and open problems.

2. Model and terminology. We consider undirected graphs whose nodes have
distinct labels belonging to the set {0, 1,...,r}, where r is polynomial in the number n
of nodes. The parameter r is known to all nodes. In the lower bounds we assume
that n itself is known to all nodes. A distinguished node with label 0 is called the
source. We denote by D the radius of the graph, i.e., the distance from the source
to the farthest node. (For undirected graphs, the diameter is of the order of the
radius.) The jth layer of a graph is the set of nodes at distance j from the source.
We adopt the communication model used by Bar-Yehuda, Goldreich, and Itai [3]. It
is summarized in the following definition.

DEFINITION 2.1 (see [3]). A broadcast protocol for radio networks is a multi-
processor (multinode) protocol, the execution of which proceeds in steps (time-slots)
(numbered 0,1,...) as follows:

1. In the initial step 0, only the source transmits a message called the source
message.

2. In each step each node acts either as a transmitter or as a receiver (or is
inactive).

3. A node receives a message in a specific step if and only if it acts as a receiver
in this step and exactly one of its neighbors acts as a transmitter in that step.
The message received in this case is the message transmitted by that neighbor.

4. The action of a node in a specific step is determined as a function of its initial
input (which consists of its own label and the labels of its neighbors) and the
(sequence of ) messages that it has received in previous steps. All nodes have
identical copies of the same program.

5. A node may act as a transmitter in a step > 0 only if it has received a
message in a previous time-slot (there are no “spontaneous” transmissions of
nodes other than the source in step 0).

6. The broadcast is completed at step t if all nodes have received the source
message at one of the steps 0,1,...,t.

As in [3], we assume that a node cannot distinguish whether more than one
neighbor or no neighbor transmitted in a given step; i.e., we work in the model
without collision detection.

3. Logarithmic broadcasting in BGI networks. In [3] the following class
of (n+ 2)-node networks was defined. Let S be a nonempty subset of {1,...,n}. The
network Gg is a graph (of radius 2) whose nodes are labeled 0,1,...,n+ 1. The set of
edges of Ggis E = {(0,7) : 1 <¢ <n}U{(i,n+1):4i € S}. Node 0 is the source, and
node n + 1 (the only node in layer 2) is called the sink. We refer to all networks Gg
as BGI-n networks (see Figure 3.1).

It was claimed in [3] that for any broadcast protocol there is a BGI-n network on
which this protocol works in time €(n). However, assuming the model from [3], which
is the same as that from the present paper, the proof in [3] contains the following flaw.
Predetermined sets of nodes transmitting in consecutive steps are fixed, and then a
network is constructed in which some node is not informed during any of these steps.
However, during the broadcasting process, the source may potentially acquire some
information, which it may pass to other nodes, thus modifying the sets of nodes
transmitting in subsequent steps. So, in fact, under the considered model, the proof
from [3] works only for oblivious algorithms, in which sets of nodes transmitting in a
given step must be fixed in advance.
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Fic. 3.1. BGI-n network Gg.

It turns out that not only is the argument from [3] erroneous under the considered
model but, in fact, the above result itself is incorrect. (As mentioned in the introduc-
tion, the argument and the proof remain correct in a more pessimistic communication
model.) Below we give an algorithm that broadcasts in all BGI-n networks in time
O(logn). The technique of selecting one out of many simultaneously transmitting
neighbors, which is the main ingredient of this algorithm, will be further used in the
construction of a much more involved algorithm which guarantees fast broadcasting
in arbitrary networks of small radius.

The main idea of our algorithm is to simulate the collision detection capability
in some nodes of the network. (Recall that collision detection is not available a priori
in our model.) In order to get logarithmic broadcasting for BGI-n networks, it is
enough to simulate collision detection at the source. To get sublinear broadcasting
in all networks of radius o(loglogn), we will need to simulate this capability in many
nodes from different levels.

Let A be a set of neighbors of the source (possibly unknown to it), and let i ¢ A
be another neighbor of the source. Suppose that nodes in A want to transmit. Our
goal is to let the source distinguish whether A has 0, 1, or more than 1 element. This
can be done using the following 2-step procedure.

PROCEDURE EcHO (i, A).

Step 1. Every node in A transmits its label.
Step 2. Every node in AU {3} transmits its label.

There are 3 possible effects of Procedure Echo (i, A) at the source.

Case 1. A message is received in Step 1 and no message in Step 2. In this case

the source knows that A has 1 node and knows the label of this unique node.

Case 2. No message is received in Step 1 and a message (from i) is received in

Step 2. In this case the source knows that A is empty.
Case 3. No message is received in either step. In this case the source knows that
A has at least 2 nodes.

Procedure Echo is used to select one node in the set S of nodes connected to the
sink, in a BGI-n network GGg. Once such a unique node is selected and transmits, the
sink receives the source message, and broadcast is completed. This is done using the
following algorithm. (In the original definition of BGI-n networks, nodes are labeled
by consecutive numbers 0,1,...,n + 1, but we formulate our algorithm in the more
general case, when labels are chosen arbitrarily from a set {0,1,...,7}, where r is
polynomial in the number of nodes. Without loss of generality, assume that r is a
power of 2.)

ALGORITHM BINARY-SELECTION-BROADCAST. In step 0, the source transmits
the source message and the lowest label i of its neighbor (in the original definition of
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BGI-n networks, ¢ = 1). In step 1, node with label ¢ transmits the source message
and its degree. If this degree is 2 (i € S), the sink receives the message and broadcast
stops. Assume that the degree of i is 1.

All remaining steps 2, 3, ... are divided into segments of length 3. In the first step
of each segment, the source transmits a range R of labels and orders the execution of
Procedure Echo (i, RN S) during the last two steps of the segment. (Notice that all
nodes from layer 1 know if they are in RN S.) In the first segment, R := {1,...,7/2}.
If a range R = {z,...,y} is transmitted in a given segment, the range to transmit in
the next segment is chosen according to the three possible effects of Procedure Echo
(i, RN S), described above. In Case 1, the sink is informed and broadcast stops. In
Case 2, R:={y+1,...,y+(y—x+1)/2}. InCase 3, R :={z,...,(y+x—1)/2}. O

THEOREM 3.1. Algorithm Binary-Selection-Broadcast completes broadcasting in
any BGI-n network in time O(logn).

Proof. Since the size of R transmitted in the ith segment is r/2¢, after at most
logr € O(logn) steps, the set RN S contains exactly one node, and hence broadcast
is completed in time O(logn). 0

4. Sublinear time broadcasting in networks of radius o(loglogn). In
this section we construct a broadcasting algorithm working in time o(n) on all n-node
networks of radius o(loglogn). We will use the following results from the literature.
The following two theorems assume that nodes know parameters r» and d but do not
assume any knowledge of the network topology.

THEOREM 4.1 (see [14]). Consider a radio network modeled by an arbitrary graph
(V,E), where V is a subset of {1,...,r}. Let A and B be a partition of V such that
all nodes in A have the same message m. Then there exists a protocol working in time
O(min(r,dlog(r/d))), which makes message m known to all nodes v € B having at
least one and at most d neighbors in A.

THEOREM 4.2 (see [17, 14]). Given a radio network modeled by an arbitrary
graph (V, E), whereV is a subset of {1,...,r} and in which every node has a (possibly
different) message, there exists a protocol working in time O(min(r,d?logr)), upon
the completion of which, every node of degree at most d learns the messages of all its
neighbors.

It should be mentioned that, while the protocols in the above theorems were
obtained in a nonconstructive way, constructive counterparts of both these results
(involving polynomial time local computations) are known and yield only slightly
slower protocols. A constructive counterpart of Theorem 4.1 yielding a O(min(r,
d - polylogr))-time protocol follows from [20, 27], and a constructive counterpart
of Theorem 4.2 yielding a O(min(r,d?log” r))-time protocol follows from [21]. In
our algorithm we use protocols from Theorems 4.1 and 4.2, but these constructive
counterparts could be used as well, and our resulting broadcasting algorithm would
still work in sublinear time.

The next result refers to radio networks of known topology.

THEOREM 4.3 (see [10]). Consider a radio network modeled by an arbitrary graph
(V,E), where V is a subset of {1,...,r}, and assume that all nodes know the topology
of the graph. Let A and B be a partition of V' such that all nodes in A have the same
message m. Then there exists a protocol working in time (9(log2 r), which makes
message m known to all nodes v € B having a neighbor in A.

4.1. Broadcasting in networks of radius 2. We first describe a sublinear
time broadcasting algorithm working for all networks of radius 2. More generally, in
every network G, this algorithm informs all nodes in levels 1 and 2 in sublinear time.
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Fic. 4.1. Algorithm As.

At each step of the execution, the source maintains a set DIS of discovered nodes:
those about which it knows that they received the source message. The algorithm
uses the polynomial upper bound r on the number of nodes, and two parameters d;
and do, whose values will be specified later.

ALGORITHM Ay (see Figure 4.1).

Part 0. In step 0, the source transmits the source message, the set L;, and the
lowest label 7 € Ly. In step 1, node with label ¢ transmits the source message and
the set C of its neighbors in Ly. The source sets the set DI.S of discovered nodes to
{0} U L; UC and transmits it in step 2.

Part 1. Using a similar mechanism as in Algorithm Binary-Selection-Broadcast,
the source selects a node in L, for which the number of undiscovered neighbors in Lo
is maximum. (Every node in Ly can distinguish its neighbors in L; and in Ls.) In the
next step the selected node transmits the source message and the set of its neighbors
in Ls. The source adds them to discovered nodes and transmits the updated set DIS.
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This process is repeated until there are no nodes in L with more than d; undiscovered
neighbors in Ls.

Part 2. Apply the protocol from Theorem 4.1 (with d = ds) to the subgraph of G
induced by L; U B and to the partition (L1, B), where B is the set of undiscovered
nodes in Ls. This protocol makes the source message known to all undiscovered nodes
from Lo which have at most dy neighbors in L.

Part 3. Let X be the set of all nodes from Lo which received the source mes-
sage during Part 2 and have at most dy neighbors in L;. Apply the protocol from
Theorem 4.2 (for d = dy) to the subgraph of G induced by X U L;. The message
transmitted by each node contains its label and the source message.

Part 4. All nodes from Lq check if all their neighbors in Ly got the source mes-
sage. Nodes selected in Part 1 know that all their neighbors in Ly were informed and
discovered. Let Z be the set of nodes in L; which did not get a message in Part 3
from some of their undiscovered neighbors in Ls. Using a similar mechanism as in
Algorithm Binary-Selection-Broadcast, the source selects one node in Z; then this
node transmits (alone) the source message and the set of all its neighbors in Lo, and
the source adds these neighbors to the set DIS of discovered nodes. After each selec-
tion, at least one currently undiscovered node gets the source message. This process
continues until all nodes in L; know that all their neighbors in Lo received the source
message. ]

THEOREM 4.4. Algorithm As completes broadcasting in any n-node network of
radius 2 in O(n?/3logn) time.

Proof. Correctness is straightforward. The complexity of the algorithm is esti-
mated as follows. Part 0 takes 3 steps. Each selection in Part 1 takes O(logr) steps
and there are at most n/d; selections; hence the entire Part 1 takes O((n/d;) - logr)
steps. In view of Theorem 4.1, Part 2 takes O(ds-log ) steps. In view of Theorem 4.2,
Part 3 takes O(d?logr) steps. Each selection in Part 4 takes O(logr) steps and
there are at most nd; /ds selections; hence the entire Part 4 takes O((nd;/dz) - logr)
steps. Taking dy = ¢/n and dy = V/n2, this adds up to O(n?/3logr) = O(n?3logn)
steps. O

4.2. Extension to arbitrary networks of radius o(loglogn). We now de-
scribe an algorithm which broadcasts in sublinear time in arbitrary networks of ra-
dius o(loglogn). The algorithm uses the polynomial upper bound r on the number
of nodes, and parameters d;, d;, for j = 2,3,..., whose values will be specified later.
The algorithm is constructed inductively. The construction is local, in the sense that
every node constructs its part of the algorithm, using some coordination guaranteed
by the properties and remarks listed below. After the kth phase of the algorithm,
where k is an integer larger than 1, the following properties will be satisfied for some
positive constant a.

Property 1. All nodes from layers L;, j = 1,...,k, know the source message and

know to which layer they belong.

Property 2. For all j =1,...,k, a Procedure SEND(j), coordinated by the source,
can be constructed, which has the following effect: if all nodes in L;_; have
the same message m and start at the same time, then all nodes in L; learn
message m. (SEND(1) consists of one step in which the source transmits.)
Procedure SEND(j) lasts at most a - (d; + logr)logr time.

Remarks.

1. Let j=1,...,k—1,and A C L;4; be a set of nodes that want to transmit.
It follows from Property 2 that a Procedure DETECT(j, A), coordinated by
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the source, can be constructed, which enables every node in L; to distinguish
whether it has 0, 1, or more than 1 neighbor in A. Procedure DETECT(j, A)
works as follows. Starting at a given time step %, all nodes in A repeat
transmission in 1+« (d; +logr) log r consecutive time steps. Simultaneously,
nodes in L;_; perform Procedure SEND(j).

Each node v € L; detects the number of its neighbors in A similarly as in Pro-
cedure Echo. By Property 2, v would get message m, during a-(d;+logr) logr
steps after tg, if nodes from A did not transmit. Hence v decides as fol-
lows. If it receives a message from a neighbor not in L;_; during Procedure
DETECT(j, A), it knows that it has exactly one neighbor in A and knows its
label. Otherwise, two cases are possible. (1) If v receives only messages from
L;_1 during Procedure DETECT(j, A), then it knows that none of its neigh-
bors is in A. (2) If v receives no messages during Procedure DETECT(j, A),
then it knows that at least two of its neighbors are in A.

2. Let j=0,...,k—1,7€ L;, and let A C L;; be a subset of neighbors of i
that want to transmit. A Procedure SELECT(j,, A), coordinated by node 4,
can be constructed, in which node ¢ selects one element in A. This can be
done in « - logr steps, similarly as in Algorithm Binary-Selection-Broadcast,
where node i plays the role of the source.

ALGORITHM SUBLINEAR-BROADCAST. In phase 1 do nothing. In phase 2 perform
algorithm As. Let k > 1. Suppose that Properties 1 and 2 are satisfied after phase
k. We describe phase k + 1. The source maintains a set DIS of discovered nodes:
these are nodes from Lj_1 UL, U Lky1 whose labels the source learned in phase &+ 1.
At the beginning of phase k + 1 this set is empty. Each node from L, appends the
number k of its layer to all its messages.

Description of phase k + 1:

Part 0. The aim of this part is the verification of whether layer Ly is empty or
not. If Ly = @, then the radius of the network is D = k — 1 and broadcasting was
completed at the end of phase k — 1, by Property 1 for k. In this case the source
sends a stop message. Otherwise, the source sends a message requesting the start of
Part 1. Here is a detailed description of Part 0.

e The source initiates broadcast of the message “start verification in step t,”
by consecutive use of Procedures SEND(j), for j = 1,...,k, according to
Property 2 for k. Step t is calculated to guarantee reception of this message by
allnodesin L, for j = 1,...,k, i.e., to guarantee completion of all Procedures
SEND(j).

e Verification of whether layer Ly is empty starts in step t.

— Using Procedure DETECT(k—1, Ly), nodes from Lj_ detect if they have
neighbors in L.

— Let Ax_1 be the set of nodes from Lj;_; which detected neighbors in L.
Using Procedure DETECT(k — 2, A_1), nodes from Lj_o detect if they
have neighbors in Ag_1. This process continues with sets A; C L;, until
the source detects if it has neighbors in A;.

e If the source does not have neighbors in A (i.e., A; is empty, which means
that Ly is empty as well), then it initiates broadcast of the message “stop in
step t1” (for an appropriately calculated 1), by consecutive use of Procedures
SEND(j), for j = 1,...,k — 1, according to Property 2 for k. Otherwise, a
message requesting the start of Part 1 in an appropriately calculated step is
sent similarly as above (to all layers L; for j =1,...,k).

Part 1. The aim of this part is selection of consecutive nodes from Lj; which
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have at least dj,_; undiscovered neighbors. This is done as follows, using a similar
cascade of Procedures DETECT, as in Part 0.

e Let By, be the set of nodes from L; which have at least dﬁg 41 undiscovered
neighbors. Using Procedure DETECT(k — 1, By), nodes from Lj_; detect if
they have neighbors in By,.

e Let Bi_; be the set of nodes from Lj_; which detected neighbors in Bj.
Using Procedure DETECT(k — 2, Br_1), nodes from Ly_» detect if they have
neighbors in By_1. This process continues with sets B; C L;, until the source
detects if it has neighbors in Bj.

e If the source does not have neighbors in B; (i.e., By is empty), then it initiates
broadcast of the message “go to Part 2 in step t3” (for an appropriately
calculated t3), by consecutive use of Procedures SEND(j) for j = 1,...,k,
according to Property 2 for k. Otherwise the source selects one node from By,
using Procedure SELECT(0, 0, By).

e The selected node v performs SELECT(1, v, Ba) to select one of its neighbors
in Bs. This is continued until one node w in By, is selected.

e Node w broadcasts a message (containing the source message, the label w,
and labels of neighbors of w). All these neighbors get the source message.
Moreover, broadcast is propagated along the path containing selected nodes
from consecutive sets B;. The source discovers neighbors of w and possibly w
itself, updates the set DIS, and propagates this information to all nodes in
layers Lq, ..., Ly, using SEND procedures.

This selection process continues until all nodes in Ly, have less than dj_ ; undis-
covered neighbors.

Part 2. Let X be the set of all undiscovered nodes in L, and Y the set of all
undiscovered nodes in L1 U Ly U L4, which have at most dy41 neighbors in X. A
node can tell if it is in X, since in view of Property 1 it knows if it is in Lg, and after
Part 1 of phase k£ + 1 it knows whether it is in set DIS.

Apply the protocol from Theorem 4.2 (for d = di4+1 and for the source message)
to the subgraph of G induced by X UY. At the end of Part 2, all nodes from Y got
the source message.

Part 3. Consider the subgraph G of the radio network induced by the set of
nodes V' consisting of all undiscovered nodes in Ly_1 U Ly, and of all undiscovered
nodes in Ly41 which got the source message in Part 2. Each node knows if it is
in V, in view of Part 2, of the knowledge of DIS gotten at the end of Part 1, and of
Property 1.

Apply the protocol from Theorem 4.2 to the graph G (for d = dj ;). The message
transmitted by each node contains its label and the source message. At the end of
Part 3, all undiscovered nodes in Ly, which have at most dj_ ; neighbors in G, know
which of their neighbors in G got the source message.

Part 4. All undiscovered nodes from Ly check if all their undiscovered neighbors
got the source message. Consider the set Z of undiscovered nodes from L which did
not get a message in Part 3 from some of their undiscovered neighbors. As in Part 1,
we do the following:

e Procedures DETECT and SELECT are used to select one node in Z,

e this node transmits (alone) the source message and the set of all its neighbors
in Lpqq,

e this message is propagated to the source,

e the source updates the set DIS of discovered nodes (now DIS includes the
selected node from Z and all of its neighbors) and propagates DIS to layer L.
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After each selection, at least one currently undiscovered node in Lj41 gets the
source message. This process continues until all nodes in Ly know that all their
neighbors received the source message. 1]

THEOREM 4.5. Algorithm Sublinear-Broadcast completes broadcasting in arbi-
trary radio networks.

Proof. 1t is enough to prove that Properties 1 and 2 are satisfied after each phase
k > 1. First we prove them for k = 2, i.e., upon completion of Algorithm As.

Property 1. By correctness of Algorithm A4s, all nodes in L; and Lo get the
source message. All nodes in L; know that they are in L; because they got the
message directly from the source. All nodes from Lo got the message from some
neighbor in L;, by the description of Algorithm 45. On the other hand, they know
that they are not in Ly, so they deduce that they are in Ls.

Property 2. Upon completion of Algorithm A5, all nodes in Ly either are dis-
covered or have at most dy neighbors in Ls. Procedure SEND(2) can be executed as
follows. Broadcasting assuming knowledge of topology is executed in the graph con-
taining all nodes from L; and all discovered nodes from Ls. This is done according
to the protocol from Theorem 4.3 in time «; - log? r. Broadcasting to the remaining
nodes is done using the protocol from Theorem 4.1 in time as- (dg log ). The property
follows for v = max(aq, as).

Now assume that Properties 1 and 2 hold after phase k of Algorithm Sublinear-
Broadcast. We have to prove that they hold after phase k + 1.

Property 1. Every node v in Liy1 gets a message from a neighbor w in Ly in
phase k 4+ 1. This is proved as follows. If v did not get a message until the end of
Part 3, then all neighbors of v in Ly know that v did not get a message. Then at least
one neighbor of v from Ly is selected in Part 4 and v gets a message from it. Node v
learns that neighbor w is in Ly because w knows this by Property 1 after phase k and
attaches this information to its message. Node v also knows that itself is not in L;
for i <k, so it deduces that it is in Ly41.

Property 2. Procedure SEND(k + 1) is executed similarly as SEND(2) (described
above), by replacing Ly by Lk, Lo by Li11, and da by di1. 0

Our next result estimates time complexity of Algorithm Sublinear-Broadcast for
networks of small radius.

THEOREM 4.6. Algorithm Sublinear-Broadcast completes broadcasting in time
o(n), for all n-node radio networks of radius o(loglogn).

Proof. Fix a phase k > 2 of the algorithm. We estimate time complexity of each
of its five parts separately.

Part 0. All Procedures SEND take a total of at most 2a - (3_,_(d; +logr)logr)
steps. All Procedures DETECT take a total of at most k — 14+ a - (32, 4_1(d; +
log ) log 7) steps. Hence the number of steps in the entire Part 0 is at most O(3_; . (d;+
logr)logr) = O(3_; 4 (d; +logn)logn).

Part 1. There can be at most (n/dj}) selected nodes. We estimate the number
of steps needed for each selection. All Procedures DETECT take a total of at most
k—1+a- (3 ,_1(dj +logr)logr) steps. All Procedures SELECT take a total of
at most a(k — 1) - logr steps. Sending back a message to the source along a fixed
path of selected nodes takes k — 1 steps. All Procedures SEND take a total of at most
a- (32 x(d; +logr)logr) steps. Defining v = a - (log 7/ log n)?, we get the estimate

20 - Z(dj +logr)logr | +a(k—1) -logr+2(k—1) <4~ Z(dj +logn)logn
j<k i<k



DETERMINISTIC BROADCASTING IN RADIO NETWORKS 881

on the number of steps for each selection. Hence the number of steps in the entire
Part 1 is at most 4y - ((n/d}) - 32, (dj + logn)logn) € O((n/dy) - >, (dj +
logn)logn).

Part 2. By Theorem 4.2, this part takes O(d3 logr) = O(d2 logn) steps.

Part 3. By Theorem 4.2, this part takes O((d},)*logr) = O((d},)? logn) steps.

Part 4. Every node in set Z has at most d}, undiscovered neighbors (otherwise it
would be selected in Part 1). Every undiscovered neighbor w of a node v € Z, from
which v did not get a message in Part 3, is not in the graph G (defined in Part 3),
hence it does not have the source message yet. By the description of Part 2, node w
has more than dj, neighbors in Lj_1. Hence at most nd} /dy selections of nodes in Z
will be performed. The number of steps for each node is O(>_,_;(d; + logn)logn),
similarly as in Part 1. This gives a total of O((ndy,/dx) >, (d; 4+ logn)logn).

We now choose the following parameters: d; = [logr], dj,, = d?, and d;1 =
(d] +1)2. This gives the following estimates of the numbers of steps in different parts
of phase k:

Part 0: O(dg—1logn) C O(d2 logn).

Part 1: O((n/dy},) - di—1logn) C O((nlogn)/dk_1).
Part 2: O(d3 logn).

Part 3: O((d},)*logn) C O(d2 logn).

Part 4: O((nd),/dy) - di—1logn) C O((nlogn)/di—1).

Thus the entire phase k lasts O((n/dg_1) - logn + d3 logn) steps.

The last phase of the algorithm run on a radio network of radius D is D + 2 (in
fact only Part 0 of phase D+ 2 is executed). The total time of phases k = 3,..., D+2
is at most O(d%,, ,logn + (nlogn)/dz) € O(min(n, (log n)*” 1 4 n/log? n)). Since
D € o(loglogn), we get that this time is o(n). By Theorem 4.4 the time of the first
two phases (occupied by execution of Algorithm Ay) is O(n?/?logn), which is o(n)
as well. Hence the entire Algorithm Sublinear-Broadcast completes broadcasting in
time o(n). d

5. Lower bound. In this section we show that for every deterministic broad-
casting algorithm A, there exists a network G4 of radius 2, with at most 2n nodes,
on which A requires Q(/n) steps to complete broadcast. This network is chosen from
the family C,, of networks defined as follows. Every graph G € C,, (see Figure 5.1)
consists of the source 0 and two layers Ly = {1,...,n} and Ly = {n+1,...,n+ q},
where ¢ is the largest odd integer smaller than /n. The source is adjacent to all
nodes in Ly, and every node in L, is adjacent to exactly one node in Ly. These are
the only edges in G. If G is fixed, we denote by V the set {0} U L; U Ly of all nodes
of G. For every node v, we denote by NN, the set of its neighbors.

n+l n+q 2

Fic. 5.1. Network G € C,.
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The idea of the proof is the following. We construct the network step by step,
using consecutive steps of the fixed broadcasting algorithm A, and assuming that
particular nodes got particular messages in given steps. In order to express this, we
use the notion of abstract history of a node, formally defined below. Intuitively, an
abstract history of a node v at a given step k consists of a neighborhood of node v
and of a sequence of messages received by this node until step k. Since the network is
not yet constructed, neighborhoods of some nodes are not determined by step k, and
consequently it is not yet known which abstract history will become the real one—the
one given by algorithm A running on the final network. We can ensure that, if a
given node had some abstract history up to a certain step, then it would behave in a
given way (this is captured by the notion of abstract action function, defined below).
Based on that we do the next step of the construction of the network (by determining
neighborhoods of two nodes in layer Lo) and simultaneously define abstract histories
of nodes in this step. These abstract histories are defined so as to prevent some nodes
in layer Lo of the network from getting any message for a long time. In particular,
nodes of L, whose neighborhood is not yet determined have not gotten the source
message so far.

When the construction is finished, we prove that if the algorithm A runs on the
resulting network, then the real histories of all nodes are identical to the abstract
(assumed) ones, and consequently some nodes of layer Lo will indeed fail to receive
the source message for Q(/n) steps.

5.1. Construction. Fix a deterministic broadcasting algorithm A. For this
algorithm, running on any network, we define the following objects.

Histories and message format. H; denotes the history of computation of
algorithm A until the end of step k. This is the set {H(v) : v € V'}, where Hy(v) is
the history of computation at node v, until the end of step k. For any v and k, Hy(v)
is a sequence of (received) messages (Mo(v), M1 (v), ..., Mg(v)). Messages are defined
inductively, as follows. Mg(v) is either the triple (0,0, D), called the empty message,
or the triple (0, Ny, source_message). M;(v) (for I = 1,... k) is the empty message
if node v did not get any message in step [. Otherwise, it is a triple consisting of

e the label of node w from which node v received a message in step [,

e the set N,

e history H;_q(w).
Notice that we restrict attention to messages conveying the entire history of the
transmitter. If a particular protocol requires transmitting specific information, the
receiver can deduce this information from the received history, since programs of all
nodes are the same. History Hy(v) containing only empty messages is called the
empty history.

Action function and sets of transmitters. Given algorithm A, we denote by
(v, Ny, Hp—1(v)) the action of node v in step k, if its set of neighbors is N, and its
history until the end of step k—1 is Hi_1(v). The values of the function 7 can be 1 or 0:
if the value is 1, node v is sending the message (v, Ny, Hr—1(v)) in step k, otherwise
it is receiving in step k. Under a fixed history Hy_1, we define the set of neighbors
of v transmitting in step k as follows: Ty (v) = {w € N, : 7(w, Ny, Hr—1(w)) = 1}.

We construct a network G4 € C,, on which A will work inefficiently. We first
present the general overview of the construction and abstracts objects used in it.
The construction is by induction on steps of the algorithm A. The set of nodes
{0}UL; ULy, where Ly ={1,...,n} and Ly = {n+1,...,n+q}, as well as all edges
{(0,4) : ¢ =1,...,n} are given in the beginning. At each step of the induction some
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edges between nodes from L; and Lo are added. Since at each stage of the construction
only a part of the network (G4 is specified, the new edges are constructed using
algorithm A and some abstract history H;, until this step. Abstract histories at each
node are parametrized with a nonempty set A representing a possible neighborhood
of v to be constructed in a later step.

Abstract objects. Abstract objects (messages, histories, action function, trans-
mitters) are abstract versions of real objects, used in the construction because real
ones do not exist until the network is completely defined. Let v € V and A C V. An
abstract history H, (v, A) of node v, assuming that its neighborhood is A, is defined
as a sequence (MO(U,A),Ml (v, A), .. .,Mk(U,A>) of abstract messages. MQ(U,A) =
My(v), and Ml(v,A), for [ > 0, either is the empty message or is of the format
(w, B, H;_1(w, B)), for some w € V and B C V. We will construct the abstract
history step by step, in parallel with the construction of network G 4. Notice that,
in general, abstract histories and abstract messages are not necessarily linked to any
particular protocol.

We also define the abstract action function #(v, A, Hi_1 (v, A)) as an extension of
the action function 7 described above. For every v and A, if (v, A, Hy_1 (v, A)) is de-
fined, then (v, A, Hy_1 (v, A)) = (v, A, Hy_1 (v, A)). Otherwise, 7(v, A, Hy_1 (v, A))
=0.

We now define sets of abstract transmitters. First consider a node v with neighbor-
hood N, fixed at the end of step k of the construction, and assume that neighborhoods
N,, of all nodes w € N, are also fixed. Under a fixed abstract history H k—1, we define
the set of abstract transmitters Tk(v, N,) ={w € N, : (w, Ny, ﬁk_l(w, Ny)) =1}

Now define sets of abstract transmitters for nodes whose neighborhood is not yet
fixed. Suppose that Sy is the set of all nodes j in Ly for which the neighborhood N;
is not fixed until the end of step k of the construction. Suppose that Ry is the set of
nodes in Ly that do not belong to any fixed neighborhood at the end of step k, i.e.,
Ri = L1\ Ujer,\s, Vj- (Additionally, let Sy = Ly and Rg = Ly.) For nodes of Ry
and S, we define the sets of abstract transmitters in step k as follows:

e if v € Ry, then for any j € Sy, Tk (v, {0,5}) = {0} if #(0, Ly, Hx_1(0, L)) = 1,
and T (v, {0,j}) = 0 otherwise;

e ifve S, and R C Ly, then Tk(v,R) ={ie R:7(i, {O,U},ﬁk_l(i, {0,v})) =
1}.

Sets Ry and Sy will be defined dynamically in a formal way, during step k of the
construction. We will prove that these formal definitions correspond to the meaning
intended above for Ry and Sk, by proving Property 1 of the invariant after step k.

We now describe the inductive construction of the graph G 4. We begin by defin-
ing the abstract history Hy. Ho(v, A) = (My(v, A)), for all nodes v and sets A, where
Mg(v, A) is the empty message for allv ¢ L, and Mg(v, A) = (0, Ly, source_message),
for all v € L.

We now begin step 1 of the construction, on the basis of step 1 of the algorithm
and of the abstract history H, already defined. To this end we will need the function
FIRST-STEP-SELECTION, formally described below. We want to choose an element j
of the set S (corresponding to Ls), to which the largest number of elements of the
set R (corresponding to L;) would transmit, if they were neighbors of j. Then we
determine neighbors of j in L;. When the function determines j, it also determines
its neighborhood, and it deletes j from S. Hence, if S was the set of nodes with
undetermined neighborhood before applying the function, it will preserve this property
after applying it. When the neighborhood of j is determined, then (since neighbors
of j are in L; and nodes in L; have exactly one neighbor in L) we automatically
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determine neighborhoods of neighbors of j. These neighbors are deleted from R, and
hence R preserves the property of containing nodes with undetermined neighborhood,
similar to S.

FUNCTION FIRST-STEP-SELECTION(R, S).

e Choose some node j € S such that the size of X = T (j, R) is maximal, and
put two nodes from X to N; (or one if X has one element, or nothing if X is
empty); then remove these nodes from R. Remove j from S.

e Modify N; as follows:
if N; =0, then put an arbitrary i € R to N; and remove ¢ from R;
while there exists a node i € R such that 7} (v, R) = {i}, for some v € S
do put 7 into IV; and remove 7 from R.

e Return (R, S, 7, N;).

Step 1 of the construction. The goal of step 1 of the construction is choosing
two nodes j; and j; in Lo, together with their neighborhoods, in such a way that if
some node from R; transmits in the first step of algorithm A, then at least one other
node from R; transmits as well. This is essential to guarantee the following property
of abstract history H, (0, L1): no node from L; with yet undetermined neighborhood
is heard by the source.

0. Initialize R := Ly and S := Lo.

L. (R, S, j1, Nj) := FIRST-STEP-SELECTION(R, S);

L =R;
(R, S, j1,Nj,) == FIRST-STEP-SELECTION(R, S);
Ri:=Rand S, := 5.

2. We construct the abstract history H,. Tts definition corresponds to the def-
inition of the “real” history, if neighborhoods are determined. Otherwise,
the definition depends on the conditions on nodes and neighborhoods, the
crucial case being the last item of the description below. History Hy is fixed;
hence it is enough to define Ml(v,A), for all v, A. If fr(v,A,ﬁO(v,A)) =1,
then M; (v, A) is the empty message (transmitting nodes should not receive
messages). Otherwise, M, (v, A) is defined as follows:

e Since nodes in (L1 \ Ry) U (Lg \ S1) have fixed neighborhoods, and also
their neighbors have fixed neighborhoods, for each v € (L1\ R1)U(L2\S1)
we define M (v, N,) = (w, Ny, Ho(w, Ny)), if Ty (v, N,) = {w}, and we
define M; (v, A) as the empty message in all other cases.

o We define ]\21'1(1)7 A) as the empty message, for all nodes v € S7 and all
sets A.

o We define M, (0, L) as follows:

— if |T1(]17N]1) UT1(117N]1)| 7é 1a then Ml(()?Ll) is emptY7
- lle(]i,Nji)UTl(jl,le) = {Z}7 then Ml(O,Ll) = (Z,NZ,Ho(Z,Nl))

(Note that N; is already defined at this point.)
M; (0, A) is defined as the empty message, for all A # L.
e For every v € Ry and j € Sy, if T1 (v, {0,5}) = {0}, then M; (v, {0,j}) =
(0, L1, Hy(0, Ly)), and M; (v, A) is the empty message in all other cases.
This concludes the first step of the construction.
For any k > 1, the following invariant will be preserved after step k of the con-
struction.
INVARIANT AFTER STEP k. The following objects are defined:
sets S C Ly for 1 =0,1,...,k;
sets Ry C Ly for 1 =0,1,...,k;
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sets R C Ly for I=1,...,k;

nodes jj, ji such that S;—1\S; = {jj, i} and Bi—1\ Ry = NjyUN;, for I =1,... k.
The following properties hold:

1. Neighborhoods of nodes in {0} U (L1 \ Ry) U (L2 \ Sk) are defined.

2. Histories Hy, (v, A) are defined, for all nodes v and all sets A.

3. For all sets A, histories f]k(j,A) are empty for all j € Sg, and histories

ﬁk,l(j, A) are empty for all j € Si_1 \ Sk.

4. For all nodes j € Sy, U {jz} and steps | < k, we have |T}(j, R, )| # 1.

5. For all nodes j € Sy and steps | < k, we have |T}(, Ry)| # 1.

6. For all nodes j € Sy_1 \ Sk and steps I < k, we have |T;(j, N;)| # 1.

We now begin step k£ + 1 of the construction, on the basis of step k + 1 of the
algorithm and of the invariant after step k. We will need a function similar to Function
FIRST-STEP-SELECTION. Its aim is to choose j € S with the property as before (see
the comment preceding the description of Function FIRST-STEP-SELECTION). This
is done in the first item of the formal description given below. We also need to
modify the neighborhood of j, so that choices (and elimination) of such nodes in
previous steps of the construction do not yield a single transmitter to nodes with yet
undetermined neighborhood. This is required in order to preserve Properties 4, 5,
and 6 of the invariant. Modification of the neighborhood is done in the second item
of the following formal description.

FUNCTION (k + 1)ST-STEP-SELECTION(R, S).

e Choose some node j € S such that the size of X = Tjy1(j, R) is maximal
and put two nodes from X to N; (or one if X has one element, or nothing if
X is empty), then remove these nodes from R. Remove j from S.

e Modify N; as follows:
if N; =0, then put an arbitrary i € R to N; and remove i from R;

— set stop :=0,
— while stop =0 do
* set stop := 1,
s while there exists a node 7 € R such that Tj(j', R) = {i}, for some
I<k+1,j €8
do put 7 into N; and remove i from R,
* while there exists a node i € N; such that Tj(j, N;) = {i}, for some
1<k
do find another node ¢ € Tl(j, R) (if it exists), put ¢’ into NN;, and
remove 7’ from R, set stop := 0;

e Return (R, S, j, N;).

Step (k 4 1) of the construction (see Figure 5.2). The goal of step (k + 1) of
the construction is choosing two nodes, j;., 1, jrk+1 € Sk (in Lz), together with their
neighborhoods (included in Ry ), and defining abstract history H k41, SO as to satisfy
the invariant after step (k + 1) of the construction. Note that we do not initialize
variables R and S because their values have been fixed after step k of the construction;
indeed, at the beginning of step k£ + 1, we have R = Ry and S = Sj.

L (R,S, jri1, le'c+1) := (k + 1)ST-STEP-SELECTION(R, S);

Ry =R
(R, S, jk+1,Nj,.,) := (k + 1)ST-STEP-SELECTION(R, S);
Rk+1 := R and Sk—i—l =S,
2. We construct the abstract history ﬁk+1. Its definition corresponds to the
definition of the “real” history, if neighborhoods are determined. Otherwise,
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Fic. 5.2. Step k+ 1 of the construction of G4 € Cp,.

the definition depends on the conditions on nodes and neighborhoods, the
crucial case being the last item of the description below. History Hy, is fixed;
hence it is enough to define M1 (v, A), for all v, A. If #t(v, A, Hy(v, A)) =1,
then ]\kaﬂ (v, A) is the empty message (transmitting nodes should not receive
messages). Otherwise, Mj41(v, A) is defined as follows:

e Since nodes in (L1 \ Rg+1)U(L2\Sk+1) have fixed neighborhoods, and also
their neighbors have fixed neighborhoods, for each v € (L1\ Rg+1)U (L2
Si+1) we define Myy1(v, Ny) = (w, Ny, Hi(w, Ny)), if Thp1(v, Ny) =
{w}, and we define Mkﬂ(v, A) as the empty message in all other cases.

o We define M;Hl(v, A) as the empty message, for all nodes v € Si1 and
all sets A.

e We define Mk+1(07l;1) as follows: R

— if [Ujer,\s0py Thr1(J, V)| # 1, then My 1(0, L1) is empty;
— if Uj€L2\Sk+1 Tk+1(j, Nj) = {%}7 then M}C+1(07 Ll) = (i, Ni, I‘I}c(l7 Nl))
(Note that N; is already defined at this point.)
Mi41(0, A) is defined as the empty message, for all A # L;.

e For every v € Ry and j € Sy, R
if Tiy1(v,{0,5}) = {0}, then My 1(v,{0,5}) = (0, L1, Hx(0, L1)), and
My41(v, A) is the empty message in all other cases.

5.2. Analysis. We first show that the invariant after step k of the construction
holds if sets Ry, Sk are nonempty. This guarantees the correctness of the construction
until one of these sets becomes empty, i.e., until all nodes either of Li or of Lo have
determined neighborhoods. Next we show that sets Ry, Sy are nonempty for k < %1,
where ¢ is the largest odd integer smaller than /n. This implies that the construc-
tion is correct until step k = q;—l. Then we show how to finish the construction of
network G 4. Finally, we prove that histories determined by algorithm A running on
network G 4 are identical to the previously constructed abstract histories. In view of
the invariant after step k = 45+ € Q({/n) of the construction, this implies the desired
lower bound on broadcasting time.

LEMMA 5.1. The invariant after step k is preserved, for all k > 1 such that Sy
and Ry, are nonempty.
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Proof. The validity of the invariant after step 1 follows from the exit conditions in
the first and second executions of function FIRST-STEP-SELECTION(R, S), in Part 1
of step 1 of the construction.

Assume that the invariant holds after step k and that Si41 and Rjy1 are nonempty.
We prove that it holds after step k + 1.

All required objects are defined by the construction in step k+ 1, using nonempti-
ness of Si41 and Ry41. It remains to prove the six properties.

1. This follows from Property 1 of the invariant after step k£ and from the con-
struction of jj,;, jkt1, and of their neighborhoods during Part 1 of the
construction in step k + 1.

2. Hyyq was defined in Part 2 of step (k + 1) of the construction.

3. The fact that Hj,(v,A) is empty for all nodes v € Siy1 and all sets A
follows from the assumption in Part 2 of step (k4 1) of the construction. The
fact that Hk(j,'€+1,A) and f]k(ij,A) are empty (ji,,Jrk+1 are the only
elements of Sy \ Si4+1) follows from Property 3 of the invariant after step k.

4. We prove that, for all nodes j € Si U {jx} and steps I < k + 1, we have
T,(j, R}, +1)| # 1. This follows from the exit conditions of the external and
of the first internal loop in function (k + 1)ST-STEP-SELECTION(R, S) (more
precisely, in the first execution of this function in Part 1 of step (k + 1) of
the construction). The execution of the external loop ends if and only if
the value of stop becomes 1, which means that the condition in the second
internal loop is always false in the last turn of the external loop. Hence the
condition of the first internal loop must be false at the end of the last turn of
the external loop. This implies |Tl(j, Ry 1) # 1, for all nodes j € Sky1 and
steps | < k+ 1.

5. We prove that for all nodes j € Si11 and steps | < k+1 we have |Tl(j7 Ri11)]
# 1. This follows by an argument similar as above, applied to function
(k + 1)ST-STEP-SELECTION(R, S) (now we refer to the second execution of
this function in Part 1 of step (k + 1) of the construction).

6. The property \Tl(j, N;)| # 1, for all nodes j € S \ Si41 and steps | < k+1,
follows from the exit condition of the second internal loop in the first and
second executions of function (k + 1)ST-STEP-SELECTION(R, S), in Part 1 of
step (k+1) of the construction. Observe that the existence of i’ in the second
internal loop follows from Property 5 of the invariant after step k£ and from
(the just proved) Property 4 of the invariant after step k + 1. d

LEMMA 5.2. The inductive construction of the network can be carried out for at
least qg—l steps, where q is the largest odd integer smaller than /n.

Proof. Let k < (¢ —1)/2. Sets Sy are decreased by two nodes during one step;
hence Sy # 0, since |Sy| = q.

Claim. Sets Ry, are decreased by at most 2¢® nodes during one step, at most ¢>
for each of the chosen nodes jj, ji.

This can be computed by analyzing loops in both executions of function ATH-
STEP-SELECTION(R, S) in Part 1 of step k of the construction. Every turn of each of
the internal loops increases the neighborhood N i (resp., Nj, ) by at most one element
and consequently decreases R by at most one element.

Consider the first execution. During the first internal loop, at most kq < ¢2/2
nodes can be added to Ny, since each action makes one set Tl(j,R) empty, where
I <k,andn+1<j<n+gq. (Since we analyze subsequent executions of the loop
in the function, symbol R in the expressions containing R corresponds to the current
value of this variable, which changes dynamically. Hence values of these expressions
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may also change dynamically.)
During the second internal loop, at most £ —1 < ¢/2 nodes can be added to N.

since each action makes one set Tl(jk, ) of size at least 2, where [ < k — 1. There
may be at most k — 1 < ¢/2 executions of the external loop, since every execution of
the external loop increases the size |7;(jy,, Nj )| to at least 2 for some [ < k — 1 while

performing the second internal loop. When |Tl(j]’€,Nj;€)\ # 1, for all I < k —1, the
execution of the external loop stops. Hence N, is bounded by (®/2+4q/2)-(q/2) < ¢,
and consequently R is decreased at the rate of at most ¢® nodes per step. The same is
true for the second execution. Hence Ry is smaller than Rj_; by at most 2¢3 nodes,
which concludes the proof of the claim.

Since g < /n, we have Ry, # 0 for all k < (g—1)/2. It follows that the construction
can be carried out for (¢ — 1)/2 steps. d

Using Lemma 5.2, the construction of the network G4 can be now concluded
as follows. All nodes in R(,_1)/2 are made adjacent to the only node in S;_1)/2. It
follows from the construction that G 4 belongs to the class C,, defined in the beginning
of this section.

The histories H}, in consecutive steps of the construction were abstract histories
defined in order to continue the construction in subsequent steps. The next lemma
shows that the actual histories Hy(v) of all nodes v of network G 4 obtained by running
algorithm A on this network, are identical to abstract histories Hy (v, N,).

LEMMA 5.3. Let k < (¢ —1)/2 be a step of the execution of algorithm A on
network G.4. Then Hy(v) = Hy(v, Ny), for all nodes v of network G 4.

Proof. In the first step of the algorithm execution, the source transmits and
all nodes in L; receive the message. Nodes in Ly receive nothing. Hence Hy(v) =
Ho(v, N,) by definition of Hy.

Note that the definition of abstract history in step 1 of the construction is the
same as that in step k + 1, taken for £ = 0. Hence it is not necessary to separately
analyze step 1, and we can proceed with the argument by induction, for an arbitrary
k.

Assume by induction that Hy(v) = ﬁk(v,Nl}), where k < (¢ — 1)/2 . We prove
Hy41(v) = Hyq1(v, Ny) by showing M1 (v) = My41(v, Ny). (Since k+1 < (¢—1)/2,
the abstract history fIkH is well defined, in view of Lemma 5.2.) Observe that,
since # is an extension of m and Hy(v) = Hy(v, N,), we have (v, Ny, Hi(v, N,)) =
(v, Ny, Hi(v)). Hence, if ﬁ'(v,Nv,ﬁk(v,Nv)) = 1, then v acts as a transmitter in
step k + 1, and hence both Mj_1(v) and M1 (v, N,) are empty messages. Thus we
assume in the following that (v, Ny, H, (v,N,)) =0, i.e., that v acts as a receiver.

Case 1. v € (Ll \Rk+1) U (LQ \ Sk+1)~

By Property 1 of the invariant after step k + 1 of the construction, v has a fixed
neighborhood and all of its neighbors w have fixed neighborhoods. Since Hy(w,N,) =
Hi(w), we get Myy1(v) = Mgy1(v, N,).

Case 2. v € Sp41.

Mj11(v, N,) is the empty message by Property 3 of the construction invariant
after step k + 1. Let k¥’ be the step in which the neighborhood N, was constructed.
Since v € Sky1, we have k¥’ > k + 1. By Property 6 of the invariant after step k' of
the construction, |T(v, N,)| # 1, for all steps I < k’. In particular, | Thor1 (v, Ny)| # 1.
Since Hk(w Ny) = Hi(w) for all w € N, we have Ty y1(v) = Tk+1(v N,), and hence
Ti+1(v) is not a singleton. It follows that Myy(v) is the empty message.

Case 3. v =0.
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If j € Lo\ Sky1, then Try1(4, Nj) = Try1(4), since Hy(w, N,) = Hy(w), for
all w € Nj. Hence U;cp,\s,,, Th+1(J, N;j) = Ujer,\s,,, Te+1(j). We consider three
cases.

11U er\sp.0 Tot1(d, Nj)| > 1, then My41(0, Ly) is empty. In this case, |Tj11(0)]
= |Ujer, Tr+1(j)| > 1 and hence My41(0) is the empty message.

If Uj€L2\3k+1 Tk+1(j, ) = {i}, then Mk+1(0 Ly) = (i, N;, Hi(i,N;)). In this

case, Tr41(j) = {i}. By construction of jzy1, we have Try1(jry1, Rey1) =

JEL2\Sk11
(), and hence Tk+1(], Ri11) =0, forall j € Spq. Consequently, T11(j) = TkH(j,Nj)
- Tk+1(j,Rk+1) = @ It follows that Mk+1(0) = (Z,N“Hk(z)) In view of Hk(Z) =
Hk( N) we get Mk+1(0) Mk+1(0 L1)

If Ujero\s0in Tir1(j, Nj) = 0, then My 1(0,L;) is the empty message. In this
case, UJ€L2\SH1 Ti+1(j) = 0. The same reasoning as above gives Tk+1(]7 Rii1) =10
for all j € Sk11. Consequently, My1(0) is the empty message.

Case 4. v € Ry41.

Since for all j € Sky1, ﬁk+1(j, N;) = Hp41(j) is the empty history, it follows
that each node v € Rjy1 can receive a message in step k + 1 of A only from node 0,
if this node transmits. If node 0 transmits in step k& + 1 of A, then v receives the
message Mpy11(v) = (0, L1, Hi(0)). Since Hy(0) = H,(0, L), by definition we have
Trs1(v, N,) = {0}. By construction of message Miy1(v, N,) we get Myy1(v,N,) =
(0, Ly, H,(0, Ly)). Since Hy(0) = Hy(0,Ly), we have Myy1(v,N,) = Myy1(v). If
node 0 does not transmit in step k& + 1 of A, then Myy1(v) is empty. Since Hy(0) =
H; (0, Ly), by definition we have Ty41(v, N,) = 0. By construction, My (v, N,) is
the empty message. |

THEOREM 5.4. For any deterministic broadcasting algorithm A, there exists a
network G 4 of radius 2, with at most 2n nodes, for which this algorithm requires time
Q(Y/n).

Proof. Network G 4 constructed above has n 4+ 1 + ¢ < 2n nodes, since ¢ is the
largest odd integer smaller than /n. It has radius 2 by construction. Let k = (¢—1)/2.
By Lemma 5.2, Sj, is nonempty. By Lemma 5.1 and Property 3 of the invariant after
step k, histories ﬁk(j, N;) are empty for all j € S;. By Lemma 5.3, histories Hy(j)
are empty for all j € Si. Hence no node in Sy receives the source message by step k
of algorithm A. It follows that algorithm A requires time (4/n) to broadcast on
network G 4. 0

Using the above technique we can prove the following more general result.

COROLLARY 5.5. For any deterministic broadcasting algorithm A and any pa-
rameters D < n, there exists an n-node network of radius D, for which this algorithm

requires time Q(VnD3).

6. Conclusion. In this paper we studied deterministic broadcasting time in ra-
dio networks whose nodes know only their immediate neighborhood. We presented an
algorithm for broadcasting in sublinear time in all networks of radius o(loglogn) and
we proved a lower bound (+/n) on broadcasting time even in networks of radius 2. In
view of the randomized algorithm from [3] running in expected time O(D log n+log? n)
on all n-node graphs of diameter D, our lower bound proves an exponential gap be-
tween time of deterministic and randomized broadcasting in radio networks.

The main problem that remains open is the following. Is there a deterministic
broadcasting algorithm running in sublinear time on all networks with sublinear ra-
dius, if nodes know only their immediate neighborhood? If complete knowledge of the
network is available, the positive answer follows from [18].
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