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ABSTRACT
An ad-hoc mobile network is a collection of mobile hosts,
with wireless communication capabilities, forming a tempo-
rary network without the aid of any established fixed in-
frastructure.

In such networks, topological connectivity is subject to
frequent, unpredictable change. Our work focuses on net-
works with high rate of such changes to connectivity. For
such dynamic changing networks we propose protocols which
exploit the co-ordinated (by the protocol) motion of a small
part of the network. We show that such protocols can be
designed to work correctly and efficiently even in the case
of arbitrary (but not malicious) movements of the hosts not
affected by the protocol.

We also propose a methodology for the analysis of the ex-
pected behaviour of protocols for such networks, based on the
assumption that mobile hosts (whose motion is not guided
by the protocol) conduct concurrent random walks in their
motion space.

Our work examines some fundamental problems such as
pair-wise communication, election of a leader and counting,
and proposes distributed algorithms for each of them. We
provide their proofs of correctness, and also give rigorous
analysis by combinatorial tools and also via experiments.

Keywords
Ad-hoc, Mobile, Communication, Control

1. INTRODUCTION
∗This work was partially supported by the EU projects IST
FET-OPEN ALCOM-FT, IMPROVING RTN ARACNE
and the Greek GSRT Project PENED99-ALKAD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POMC ’01 Newport, Rhode Island USA
Copyright 2001 ACM 1-58113-397-9/01/08 ...$5.00.

1.1 The rate of topology changes and our ap-
proach

Mobile computing has been introduced (mainly as a re-
sult of major technological developments) in the past few
years forming a new computing environment. Because of
the fact that mobile computing is constrained by poor re-
sources, highly dynamic variable connectivity and volatile
energy sources, the design of stable and efficient mobile in-
formation systems is greatly complicated. Until now, two
basic system models have been proposed for mobile comput-
ing. The “fixed backbone” mobile system model has been
around the past decade and has evolved to a fairly stable
system that can exploit a variety of information in order to
enhance already existing services and yet provide new ones.
On the other hand, the “ad-hoc” system model assumes that
mobile hosts can form networks without the participation of
any fixed infrastructure, a fact that further complicates their
design and implementation.

An ad-hoc mobile network ([34, 23, 1]) is a collection of
mobile hosts with wireless network interfaces forming a tem-
porary network without the aid of any established infrastruc-
ture or centralised administration. In an ad-hoc network two
hosts that want to communicate may not be within wireless
transmission range of each other, but could communicate
if other hosts between them are also participating in the
ad-hoc network and are willing to forward packets for them.

Ad-hoc mobile networks have been modeled by most re-
searchers by a set of independent mobile nodes communicat-
ing by message passing over a wireless network. The network
is modelled as a dynamically changing, not necessarily con-
nected, undirected graph, with nodes as vertices and edges
(virtual links) between vertices corresponding to nodes that
can currently communicate. Such a model is used, for ex-
ample, in [27, 24, 34] etc.

However, the proof of correctness of algorithms presented
under such settings requires a bound on the virtual link
changes that can occur at a time. As [34] also states, in ad-
hoc mobile networks the topological connectivity is subject
to frequent, unpredictable changes (due to motion of hosts).
If the rate of topological change is very high, then struc-



tured algorithms (i.e. algorithms that try to maintain data
structures based on connectivity) fail to react fast enough
and [34] suggest that, in such cases, the only viable alter-
native is flooding. If the rate is low (quasi-static networks)
or medium, then adaptive algorithmic techniques can apply.
In such settings many nice works have appeared like e.g. the
work of [27] on leader election, the work of [1] on commu-
nication (which however examines only static transmission
graphs) etc.

The most common way to establish communication in ad-
hoc networks is to form paths of intermediate nodes that
lie within one another’s transmission range and can directly
communicate with each other [23, 24, 33, 35]. The mobile
nodes act as hosts and routers at the same time in order to
propagate packets along these paths. Indeed, this approach
of exploiting pairwise communication is common in ad-hoc
mobile networks that cover a relatively small space (i.e. with
diameter which is small with respect to transmission range)
or are dense (i.e. thousands of wireless nodes) where all
locations are occupied by some hosts; broadcasting can be
efficiently accomplished.

In wider area ad-hoc networks with less users, however,
broadcasting is impractical: two distant peers will not be
reached by any broadcast as users may not occupy all inter-
mediate locations (i.e. the formation of a path is not feasi-
ble). Even if a valid path is established, single link “failures”
happening when a small number of users that were part of
the communication path move in a way such that they are
no longer within transmission range of each other, will make
this path invalid. Note also that the path established in this
way may be very long, even in the case of connecting nearby
hosts.

We indeed conjecture that, in cases of high mobility rate
and/or of low density of user spreading, one can even state
an impossibility result: any algorithm that tries to maintain
a global structure with respect to the temporary network
will be erroneous if the mobility rate is faster than the rate
of updates of the algorithm.

In contrast to all such methods, we try to avoid ideas
based on paths finding and their maintenance. We envi-
sion networks with highly dynamic movement of the mobile
users, where the idea of “maintenance” of a valid path is
inconceivable (paths can become invalid immediately after
they have been added to the directory tables). Our approach
is to take advantage of the mobile hosts natural movement
by exchanging information whenever mobile hosts meet inci-
dentally. It is evident, however, that if the users are spread
in remote areas and they do not move beyond these areas,
there is no way for information to reach them, unless the
protocol takes special care of such situations.

In the light of the above, we propose the idea of forcing a
small subset of the deployed hosts to move as per the needs
of the protocol. We call this set the “support” of the net-
work. Assuming the availability os such hosts, the designer
can use them suitably by specifying their motion in certain
times that the algorithm dictates. We admit that the as-
sumption of availability of such hosts for algorithms devi-
ates from the “pure” definition of ad-hoc mobile networks.
However, we feel that our approach opens up an area for
distributed algorithms design for ad-hoc mobile networks of
high mobility rate.

Our approach is motivated by two research directions of
the past:

(a) The “two tier principle” [23], stated for mobile networks
with a fixed subnetwork however, which says that any pro-
tocol should try to move communication and computation
to the fixed part of the network. Our assumed set of hosts
that are coordinated by the protocol simulates such a (skele-
ton) network; the difference is that the simulation actually
constructs a coordinated moving set.

(b) A usual scenario that fits to the ad-hoc mobile model
is the particular case of rapid deployment of mobile hosts,
in an area where there is no underlying fixed infrastructure
(either because it is impossible or very expensive to create
such an infrastructure, or because it is not established yet,
or it has become temporarily unavailable i.e. destroyed or
down).

In such a case of rapid deployment of a number of mobile
hosts, it is possible to have a small team of fast moving and
versatile vehicles, to implement the support. These vehicles
can be cars, jeeps, motorcycles or helicopters. We interest-
ingly note that this small team of fast moving vehicles can
also be a collection of independently controlled mobile mod-
ules, i.e. robots. This specific approach is inspired by the
recent paper of J.Walter, J.Welch and N.Amato. In their
paper “Distributed Reconfiguration of Metamorphic Robot
Chains” ([39]) the authors study the problem of motion co-
ordination in distributed systems consisting of such robots,
which can connect, disconnect and move around. The paper
deals with metamorphic systems where (as is also the case
in our approach) all modules are identical. Note that the
approach of having the support moving in a co-ordinated
way, i.e. as a chain of nodes, has some similarities to [39].

In fact, a recent work of Q.Li and D.Rus [26] presented
a model which has some similarities to ours: The authors
give an interesting, yet different, protocol to send messages,
which forces all the mobile hosts to slightly deviate (for a
short period of time) from their predefined, deterministic
routes, in order to propagate the messages. Their proto-
col thus forces the alteration of motion for any host and it
works only for deterministic host routes. In their setting,
[26] show optimality of message transmission times.

1.2 The explicit model of motions

1.2.1 The motion space
The set of previous research that follows the approach of

slowly-changing communication graphs, models hosts mo-
tions only implicitly, i.e. via the pre-assumed upper bound
on the rate of virtual link changes. In contrast, we propose
an explicit model of motions because it is apparent that the
motions of the hosts are the cause of the fragility of the
virtual links.

Thus we distinguish explicitly between (a) the fixed (for
any algorithm) space of possible motions of the mobile hosts
and (b) the kind of motions that the hosts perform inside
this space. In the sequel we have decided to model the space
of motions only combinatorially, i.e. as a graph. We however
believe that other research will complement this effort by
introducting geometry details into the model.

In particular, we abstract the environment where the sta-
tions move (in three-dimensional space with possible obsta-
cles) by a motion- graph (i.e. we neglect the detailed geo-
metric characteristics of the motion. We expect that fu-
ture research will incorporate geometry constraints into the



subject). In particular, we first assume that each mobile
host has a transmission range represented by a sphere tr
centred by itself. This means that any other host inside
tr can receive any message broadcasted by this host. We
approximate this sphere by a cube tc with volume V(tc),
where V(tc) < V(tr). The size of tc can be chosen in such
a way that its volume V(tc) is the maximum that preserves
V(tc) < V(tr), and if a mobile host inside tc broadcasts a
message, this message is received by any other host in tc.
Given that the mobile hosts are moving in the space S, S is
divided into consecutive cubes of volume V(tc).

Definition 1. The motion graph G(V, E), (|V | = n, |E| =
m), which corresponds to a quantization of S is constructed
in the following way: a vertex u ∈ G represents a cube of
volume V(tc). An edge (u, v) ∈ G if the corresponding cubes
are adjacent.

The number of vertices n, actually approximates the ratio
between the volume of space S, V(S), and the space occu-
pied by the transmission range of a mobile host V(tr). In the
extreme case where V(S) ≈ V(tr) (the transmission range
of the hosts approximates the space that they are moving),
then n = 1. Given the transmission range tr, n depends
linearly on the volume of space S regardless of the choice

of tc, and n = O
� V (S)

V (tr)

�
. Let us call the ratio V (S)

V (tr)
by the

term relative motion space size and denote it by ρ. Since
the edges of G represent neighbouring polyhedra each node
is connected with a constant number of neighbours, which
yields that m = Θ(n). In our example where tc is a cube, G
has maximum degree of six and m ≤ 6n.

Thus motion graph G is (usually) a bounded degree graph
as it is derived from a regular graph of small degree by delet-
ing parts of it corresponding to motion or communication
obstacles. Let ∆ be the maximum vertex degree of G.

1.2.2 The motion of the hosts-Adversaries
The motion that the hosts perform (we mean here the

hosts that are not part of the support i.e. those whose mo-
tion is not specified by the distributed algorithm) is an input
to any distributed algorithm.

(a) In the general case, we assume that the motions of such
hosts are decided by an oblivious adversary: The adversary
determines motion patterns in any possible way but indepen-
dently of the part of the distributed algorithm that specifies
motions of the support. In other words, we exclude the
case where some of the hosts not in the support are deliber-
ately trying to maliciously affect the protocol (e.g. to avoid
the hosts in the support). This is a pragmatic assumption
usually followed by applications. We call such motion ad-
versaries the restricted motion adversaries.

(b) For purposes of studying efficiency of distributed algo-
rithms for ad-hoc networks on the average, we propose that
the motions of any host not affected by the algorithm are
modelled by concurrent and independent random walks. In
fact, the assumption that the mobile users move randomly,
either according to uniformly distributed changes in their
directions and velocities or according to the random way-
point mobility model by picking random destinations, has
been used by other research (see e.g. [19, 22]).

We interestingly note here a fundumental result of graph
theory, according to which, dense graphs look like random

graphs in many of their properties. This has been noticed
for expander graphs at least by [5, 2] and is captured by
the famous Szemeredi’s Regularity Lemma [38] which says
that in some sense most graphs can be approximated by
random-looking graphs.

In analogy, we conjecture that any set of dense (in num-
ber) but arbitrary otherwise motions of many hosts in the
motion space can be approximated (at least with respect to
their meeting and hitting times statistics) by a set of concur-
rent dense random walks. But the meeting times statistics
of the hosts essentially determine the virtual fragile links of
any ad-hoc network. We thus believe that our suggestion
for adoption of concurrent random walks as a model for in-
put motions, is not only a tool for average case performance
analysis but it might in fact approximate well any ad-hoc
network of dense motions.

We also note that the theory of random walks provides
tools for analytic performance estimation even for extremely
fast host motions (e.g. teleportation). We comment more
on this in the Section on Leader Election and Counting.

1.2.3 Non-oblivious adversaries and game-theoretic
ideas

What happens if we allow the adversary which specifies
the motion of some hosts to be hostile to the distributed
algorithm? Such a consideration might lead to impossibility
results. It might also lead to interesting analysis of the per-
formance of the distributed algorithm, via the exploitation
of some game-theoretic ideas.

Such ad-hoc systems often invoke a set of independent
selfish and antagonistic agent processes trying to share a
common resource. This situation evokes game theory and
its main concept of rational behaviour, the Nash equilib-
rium: in an environment in which each agent is aware of
the situation facing all other agents, a Nash equilibrium is
a combination of choices (deterministic or randomized), one
for each agent, from which no agent has an incentive to uni-
laterally move away. The ratio between the worst possible
Nash equilibrium and the global optimum, called coordina-
tion ratio, was first defined in [25]. Some upper bounds for
this ratio and the structure of worst-case Nash equilibria for
a very simple routing problem were given in [28].

We propose here to derive “difficult” behaviours for such
antagonistic ad-hoc networks by using such game-theoretic
ideas. We can sometimes consider the competition between
a distributed algorithm and an adversary as a game of pos-
sibly many rounds of moves of the opponents. Worst-case
Nash equilibria (with respect to some optimization criteria)
may then be examined and we suggest them as interesting
behaviours to be tested experimentally.

We motivate the above approach by a very simple prob-
lem of pursuit-evasion. Several agents (hosts) moving along
neighbor vertices of a graph (network) are looking for a
fugitive. The fugitive is eliminated when it coicides with
an agent at a vertex. The agents cannot “see” further
away from their current location. However, the fugitive can
sense the intention of a neighboring agent to come towards
it, provided that the agent is not still, and then it should
move away (the fugitive has a limited sense of approaching
agents).

Simple randomized protocols for catching the fugitive were
presented in [36, 37]. In their general structure, these pro-
tocols suggest that agents are partitioned into two sets: the



traps, which stay immobile (hidden therefore) at some ran-
dom vertices of the graph, and the searchers, i.e., agents
continuously performing independent random walks. Note
that, because of the model, the fugitive cannot sense neigh-
boring traps since they don’t move.

In this game, good strategies for the fugitive should allow
it to stay at the graph and not be eliminated for as long
as possible. Note that the best strategies for the fugitive
are non-oblivious adversarial strategies. Fugitive motion
around some chosen cycle in the graph is (together with
the way agents act) a Nash equilibrium. The fugitive, while
not caught, has no benefit in not following the cycle. The
game ends almost surely against any non-oblivious adver-
sary only if the traps can re-randomize their locations from
time to time [37]. Since long cycles of fugitive’s movement
have higher probability to encounter a trap, we conclude
that short cycles of such a movement are worst-case equilib-
ria in the sense that they extend the game’s duration. Note
that strategies which force the fugitive to stay at some vertex
forever (after some initial motion) are not good, since ran-
dom walks will hit any of those positions in short expected
time.

1.3 Comments on selected previous work
In a recent paper [26], Q.Li and D.Rus present a model

which has some similarities to ours. The authors give an
interesting, yet different, protocol to send messages, which
forces all the mobile hosts to slightly deviate (for a short pe-
riod of time) from their predefined, deterministic routes, in
order to propagate the messages. Their protocol is, thus,
compulsory for any host and it works only for deterministic
host routes. Moreover, their protocol considers the propa-
gation of only one message (end to end) each time, in order
to be correct. In contrast, our support scheme allows for
simoultaneous processing of many communication pairs. In
their setting [26] show optimality of message transmission
times.

M.Adler and C.Scheideler [1] in a previous work, dealt
only with static transmission graphs i.e. the situation where
the positions of the mobile hosts and the environment do not
change. In [1] the authors pointed out that static graphs
provide a starting point for the dynamic case. In our work,
we consider the dynamic case (i.e. mobile hosts move arbi-
trarily) and in this sense we extend their work. As far as
performance is concerned, their work provides time bounds
for communication that are proportional to the diameter of
the graph defined by random uniform speading of the hosts.

We note here (see also 1.1) that motion co-ordination ideas
for distributed systems of metamorphic robots have been
introduced by J.Walter, J.Welch and N.Amato in [39]. In
their paper “Distributed Reconfiguration of Metamorphic
Robot Chains” the authors study the problem of motion co-
ordination in distributed systems consisting of such robots,
which can connect, disconnect and move around. The pa-
per deals with metamorphic systems where all modules are
identical.

An interesting approach for Leader Electon in ad-hoc mo-
bile networks is presented in the paper of N.Malpani, J.Welch
and N.Vaidya [27]. There, the authors present algorithms,
based on the TORA [33] routing method, which maintain
wireless links and guarantee exactly one leader per con-
nected component of the implied virtual links network among
mobile hosts. Their proof of correctness assumes a bounded

rate of topology changes.

2. A PROTOCOL FRAMEWORK
Protocols (distributed algorithms) for ad-hoc mobile net-

works can be divided into three major categories:

Definition 2. Non-Compulsory protocols are the ones
whose execution does not affect the movement of the mo-
bile hosts. On the other hand, compulsory protocols are the
those that require all hosts to perform certain moves in order
to ensure the correct protocol execution. Finally, the class
of ad-hoc mobile networks protocols which enforce a (small)
subset of the mobile hosts to move in a certain way is called
the class of semi-compulsory protocols.

Note that non-compulsory protocols try to take advan-
tage of the mobile hosts natural movement by exchanging
information whenever mobile hosts meet incidentally. Com-
pulsory protocols force the mobile hosts to move according
to a specific scheme in order to meet the protocol demands
(i.e. meet more often, spread in a geographical area, etc.).

Note also that we can further categorize each class de-
pending on whether or not the mobile hosts have (individual
or common) sense of orientation in the motion space. We
can strengthen this by assuming abilities of geolocation given
to mobile hosts. Such location information (i.e complete co-
ordinates according to some origin) can be obtained using
global positioning system (GPS) [42, 43, 16, 32] facilities.

Definition 3. The subset of the mobile hosts of an ad-
hoc mobile network whose motion is determined by a network
protocol P is called the support Σ of P. The part of P which
indicates the way that members of Σ move and communicate
is called the support management subprotocol MΣ of P.

This definition captures network management ideas for
ad-hoc mobile networks.

Notice that our scheme defines a support (and its man-
agement subprotocol) suitable not only for pairwise commu-
nication but also for a whole set of basic problems includ-
ing many-to-one communication, information spreading and
multicasting.

Definition 4. Consider a family of protocols, F , for a
mobile ad-hoc network, and let each protocol P in F have
the same support (and the same support management sub-
protocol). Then Σ is called the support of the family F .

Our scheme follows the general design principle of mobile
networks (with a fixed subnetwork however) called the “two-
tier” principle [23] which says that any protocol should try
to move communication and computation to the fixed part
of the network. Our idea of the support Σ is a simulation of
such a (skeleton) network by moving hosts, however.

In addition, we may wish that the way hosts in Σ move
(maybe coordinated) and communicate is robust (i.e. that
it can tolerate failures of hosts).

The types of failures of hosts that we consider here are
permanent (i.e. stop) failures. Once such a fault happens
then the host of the fault does not participate in the ad-hoc
mobile network anymore.

Definition 5. A support management subprotocol, MΣ,
is k-faults tolerant, if it still allows the members of F (or
P) to execute correctly, under the presence of at most k
permanent faults of hosts in Σ (k ≥ 1).



3. BASIC COMMUNICATION

3.1 Problem Definition
A basic communication problem, in ad-hoc mobile net-

works, is to send information from some sender user, MHS ,
to another designated receiver user, MHR.

One way to solve this problem is the protocol of notifying
every user that the sender MHS meets (and providing all the
information to it) hoping that some of them will eventually
meet the receiver MHR.

Is there a more efficient technique (other than
notifying every user that the sender meets, in
the hope that some of them will then eventu-
ally meet the receiver) that will effectively solve
the communication establishment problem with-
out flooding the network and exhausting the bat-
tery and computational power of the hosts?

The most common way to establish communication is to
form paths of intermediate nodes that lie within one an-
other’s transmission range and can directly communicate
with each other [8, 20, 24, 33, 35, 40]. Indeed, this ap-
proach of exploiting pairwise communication is common in
ad-hoc mobile networks that cover a relatively small space
(i.e. with diameter which is small with respect to transmis-
sion range) or are dense (i.e. thousands of wireless nodes)
where all locations are occupied by some hosts; broadcasting
can be efficiently accomplished.

In wider area ad-hoc networks with less users, however,
broadcasting is impractical: two distant peers will not be
reached by any broadcast as users may not occupy all inter-
mediate locations (i.e. the formation of a long path is not
feasible). Even if a valid path is established, single link “fail-
ures” happening when a small number of users that were
part of the communication path move in a way such that
they are no longer within transmission range of each other,
will make this path invalid. Note also that the path estab-
lished in this way may be very long, even in the case of
connecting nearby hosts.

In contrast to all such methods, we try to avoid ideas
based on paths finding and their maintenance. We envi-
sion networks with highly dynamic movement of the mobile
users, where the idea of “maintenance” of a valid path is
inconceivable (paths can become invalid immediately after
they have been added to the directory tables). Our approach
is to take advantage of the mobile hosts natural movement
by exchanging information whenever mobile hosts meet inci-
dentally. It is evident, however, that if the users are spread
in remote areas and they do not move beyond these areas,
there is no way for information to reach them, unless the
protocol takes special care of such situations.

In the light of the above, we propose the idea of forcing
only a small subset of the deployed hosts to move as per
the needs of the protocol, i.e. we propose to exploit the
support idea. Assuming the availability of such hosts, we use
them to provide a simple, correct and efficient strategy for
communication between any pair of hosts in such networks
that avoid message flooding.

A protocol solving this important communication problem
is reliable if it allows the sender to be notified about delivery
of the information to the receiver. Note that no distributed
computing protocol can be implemented in ad-hoc mobile
networks without solving this basic communication problem.

3.2 The basic protocol
In simple terms, the protocol works as follows: The nodes

of the support move fast enough so that they cover (in suf-
ficiently short time) the entire motion graph. Their motion
is accomplished in a distributed way via a support motion
subprotocol P1. When some node of the support is within
communication range of a sender, an underlying sensor sub-
protocol P2 notifies the sender that it may send its mes-
sage(s).

The messages are then stored “somewhere within the sup-
port structure”. When a receiver comes within communica-
tion range of a node of the support, the receiver is notified
that a message is “waiting” for him and the message is then
forwarded to the receiver.

The messages received by the support are propagated
within the structure when two or more members of the sup-
port meet on the same site (or are within communication
range). A synchronization subprotocol P3 is used to dictate
the way that the members of the support exchange informa-
tion.

In a way, the support Σ plays the role of a (moving) skele-
ton subnetwork (whose structure is defined by the motion
subprotocol P1), through which all communication is routed.
From the above description, the size, k, and the shape of the
support may affect performance.

Note that the proposed scheme does not require the prop-
agation of messages through hosts that are not part of Σ,
thus its security relies on the support’s security and is not
compromised by the participation in message communica-
tion of other mobile users. For a discussion of intrusion
detection mechanisms for ad-hoc mobile networks see [40].

3.3 The “Snake" support management sub-
protocol MS

Σ

The main idea of the protocol proposed in [9, 11] is as fol-
lows. There is a set-up phase of the ad-hoc network, during
which a predefined set, k, of hosts, become the nodes of the
support. The members of the support perform a leader elec-
tion by running a randomized breaking symmetry protocol
in anonymous networks (see section 4.6.1). This is run once
and imposes only an initial communication cost. The elected
leader, denoted by MS0, is used to co-ordinate the support
topology and movement. Additionally, the leader assigns
local names to the rest of the support members MS1, MS2,
..., MSk−1.

The nodes of the support move in a coordinated way, al-
ways remaining pairwise adjacent (i.e., forming a list of k
nodes), so that they sweep (given some time) the entire mo-
tion graph. This encapsulates the support motion subproto-
col P S

1 .
Essentially the motion subprotocol P S

1 enforces the sup-
port to move as a “snake”, with the head (the elected leader
MS0) doing a random walk on the motion graph and each of
the other nodes MSi executing the simple protocol “move
where MSi−1 was before”. More formaly, the movement of
Σ is then defined as follows:

Initially, MSi, ∀i ∈ {0, 1, . . . , k − 1}, start from
the same area-node of the motion graph. The di-
rection of movement of the leader MS0 is given
by a memoryless operation that chooses randomly
the direction of the next move. Before leaving
the current area-node, MS0 sends a message to



MS1 that states the new direction of movement.
MS1 will change its direction as per instructions
of MS0 and will propagate the message to MS2.
In analogy, MSi will follow the orders of MSi−1

after transmitting the new directions to MSi+1.
Movement orders received by MSi are positioned
in a queue Qi for sequential processing. The very
first move of MSi, ∀i ∈ {1, 2, . . . , k−1} is delayed
by δ period of time.

We assume that the mobile support hosts move with a
common speed. Note that the above described motion sub-
protocol P S

1 enforces the support to move as a “snake”, with
the head (the elected leader MS0) doing a random walk on
the motion graph G and each of the other nodes MSi exe-
cuting the simple protocol “move where MSi−1 was before”.
This can be easily implemented because MSi will move fol-
lowing the edge from which it received the message from
MSi−1 and therefore our protocol does not require common
sense of orientation.

The purpose of the random walk of the head is to ensure
a cover (within some finite time) of the whole motion graph,
without memory (other than local) of topology details. Note
that this memoryless motion also ensures fairness. The value
of the random walk principle of the motion of the support
will be further justified in the correctness and the efficiency
parts of the paper, where we wish our communication estab-
lishment protocol to meet some performance requirements
regardless of the motion of the hosts not in Σ.

A modification of MS
Σ is that the head does a random walk

on a spanning subgraph of G (e.g. a spanning tree). This
modified MΣ (call it M ′

Σ) is more efficient in our setting since
“edges” of G just represent adjacent locations and “nodes”
are really possible host places.

A simple approach to implement the support synchro-
nization subprotocol P S

3 is to use a forward mechanism that
transmit incoming messages (in-transit) to neighboring mem-
bers of the support (due to P S

1 at least one support host will
be close enough to communicate). In this way, all incoming
messages are eventually copied and stored in every node of
the support. This is not the most efficient storage scheme
and can be refined in various ways in order to reduce mem-
ory requirements.

3.4 The “Runners" support management sub-
protocol MR

Σ

A different approach to implement MΣ is to allow each
member of Σ not to move in a snake-like fashion, but to per-
form an independent random walk on the motion graph G,
i.e., the members of Σ can be viewed as “runners” running
on G. In other words, instead of maintaining at all times
pairwise adjacency between members of Σ, all hosts sweep
the area by moving independently from each other. When
two runners meet, they exchange any information given to
them by senders encountered using a new synchronization
subprotocol P R

3 . As in the snake case, the same underlying
sensor sub-protocol P2 is used to notify the sender that it
may send its message(s) when within communication range
of a node of the support.

As presented in [12], the runners protocol does not use
the idea of a (moving) backbone subnetwork as no motion
subprotocol P R

1 is used. However, all communication is still
routed through the support Σ and we expect that the size
k of the support (i.e., the number of runners) will affect

performance in a more efficient way than that of the snake
approach. This expectation stems from the fact that each
host will meet each other in parallel, accelerating the spread
of information (i.e., messages to be delivered).

A member of the support needs to store all undelivered
messages, and maintain a list of receipts to be given to the
originating senders. For simplicity, we can assume an generic
storage scheme where all undelivered messages are members
of a set S1 and the list of receipts is stored on another set
S2. In fact, the unique ID of a message and its sender ID is
all that is needed to be stored in S2.

When two runners meet at the same site of the motion
graph G, the synchronization subprotocol P R

3 is activated.
The subprotocol imposes that when runners meet on the
same site, their sets S1 and S2 are synchronized. In this way,
a message delivered by some runner will be removed from
the set S1 of the rest of runners encountered, and similarly
delivery receipts already given will be discarded from the set
S2 of the rest of runners. The synchronization subprotocol
P R

3 is partially based on the two-phase commit algorithm as
presented in [29] and works as follows.

Let the members of Σ residing on the same site
(i.e., vertex) u of G be MSu

1 , . . . , MSu
j . Let also

S1(i) (resp. S2(i)) denote the S1 (resp. S2) set of
runner MSu

i , 1 ≤ i ≤ j. The algorithm assumes
that the underlying sensor sub-protocol P2 in-
forms all hosts about the runner with the lowest
ID, i.e., the runner MSu

1 . P R
3 consists of two

rounds.

Round 1: All MSu
1 , . . . , MSu

j residing on vertex
u of G, send their S1 and S2 to runner MSu

1 .
Runner MSu

1 collects all the sets and combines
them with its own to compute its new sets S1

and S2: S2(1) =
S

1≤l≤j S2(l) and S1(1) =S
1≤l≤j S1(l) − S2(1).

Round 2: Runner MSu
1 broadcasts its decision

to all the other support member hosts. All hosts
that received the broadcast apply the same rules,
as MSu

1 did, to join their S1 and S2 with the val-
ues received. Any host that receives a message
at Round 2 and which has not participated in
Round 1, accepts the value received in that mes-
sage as if it had participated in Round 1.

This simple algorithm guarantees that mobile hosts which
remain connected (i.e., are able to exchange messages) for
two continuous rounds, will manage to synchronize their S1

and S2. Furthermore, on the event that a new host arrives
or another disconnects during Round 2, the execution of the
protocol will not be affected. In the case where runner MSu

1

fails to broadcast in Round 2 (either because of an internal
failure or because it has left the site), then the protocol is
simply re-executed among the remaining runners.

Remark that the algorithm described above does not offer
a mechanism to remove message receipts from S2; eventu-
ally the memory of the hosts will be exhausted. A simple
approach to solve this problem and effectively reduce the
memory usage is to construct an order list of IDs contained
in S2, for each receiver. This ordered sequence of IDs will
have gaps - some messages will still have to be confirmed,
and thus not part of S2. In this list, we can identify the



maximum ID before the first gap. We are now able to re-
move from S2 all message receipts with smaller ID than this
identified ID.

3.5 The Hierarchical Approach
In this section we introduce a new model of ad-hoc mobile

networks, which we call hierarchical [10] that are comprised
of dense subnetworks of mobile users interconnected across
access ports by sparse but fast connections.

The lower level of the hierarchy may model dense ad-
hoc subnetworks of mobile users that are unstructured and
where there is no fixed infrastructure. To implement com-
munication in such a case, a possible solution would be to in-
stall a very fast (yet limited) backbone interconnecting such
highly populated mobile user areas, while using the support
approach in the lower levels. We assume that this fast back-
bone provides a limited number of access ports within these
dense areas of mobile users. We call this fast backbone the
higher level of the hierarchy.

Because of the presence of the fixed infrastructure of the
higher layer of the hierarchy, we assume that in each spe-
cific moment in time the availability of the higher level at a
specific access port is modeled by the probability p.

Definition 6. Let p be the probability that at any given
time instance the exchange of information by the higher layer
of the hierarchy is available through an access port.

We remark that, in practice, this probability may differ
between the various access ports and also vary with time.
So we take, for analysis reasons, p to be a lower bound on
these probabilities.

For simplicity, let’s assume two such dense ad-hoc subnet-
works of mobile users (A and B) that are interconnected via
a very fast backbone that provides one access port to each
subnetwork. Assume further that the sender MHS is within
site A and the designated receiver MHR is located at site
B. In such hierarchical case communication between users
in different dense areas takes place in the following way:

a) When some mobile host of the support in the lower level
A is within the communication range of the sender MHS ,
the underlying sensor subprotocol P2 notifies the sender to
give its messages to the support.

b) When a node of the support arrives at the access port of
A to the higher level, it transmits pending messages to the
higher level with probability p.

c) The higher level, after having got the messages from the
access port in A, propagates the messages (according to its
own network management scheme) to the access port in B,
where again at some time they will be delivered to a member
of the other lower level support (i.e. the support of site
B) within transmition range of the access port and with
probability p.

d) Having received the messages from the access port B, the
support forwards them to the receiver MHR when they first
meet within B.

We note that this hierarchical approach for a manage-
ment subprotocol is inherently modular in the sense that it
actually assumes, for shaping the hierarchy of supports as a
whole, a basic building block: a dense area of mobile users
and its access ports to some very fast fixed backbone. Thus,

the changes incurred by adopting the protocol to any num-
ber of subnetworks connected across various access ports by
a sparse network of very fast interconnections, are basically
quantitative and easy to analyse, and do not affect the cor-
rectness and the essence of this approach.

If MHR is allowed to change locations (i.e. moves from
site A to site B within a reasonable period of time) the afore-
mentioned scheme might fail to deliver the messages unless
the protocol is extended. In reality, this problem is similar
to that of mobile networks with fixed backbone, i.e. when
a user enters a new cell. Instead of providing a subproto-
col to determine and monitor the location of each mobile
user (and complicate further our scheme), the hierarchical
version of our algorithms will assume that a recipient of a
message can be located anywhere within the ad-hoc net-
work. Therefore, each mobile support propagates messages
to all other lower levels creating in such a way a number of
multiple copies equal to the number of dense subnetworks
that make up the hierarchical ad-hoc network. These copies
will be stored within the higher level for a given period of
time, sufficient to meet the recipient host if it lies within the
area-borders of the “biggest” lower level. This period can
be set to be analogous to the cover time of each lower level’s
motion graph.

It is clear that the total size of interconnecting higher
level, the number of access ports scattered through the lower
levels of the hierarchy, and the interconnection topology of
the lower levels will have an affect on the overall performance
of the network.

Based on the above, it is evident that modifications only
need to be made to the synchronization subprotocol P3 for
the support management subprotocols to adopt to the im-
posed hierarchy.

3.6 Analytical Considerations for the “Snake"
Protocol

3.6.1 Preliminaries
In the sequel, we assume that the head of the snake do

a continuous time random walk on G(V, E), without loss of
generality (if it is a discrete time random walk, all results
will transfer easily, by [4]). We define the random walk of a
host on G that induces a continuous time Markov chain MG

as follows: The states of MG are the vertices of G and they
are finite. Let st denote the state of MG at time t. Given
that st = u, u ∈ V , the probability that st+dt = v, v ∈ V ,
is p(u, v) · dt where

p(u, v) =

(
1

d(u)

0

if (u, v) ∈ E

otherwise

and d(u) is the degree of vertex u.
We assume that all random walks are concurrent and that

there is a global time t, not necessarily known to the hosts.

Note 1. Since the motion graph G is finite and con-
nected, the continuous markov chain abstracting the random
walk on it is automatically time-reversible.

Definition 7. Pi(E) is the probability that the walk sat-
isfies an event E given it started at vertex i.

Definition 8. For a vertex j, let Tj = min{t ≥ 0 : st =
j} be the first hitting time of the walk onto that vertex and



let EiTj be its expected value, given that the walk started at
vertex i of G.

Definition 9. For the walk of any particular host, let
π() be the stationary distribution of its position after a suf-
ficiently long time.

We denote Eµ [ ] the expectation for the chain started at
time 0 from any vertex with distribution µ (e.g. the initial
distribution of the Markov chain).

We know (see [4]) that for every vertex σ, π(σ) = d(σ)
2m

where d(σ) is the degree of σ in G and m = |E|.
Definition 10. Let pj,k be the transition probability of

the random walk from vertex j to vertex k. Let pj,k(t) be
the probability that the random walk started at j will be at
k ∈ V in time t.

Definition 11. Let X(t) be the position of the random
walk at time t

3.6.2 Correctness guarantees under the restricted mo-
tion adversary

Let us now consider the case where any sender or receiver
is allowed a general, unknown motion strategy, but its strat-
egy is provided by a restricted motion adversary.

This means that each host not in the support either exe-
cutes a deterministic motion (which either stops at a node
or cycles forever after some initial part) or it executes a sto-
chastic strategy which however is independent of the motion
of the support.

Theorem 1. The support Σ and the management sub-
protocol MΣ guarantee reliable communication between any
sender-receiver (MHS, MHR) pair in finite time, whose ex-
pected value is bounded only by a function of the relative
motion space size ρ and does not depend on the number of
hosts, and is also independent of how MHS, MHR move,
provided that the mobile hosts not in the support do not de-
liberately try to avoid the support.

Proof. For the proof purposes, it is enough to show that
the a node of Σ will meet MHS and MHR infinitely often,
with probability 1 (in fact our argument is a consequence of
the Borel-Cantelli Lemmas for infinite sequences of trials).
We will furthermore show that the first meeting time M
(with MHS or MHR) has an expected value (where expec-
tation is taken over the walk of Σ and any strategy of MHS

(or MHR) and any starting position of MHS (or MHR) and
Σ) which is bounded by a function of the size of the motion
graph G only. This then shows the Theorem since it shows
that MHS (and MHR) meet with the head of Σ infinitely
often, each time within a bounded expected duration.

So, let EM be the expected time of the (first) meeting
and m∗ = supEM , where the supremum is taken over
all starting positions of both Σ and MHS (or MHR) and
all strategies of MHS (one can repeat the argument with
MHR).

We proceed to show that we can construct for the walk of
Σ’s head a strong stationary time sequence Vi such that for
all σ ∈ V and for all times t

Pi(X(Vi) = σ | Vi = t) = π(σ)

Remark that strong stationary times were introduced by
Aldous and Diaconis in [3].

Notice that at times Vi, MHS (or MHR) will necessarily
be at some vertex σ of V , either still moving or stopped.

Let u be a time such that for X,

pj,k(u) ≥
�

1 − 1

e

�
π(k)

for all j, k. Such a u always exists because pj,k(t) converges
to π(k) from basic Markov Chain Theory.

Note that u depends only on the structure of the walk’s
graph, G. In fact, if one defines separation from stationarity
to be s(t) = maxjsj(t) where sj(t) = sup

�
s : pij(t) ≥

(1 − s)π(j)
	

then

τ
(1)
1 = min

�
t : s(t) ≤ e−1	

is called the separation threshold time. For general graphs
G of n vertices this quantity is known to be O�n3

�
([7]).

Now consider a sequence of stopping times
Ui ∈

�
u, 2u, 3u, . . .

	
such that

Pi(X(Ui) = σ | Ui = u) =

�
1 − 1

e

�
π(σ) (1)

for any σ ∈ V . By induction on λ ≥ 1 then

Pi

�
X(Ui) = σ | Ui = λu

�
= e−(λ−1)

�
1 − 1

e

�
π(σ)

This is because of the following: First remark that for
λ = 1 we get the definition of Ui. Assume that the relation
holds for (λ− 1) i.e.

Pi

�
X(Ui) = σ | Ui = (λ− 1)u

�
= e−(λ−2)

�
1 − 1

e

�
π(σ)

for any σ ∈ V . Then ∀σ ∈ V

Pi

�
X(Ui) = σ | Ui = λu

�
=

=
X
α∈V

Pi

�
X(Ui) = α | Ui = (λ− 1)u

� · Pα,σ(u)

= e−(λ−2)

�
1 − 1

e

�X
α∈V

π(α)
1

σ
π(σ) from (1)

= e−(λ−2)

�
1 − 1

e

�
π(σ)

which ends the induction step. Then, for all σ

Pi

�
X(Ui) = σ

�
= π(σ) (2)

and

EiUi = u

�
1 − 1

e

�−1

Now let c = u e
e − 1

. So, we have constructed (by (2)) a
strong stationary time sequence Ui with EUi = c. Consider
the sequence 0 = U0 < U1 < U2 < . . . such that for i ≥ 0

E
�
Ui+1 − Ui | Uj , j ≤ i

� ≤ c



But, from our construction, the positions X(Ui) are inde-
pendent (of the distribution π()), and, in particular, X(Ui)
are independent of Ui.

Therefore, regardless of the strategy of MHS (or MHR)
and because of the independence assumtpion, the support’s
head has chance at least minσ π(σ) to meet MHS (or MHR)
at time Ui, independently as i varies.

So, the meeting time M satisfies M ≤ UT where T is a
stopping time with mean

ET ≤ 1

minσπ(σ)

Note that the idea of a stopping time T such that X(T )
has distribution π and is independent of the starting posi-
tion is central to the standard modern Theory of Harris -
recurrent Markov Chains (see e.g. [17]).

From Wald’s inequality [4] then

EUT ≤ c · ET

⇒ m∗ ≤ c
1

minσ π(σ)

Note that since G is produced as a subgraph of a regular
graph of fixed degree ∆ we have

1

2m
≤ π(σ) ≤ 1

n

for all σ (n = |V |, m = |E|), thus

ET ≤ 2m

hence

m∗ ≤ 2mc =
e

e− 1
2mu

Since m, u only depend on G, this proves the Theorem.

Corollary 1. If Σ’s head walks randomly in a regular
spanning subgraph of G, then m∗ ≤ 2cn.

3.6.3 Time efficiency for the (worst) case of a re-
stricted motion adversary

Clearly, one intuitively expects that if k = |Σ| then the
higher k is (with respect to n), the best the performance of
Σ gets.

By working as in the construction of the proof of Theorem
1, we can create a sequence of strong stationary times Ui

such that X(Ui) ∈ F where F={σ: σ is a position of a host
in the support}. Then π(σ) is replaced by π(F ) which is
just π(F ) =

P
π(σ) over all σ ∈ F . So now m∗ is bounded

as follows:

m∗ ≤ c
1

minσ∈J

�P
π(σ)

�
where J is any induced subgraph of the graph of the walk

of Σ’s head such that J is the neighbourhood of a vertex σ
of radius (maximum distance simple path) at most k. The
quantity

min
J

�X
σ∈J

π(σ)

�
is then at least k

2m
and, hence, m∗ ≤ c 2m

k
.

The overall communication is given by:

Ttotal = X + TΣ + Y (3)

where:

• X is the time for the sender node to reach a node of
the support.

• TΣ is the time for the message to propagate inside the
support. Clearly, TΣ = O(k), i.e. linear in the support
size.

• Y is the time for the receiver to meet with a support
node, after the propagation of the message inside the
support.

We have for all MHS , MHR:

E(Ttotal) ≤ 2mc

k
+ Θ(k) +

2mc

k

(since Z = Θ(k))
The upper bound achieves a minimum when k =

√
2mc.

Lemma 1. For the walk of Σ’s head on the entire motion
graph G, the communication establishment time’s expected
time is bounded above by Θ(

√
mc) when the (optimal) sup-

port size |Σ| is
√

2mc and c is e
e − 1

u, u being the “separa-
tion threshold time” of the random walk on G.

Remark that other authors use for u by the symbol τ
(1)
1 for

a symmetric Markov Chain of continuous time on n states.

3.6.4 Tighter Bounds for the worst case of motion
To make our protocol more efficient, we now force the

head of Σ to perform a random walk on a regular spanning
graph of G. Let GR(V, E′) be such a subgraph.

Our improved protocol versions assume that (a) such a
subgraph exists in G and (b) is given in the beginning to all
the stations of the support.

Then, for any σ ∈ V , and for this new walk X ′, we have
for the steady state probabilities

πX′(σ) = 1
n

for all σ.
Let now M be again the first meeting time of MHS (or

MHR) and Σ’s head. By the stationarity of X ′Z t

0

P
�
S, X ′ are together at time s

�
ds =

t

n
(4)

Now let

p∗(t) = max
x,v

px,v(t)

Regardless of initial positions, the chance that R,Σ’s head
are together (i.e. at the same vertex) at time u is at most
p∗(u). So, by assuming first that Σ’s head starts with the
stationary distribution, we get

P
�
together at time s

�
=

=

Z s

0

f(u)P
�
together at time s | M = u

�
du



where f(u) is the (unknown) density function of the meeting
time M . So

P
�
together at time s

� ≤ Z s

0

f(u)p∗(s− u) du

But we know [4] that

Lemma 2. [4] There exists an absolute constant K such
that

p∗(t) ≤ 1

n
+ Kt−

1
2 where 0 ≤ t < ∞

Thus

P
�
together at time s

� ≤ 1

n
P (M ≤ s)+ K

Z s

0

f(u)(s−u)−
1
2 du

So, from (4), we get

t

n
≤ 1

n

Z t

0

P (M ≤ s)ds + K

Z t

0

f(u)du

Z t

0

(s− u)−
1
2 ds

=
t

n
− 1

n

Z t

0

P (M > s)ds + 2K

Z t

0

f(u)(t− u)−
1
2 du

≤ t

n
− 1

n
Emin(M, t) + 2Kt−

1
2

So, the expected of the minimum of M and t is

Emin(M, t) ≤ 2Knt−
1
2

Taking t0 =
�
4Kn

�2
, from Markov’s inequality we get

P
�
M ≤ t0

� ≥ 1
2
.

When Σ starts at some arbitrary vertex, we can use the
notion of separation time s(u) (a time to approach station-

arity by at least a fraction of
�
1 − 1

e

�−1
to get

P
�
M ≤ u + t0

� ≥ 1 − s(u)

2

i.e., by iteration,

EM ≤ 2(u + t0)

1 − s(u)

where u is as in the construction of Theorem 1. Thus,

m∗ ≤ 2�
1 − 1

e

� (t0 + u)

but for regular graphs it is known (see e.g. [4]) that u =
O�n2

�
implying (together with our remarks about Σ’s length

and set of positions) the following theorem:

Theorem 2. By having Σ’s head to move on a regular
spanning subgraph of G, there is an absolute constant γ > 0
such that the expected meeting time of MHS (or MHR) and

Σ is bounded above by γ n2

k
.

Again, the total expected communication establishment

time is bounded above by 2γ n2

k
+ Θ

�
k
�

and by choosing

k =
p

2γn2 we can get a best bound of Θ
�
n
�

for a support

size of Θ
�
n
�
.

Recall that n = O
�

V (S)
V (tr)

�
i.e. n is linear to the ratio ρ

of the volumes of the space of motions and the transmission
range of each mobile host. Thus,

Corollary 2. By forcing the support’s head to move on
a regular spanning subgraph of the motion graph, our proto-
col guarantees a total expected communication time of Θ

�
ρ
�
,

where ρ is the relative motion space size, and this time is
independent of the total number of mobile hosts, and their
movement.

Note 2. Our analysis assumed that the head of Σ moves
according to a continuous time random walk of total rate 1
(rate of exit out of a node of G). If we select the support’s
hosts to be ψ times faster than the rest of the hosts, all
the estimated times, except of the inter-support time, will be
divided by ψ. Thus

Corollary 3. Our modified protocol where the support
is ψ times faster than the rest of the mobile hosts guarantees
an expected total communication time which can be made to
be as small as Θ

�
γ ρ√

ψ

�
where γ is an absolute constant.

3.6.5 Time efficiency - A Lower Bound

Lemma 3.

m∗ ≥ max
i,j

EiTj

Proof. Consider the case where MHS (or MHR) just
stands still on some vertex j and Σ’s head starts at i.

Corollary 4. When Σ starts at positions according to
the stationary distribution of its head’s walk then

m∗ ≥ max
j

EπTj

for j ∈ V , where π is the stationary distribution.

From a Lemma of ([4], ch. 4, pp. 21), we know that for
all i

EπTi ≥ (1 − π(i))2

qiπ(i)

where qi = di is the degree of i in G i.e.,

EπTi ≥ min
i

�
1 − di

2m

�2
di

di
2m

≥ min
i

1

2m

(2m − di)
2

d2
i

For regular spanning subgraphs of G of degree ∆ we have
m = ∆n

2
, where di = ∆ for all i. Thus,

Theorem 3. When Σ’s head moves on a regular span-
ning subgraph of G, of m edges, we have that the expected
meeting time of MHS (or MHR) and Σ cannot be less than
(n − 1)2

2m
.

Corollary 5. Since m = Θ
�
n
�

we get a Θ
�
n
�

lower
bound for the expected communication time. In that sense,
our protocol’s expected communication time is optimal when
the support size is Θ

�
n
�
.



3.6.6 Time efficiency on the average
Time-efficiency of semi-compulsory protocols for ad-hoc

networks is not possible to estimate without a scenario for
the motion of the mobile users not in the support (i.e. the
non-compulsory part). In a way similar to [9, 21], we
propose an “on-the-average” analysis by assuming that the
movement of each mobile user is a random walk on the corre-
sponding motion graph G. We propose this kind of analysis
as a necessary and interesting first step in the analysis of effi-
ciency of any semi-compulsory or even non-compulsory pro-
tocol for ad-hoc mobile networks. In fact, the assumption
that the mobile users are moving randomly (according to
uniformly distributed changes in their directions and veloc-
ities, or according to the random waypoint mobility model,
by picking random destinations) has been used in [22], [19].

In the light of the above, we assume that any host, not
belonging in the support, conducts a random walk on the
motion graph, independently of the other hosts.

The communication time of MS
Σ is the total time needed

for a message to arrive from a sending node u to a receiving
node v. Since the communication establishment time, Ttotal,
between MHS , MHR is bounded above by X+Y +Z, where
X is the time for MHS to meet Σ, Y is the time for MHR

to meet Σ (after X) and Z is the message propagation time
in Σ, in order to estimate the expected values of X and Y
(they are random variables), we work as follows:

(a) Note first that X, Y are, statistically, of the same distri-
bution, under the assumption that u, v are randomly located
(at the start) in G. Thus E(X) = E(Y ).

(b) We now replace the meeting time of u and Σ by a hitting
time, using the following thought experiment:
(b1) We fix the support Σ in an “average” place inside G.
(b2) We then collapse Σ to a single node (by collapsing its
nodes to one but keeping the incident edges). Let H be the
resulting graph, σ the resulting node and d(σ) its degree.
(b3) We then estimate the hitting time of u to σ assuming u
is somewhere in G, according to the stationary distribution,
~π, of its walk, on H. We denote the expected value of this
hitting time by EπT H

σ .

Thus, now E(Ttotal) = 2EπT H
σ + O(k).

Note 3. The equation above amortises over meeting times
of senders (or receivers) because it uses the stationary dis-
tribution of their walks for their position when they decide
to send a message.

Now, proceeding as in [4], we get the following lemma.

Lemma 4. For any node σ of any graph H in a continuous-
time random walk

EπT H
σ ≤ τ2

�
1− π(σ)

�
π(σ)

where π(σ) is the (stationary) probability of the walk at node
(state) σ and τ2 is the relaxation time of the walk.

Proof. Let Zi,j =
P∞

t=o

�
Pi,j(t) − π(j)

�
dt, be the ijth

element of the recurrent potential Z={Zi,j} of the random
walk on H. Here,

P
(t)
i,j = Pr{walk at vertex j on time t given it starts at vertex i}

A corollary of renewal identities relates the mean hitting
time EπTi to Zii (see [4], Chapter 3) as follows: For all
vertices i,

π(i)EπTi = Zii

hence,

π(i)EπTi =

∞X
0

�
Pii(t) − π(i)

�
dt

Now, f(t) = Pii(t)− π(i) is a completely monotone func-
tion, because, by the spectral representation of the transi-
tion matrix, it follows that

P
(t)
ii − π(i) =

X
m≥2

u2
im exp(−λmt)

where u is the orthonormal matrix of the spectral theorem
for Markov chains. But then, λ2 controls the behaviour of
f(t) as t →∞ in the sense

f(t) ≤ f(0) exp(−λ2t)

But f(0) = 1− π(i). Then we get for all vertices i,

π(i)EπTi ≤ �
1− π(i)

� ∞X
0

exp(−λ2t) dt

i.e. (for i = σ)

EπTσ ≤ 1

λ2

1 − π(σ)

π(σ)

Note 4. In the above bound, τ2=
1

λ2
where λ2 is the sec-

ond eigenvalue of the (symmetric) matrix S = {si,j} where

si,j =
√

π(i) pi,j (
p

π(i))−1 and P = {pi,j} is the transition
matrix of the walk. Since S is symmetric, it is diagonalizable
and the spectral theorem gives the following representation:
S = UΛU−1 where U is orthonormal and Λ is a diagonal
real matrix of diagonal entries 0 = λ1 < λ2 ≤ · · · ≤ λn′ ,
n′ = n− k + 1 (where n′ = |VH |). These λ’s are the eigen-
values of both P and S. In fact, λ2 is an indication of the
expansion of H and of the asymptotic rate of convergence
to the stationary distribution, while relaxation time τ2 is the
corresponding interpretation measuring time.

It is a well-known fact (see e.g. [31]) that ∀v ∈ VH , π(v) =
d(v)
2m′ where m′ = |EH | is the number of the edges of H and

d(v) is the degree of v in H. Thus π(σ) = d(σ)
2m′ .

By estimating d(σ) and m′ and remarking that the op-
eration of locally collapsing a graph does not reduce its ex-
pansion capability and hence λH

2 ≥ λG
2 (see Lemma 1.15

[13], ch. 1, p.13).

Theorem 4.

E(X) = E(Y ) ≤ 1

λ2(G)
Θ

�
n

k

�
Theorem 5. The expected communication time of our

scheme is bounded above by the formula

E(Ttotal) ≤ 2

λ2(G)
Θ

�
n

k

�
+ Θ(k)



Note 5. The above upper bound is minimised when k =q
2n

λ2(G)
, a fact also verified by our experiments (see [9] and

also section 3.7 in this paper).

We remark that this upper bound is tight in the sense
that by [4], Chapter 3,

EπT H
σ ≥

�
1− π(σ)

�2
qσπ(σ)

where qσ =
P

j 6=σ pσj in Hj is the total exit rate from σ in
H. By using martingale type arguments we can show sharp
concentration around the mean degree of σ.

3.6.7 The Average Time Efficiency of the Hierarchical
Approach

The time needed for two mobile users in different sites of
the lower levels of the hierarchy to communicate is:

Ttotal = X + XΣ + XAP + Tbackbone + YAP + YΣ + Y

where X, Y represent the times (which are random vari-
ables) needed for a mobile user to meet its local support,
respectively, XΣ, YΣ are the times for the messages to prop-
agate within each local support, respectively. XAP and YAP

are random variables representing the times needed for the
randomly moving support’s head of each site to deliver (re-
spectively, receive) the messages to (respectively, from) the
corresponding access port. Tbackbone is the time needed for
the higher layer to propagate the messages from one access
port to the other.

Now, as before, by the analysis of the average case for the
basic protocol,

E(X) = E(Y ) ≤ 1

λ2(G)
Θ

�
n

k

�
where n, k, λ2(G) are, respectively, the number of vertices

of the motion graph of each lower level site, the support size
and the second eigenvalue of the adjacency matrix of the
motion graph of each site.

Note 6. To simplify the analysis the lower level sites are
identical. The extension of the results to the general case is
straightforward.

Note 7. The above upper bound is minimised when k =q
2n

λ2(G)
, a fact also verified by our experiments (see [10] and

also section 3.7 in this paper).

This analysis indicates the important fact that only a
small sized support Σ is needed in each lower level site to
achieve very efficient times for reaching the support. This
size (actually of order equal to the square root of the num-
ber of vertices in the local motion graph) is also verified
experimentally.

We now proceed with the analysis of the XAP and YAP

times. Remark that, XAP and YAP have statistically the
same distribution, thus their expected value, because of Lemma
4 and the fact that π(AP ) = dAP

2m
, is given by:

E(XAP ) = E(YAP ) =
1

p

1

λ2(G)
Θ

�
2m

dAP

�

(where m is the number of edges in the motion graph
and dAP is the degree of the access port vertex), since the
expected number of visits of the support’s head to an ac-
cess port until a successful availability of the higher layer is
geometrically distributed with success probability p, and a
visit of the support to the access port can be in fact viewed
as a hitting time of a mobile user starting from a random
point to the access port (since the support’s head performs
a random walk).

Now, we may naturally assume that the degree dAP of
the vertex corresponding to the access port is (because of its
critical with respect to connectivity position in the network)
at least d, where d = 2m

n
is the average degree in the graph.

Thus, we get

E(XAP ) = E(YAP ) =
1

p

1

λ2(G)
Θ
�
n
�

Finally Tbackbone is a function, as we have already said, of
the highway traffic parameters and we consider this to be a
given parameter of the protocol having constant size.

Thus, we finally get:

E(Ttotal) =
2

λ2(G)

�
Θ
�n

k

�
+

1

p
Θ(n)

�
+ 2Θ

�
k
�

which gives a linear average message delay E(Ttotal) =
O
�
n
�
, where n is the number of vertices of the motion graph

of each site.

3.6.8 Robustness
Now, we examine the robustness of the support manage-

ment subprotocol MS
Σ and MR

Σ under single stop-faults.

Theorem 6. The support management subprotocol MS
Σ

is 1-fault tolerant.

Proof. If a single host of Σ fails, then the next host in
the support becomes the head of the rest of the snake’. We
thus have two, independent, random walks in G (of the two
snakes) which, however, will meet in expected time at most
m∗ (as in Theorem 1) and re-organize as a single snake via a
very simple re-organization protocol which is the following:

When the head of the second snake Σ2 meets a host h
of the first snake Σ1 then the head of Σ2 follows the host
which is “in front” of h in Σ1, and all the part of Σ1 after
and including h waits, to follow Σ2’s tail.

Note that in the case that more than one faults occur, the
procedure for merging “snakes” described above may lead
to deadlock, as figure 1 graphically depicts.

Theorem 7. The support management subprotocol MR
Σ

is resilient to t faults, for any 0 ≤ t < k.

Proof. This is achieved using redundancy: whenever
two runners meet, they create copies of all messages in tran-
sit. In the worst-case, there are at most k − t copies of
each message. Note, however, that messages may have to
be re-transmitted in the case that only one copy of them
exists when some fault occurs. To overcome this limitation,
the sender will continue to transmit a message for which
delivery has not been confirmed, to any other members of
the support encountered. This guarantees that more than
one copy of the message will be present within the support
structure.



Σ
1

Σ
3

Σ
2
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Figure 1: Deadlock situation when four “snakes” are
about to be merged.

3.7 Experiments
To experimentally validate, fine-tune and further investi-

gate the proposed protocols, we performed a series of algo-
rithmic engineering experiments.

All of our implementations follow closely the support mo-
tion subprotocols described above. They have been imple-
mented as C++ classes using several advanced data types
of LEDA [30]. Each class is installed in an environment that
allows to read graphs from files, and to perform a network
simulation for a given number of rounds, a fixed number of
mobile users and certain communication and mobility be-
haviours. After the execution of the simulation, the envi-
ronment stores the results again on files so that the mea-
surements can be represented in a graphical way.

In [9] we performed extensive experiments to evaluate the
performance of the “snake” protocol. A number of experi-
ments were carried out modeling the different possible sit-
uations regarding the geographical area covered by an ad-
hoc mobile network. We only considered the restricted case
where all users (even those not in the support) perform in-
dependent and concurrent random walks.

In [12] we performed a comparative experimental study
of the “snake” and the “runners” protocols based on the
generic framework (as presented above) to implement pro-
tocols for mobile computing. We also have extended the
experimental setup in [9] to include more pragmatic test in-
puts regarding motion graphs, i.e., graphs which model the
topology of the motion of the hosts. Our test inputs in-
cluded both random as well as more structured graphs. In
addition, we considered also the case where the users (only
those not in the support) perform less random (arbitrary)
motions.

Our experiments showed that: (i) for both protocols only
a small support is required for efficient communication; (ii)
the “runners” protocol outperforms the “snake” protocol in
almost all types of inputs we considered. More precisely, the
“runners” protocol achieve a better average message delay
in all test inputs considered, except for the case of random
graphs with a small support size. The “runners” protocol
achieves a higher delivery rate of messages right from the be-
ginning, while the “snake” protocol requires some period of
time until its delivery rate stabilizes to a value that is always
smaller than that of the “runners”. Finally, the “runners”
protocol has smaller requirements for the size of local mem-
ory per member of the support.

In [10] a set of experiments were carried out to evalu-
ate, further investigate and comparatively study the perfor-
mance of the Hierarchical Support Routing Protocol (HSRP)
and the “snake” algorithm in the new model of hierarchical

ad-hoc networks. The experiments indicate that, although
the pattern of the “snake” algorithm’s performance remains
the same, it does not provide satisfactory communication
times even if the size of the support is big. This implies the
fact (also remarked analytically) that the average message
delay is affected (in fact dominated) by the time (whose ex-
pectation is very high) required for a single support to move
between lower level sites in order to deliver the messages
to their destination. In contrast to the above, the commu-
nication times achieved by HSRP are indeed by far more
efficient than those of the original algorithm even in the
case of a small probability p. The fact that HSRP is more
efficient than the “snake” protocol in hierarchical networks,
implies also an inherently modular and hierarchical nature
of the support idea.

4. LEADER ELECTION AND COUNTING

4.1 Problem Definition
Suppose that m mobile hosts are moving in a space S.

The hosts want to elect a unique leader. This means that
starting from a configuration where all mobile hosts are in
the same state, a configuration should be reached where
exactly one host is the “leader” while all other hosts are in
a state “lost”. Furthermore, the leader should know the size
of the mobile network, m.

More formally, the standard definition of the leader elec-
tion problem for static networks [29, 6] is that

• eventually there is a leader and

• there should never be more than one leader

One way to perform this is to utilize an underlying rout-
ing protocol (see [1]), which delivers (if possible) a message
from one mobile host to another, regardless of their position.
This scheme, in the case of increased mobility of the hosts,
could lead to a situation where most of the computational
and battery power of the hosts is consumed for the routing
protocol.

An interesting approach is presented in the paper of N.
Malpani, J. Welch and N. Vaidya [27]. There, the authors
present algorithms, based on the TORA [33] routing method,
which maintain wireless links and guarantee exactly one
leader per connected component of the implied virtual links
network among mobile hosts. Their proof of correctness as-
sumes a bounded rate of topology changes.

In contrast, our approach follows our general scheme of
explicitly modelling motions in the motion space S, which
we consider to be quantized in order to get the motion graph
G.

4.2 The Algorithm
The proposed protocol executed by the mobile hosts is

presented in Figure 2. This protocol is Non-Compulsory.
Each mobile host keeps a local counter which counts the

other mobile hosts that it has met. At the beginning this
counter is equal to one (the mobile host knows the existence
of itself only). When two or more mobile hosts meet on a
vertex u of G they exchange their identities. The winner
is the one with the higher identity. The winner receives
the counter of the loser and adds this to its local counter. It
continues to participate in the protocol execution (it remains
in state participate). The mobile host that lost, changes



boolean my state=participate; the state of the mobile
host regarding the protocol (participate or inactive)
int my id; the identity of the mobile host
int counter=1; the local counter of the host

on arriving at a new vertex u of G
if (my state 6= inactive) then
begin

broadcast < host, my id >;
on receive < host, i > decide on(i);

end

on being on a vertex u and receive < host, i >
if (my state 6= inactive) then
begin

broadcast < host, my id >;
decide on(i);

end

procedure decide on(id)
if (id > my id) then
begin

broadcast < my counter, counter >;
my state=inactive;

end
else
begin
receive < my counter, k >;
counter=counter+k;

end;

Figure 2: The Non-Compulsory leader election pro-
tocol executed by the mobile hosts in the ad hoc
network

its state into inactive and no longer responds to messages
concerning the protocol execution.

The protocol uses messages of size O(log m) bits since
the only information carried by each message is a counter.
If the given bandwidth of radio communication enables the
transmission of messages of size O(m log m) bits, the hosts
may also exchange lists of identities. Each mobile host may
keep a local list of mobile hosts that it has defeated (initially
this list contains only itself). When two hosts meet, the
winner concatenates its local list with the list transmitted
by the loser. In this way, the final winner will know not only
the size of the mobile network but also the identities of the
hosts that move inside S.

4.3 Proof of Correctness
As can be seen from the previous section, in order for the

protocol to be executed correctly the mobile hosts are re-
quired to meet and exchange information. If this is not the
case, the protocol may never elect a unique leader. Another
observation is that the protocol does not include any type
of termination detection mechanism. Note that these weak-
nesses are common for all Non-Compulsory protocols. For
example, suppose that the hosts are spread in different re-
mote areas of S in such a way that communication among
them is impossible. If they do not move beyond these areas,
there is no way to execute globally any protocol and pro-
vide termination detection mechanisms. In a later section

we present a Las Vegas variation of this simple protocol and
a variation which includes termination detection if the size
of space S is known to the mobile hosts.

In this section we assume that the hosts move in such a
way that the total number of mobile hosts that participate
in the protocol execution decreases in time and there exists
a time instance t where only one mobile host is still in state
participate (the one with the highest identity). This mobile
host is the final winner and the size of the mobile network
is contained in its counter variable.

A mobile host transfers its knowledge about the network
size whenever it meets another host and loses (if its identity
is smaller than the winner’s identity). This is done by trans-
mitting its counter to the winner. This happens only once,
since after that, the host is inactive and no longer responds
to messages concerning the protocol. Thus, a host cannot
be counted twice. The counter variable of a mobile host
contains its current knowledge about the size of the network
(i.e. the sum of the counters of all other hosts it has met
plus itself).

Lemma 5. If at some time instance t, mk is the only mo-
bile host in state “participate” then the counter of mk con-
tains the size of the mobile network.

4.4 Analysis - Average Case
We follow the analysis of the voter model as described by

Aldous and Fill in [4]. We order the vertices of G as i1, ..., in
by giving the lower label i1 to the vertex occupied by the
mobile host which is the final winner and by assigning the
other labels arbitrarily to the remaining vertices. Recall
that when two hosts meet only one continues to participate
in the protocol execution. According to this construction,

Cf ≤ maxjMi1,j

since the time Cf is less than the maximum time required for
the winner to meet any other host. Let m∗ ≡ maxi,jEi[Mi,j ].

Lemma 6. Pr[Mi,j > t] ≤ exp(−b t
em∗ c)

Proof. Starting from time 0, divide the time axis into
equal time intervals of size s. For any initial distribution µ,
any s > 0 and any integer k ≥ 1,

Prµ[Mi,j > ks | Mi,j > (k − 1)s] = Prθ[Mi,j > s]

for some initial distribution θ (due to the memoryless prop-
erty of the Markov chain). By definition

Prθ[Mi,j > s] ≤ maxiPri[Mi,j > s]

By applying the Markov inequality Pr[x > t] ≤ E[x]
t

,

maxiPri[Mi,j > s] ≤ maxi,jEi[Mi,j ]

s

and finally

maxiPri[Mi,j > s] ≤ m∗

s

By induction on k,

Prµ[Mi,j > λs] ≤
�

m∗

s

�λ



implying (by substituting λs = t) that

Prµ[Mi,j > t] ≤
�

m∗

s

�b t
s
c

Using the above observations, the tail of the distribution
can be bounded in the following way:

Prµ[Mi,j > t] ≤
�

m∗

s

�b t
s
c

≤ eb
t
s
c log m∗

s

≤ eb
t

m∗e
c log 1

e (by substituting s = m∗e)

≤ e−(log e)b t
m∗e

c

≤ eb−
t

m∗e
c, 0 < t < ∞

Theorem 8. The expected value of Cf , E[Cf ], is bounded
according to the inequality E[Cf ] ≤ e(log n+2)maxi,jEi[Tj ].

Proof. Recall that

Cf ≤ maxjMi1,j (5)

Pr[maxjMi1,j > t] ≤
X

j

Pr[Mi1,j > t] (6)

By definition,

E[Cf ] =

Z ∞

0

Pr[Cf > t]dt

≤
Z ∞

0

Pr[maxjMi1,j > t]dt (from (5))

≤
Z ∞

0

min(1,
X

j

Pr[Mi1,j > t])dt (from (6))

≤
Z ∞

0

min(1, n e−
t

em∗ )dt (from Lemma 6)

≤
Z ∞

0

min(1, n e−
t

em∗ +1)dt

≤
Z ∞

0

min(1, n e e−
t

em∗ )dt (7)

By applying the formulaZ ∞

0

min(1, Ae−αt)dt ≡ α−1(1 + log A), A ≥ 1

(7) yieldsZ ∞

0

min(1, n e e−
t

em∗ )dt = em∗(2 + log n)

= e maxi,jEi[Mi,j ](2 + log n)

Since maxi,jEi[Mi,j ] ≤ maxi,jEi[Tj ] ,(see [4]), we finally
conclude that

E[Cf ] ≤ e(log n + 2)maxi,jEi[Tj ]

Corollary 6. For the expected value of Cf , E[Cf ], E[Cf ] ≤
e(log n+2)2ε where ε is the number of edges of the graph G.

A complete proof of this corollary can be found in the full
paper.

4.4.1 A tighter upper bound on the execution time of
the protocol

A key observation that leads to a tighter bound on the
execution time of the protocol is that the basic inequality of
the proof of Theorem 8 , Cf ≤ maxjMi1,j , is quite rough.
Specifically, this inequality corresponds to the extreme case
where the winner host meets all other hosts one at a time,
while in the average case, the processes exclude each other
in parallel and thus accelerate the counting procedure.

Definition 12. Let X, X1, X2 . . . Xm be independent ran-
dom variables on the same distribution F (x), probability
density function f(x) and mean value E[f(x)]. Let Fmin(m)(x)
denote the distribution of the minimum of these variables,
fmin(m)(x) its probability density function and E

�
fnim(m)(x)

�
its mean value.

Lemma 7. There exists a constant m0 < m for which

∀ m > m0, E
�
fmin(m)(x)

� ≤ 1

m
E[f(x)]

Proof.

Fmin(m)(x) = Pr[minXi < x, 0 < i ≤ m]

= 1− Pr[minXi > x]

= 1− Pr[∀i Xi > x]

= 1− Pr[X > x]m (since Xi independent)

= 1− (1− Pr[X < x])m

= 1− (1− F (x))m

Derivation of both sides of the equation results in�
Fmin(m)(x)

�′
= [1− (1− F (x))m]′ ⇒

fmin(m)(x) = m f(x) (1− F (x))m−1

By definition, E[f(x)] =
R∞
0

xf(x)dx. Therefore,

E[fmin(m)(x)] =

Z ∞

0

xfmin(m)(x)dx

=

Z ∞

0

xf(x)m(1− F (x))m−1

Since E[fmin(m)(x)] 6= ∞ there exists a real λ for which

E[fmin(m)(x)] = 2

Z ∞

λ

xf(x) m(1− F (x))m−1dx

≤ 2

Z ∞

λ

xf(x) m(1− F (λ))m−1dx

= 2m(1− F (λ))m−1

Z ∞

λ

xf(x)dx

≤ 2m(1− F (λ))m−1E[f(x)]

In order to get E
�
fmin(m)(x)

� ≤ 1
m

E[f(x)] it suffices to

have (1 − F (λ))m−1 ≤ 1
2m2 . This holds for every m ≥ m0,

where m0 is a constant depending on F (λ), since F (x) ≤ 1
always.

Lemma 8. Let S1 and S2 be two (not necessarily) in-
dependent random variables on the same distribution and
S = S1 + S2. Then, E[S] = 2E[S1] = 2E[S2].

Proof. By linearity of expectation.



Definition 13. Let Cf (k) be the time required by the
processes that still participate in the protocol to have defeated
k other processes. Obviously, Cf (m) = Cf . Furthermore, let
Mi,j(k) be the time required for the first interaction of two
processes (i.e. minimum of meeting times) that still partici-
pate in the protocol, when k processes still participate in the
protocol.

According to Lemma 8, each time two mobile processes
meet, the counter of the winner process is doubled on the
average. This yields that the final winner is the product
of the interaction of two mobile processes that, on the av-
erage, have counted (and excluded) m/2 mobile processes
each. The average duration of this final phase is E[Mi,j ].
Furthermore, each one of the last two processes is a prod-
uct of the interaction of two processes, each of which has
counted m/4 processes on the average, while the duration
of this phase is E[Mi,j(2)] on the average.

Theorem 9. E[Cf ] ≤ (2 + log(m0))2 ε, where m0 is a
constant.

Proof.

E[Cf ] = E[Cf (m)]

= E[Mi,j(2)] + E
h
Cf

�m

2

�i
= E[Mi,j(2)] + E[Mi,j(4)] + E

h
Cf

�m

4

�i
= E[Mi,j(2)] + E[Mi,j(4)] + · · ·+ E[Mi,j(m)]

=
X

k≤log(m0)

E
h
Mi,j(2

k)
i

+

+
X

log(m0)<k<log(m)

E
h
Mi,j(2

k)
i

≤ log(m0)E[Mi,j ] +
X

log(m0)<k<log(m)

2k

m
E[Mi,j ]

≤ log(m0)E[Mi,j ] + E[Mi,j ]
X

log(m0)<k<log(m)

2k

m

≤ log(m0)E[Mi,j ] + 2 E[Mi,j ]

≤ (2 + log(m0))E[Mi,j ]

≤ (2 + log(m0))2ε

4.4.2 The case ofm 6= n

Up to this point we assumed that the number of mobile
hosts equals the number of nodes of the underlying graph
G. In this section we will prove the rather counter-intuitive
fact that the execution time of the protocol is not affected
seriously by the number of mobile hosts or their initial dis-
tribution on G.
The case of m < n

Let us first consider the case where the initial placement
of the mobile hosts is a configuration chosen uniformly and
at random out of all configurations where the mobile hosts
do not overlap, occupying exactly m vertices. It is easy to
observe that this configuration can be regarded as an in-
stance of the execution of the protocol with n initial mobile
hosts. Therefore, on the average, the execution time of the
algorithm in this case is less than Cf , as described in the

previous sections. Furthermore, by following the arguments
of Section 4.4.1, only the first stages of the protocol exe-
cution are omitted. These stages have little contribution to
the total execution time (O

�
1
n
E[Mi,j ]

�
) and thus, the pro-

tocol execution time is not seriously affected. The extreme
case of m = 2 can provide a clear insight on the previous
argument. In this case, the protocol execution time is on
the average E[Mi,j ], which differs from the case of m = n
only by a constant factor. The chosen initial configurations
can be shown to be the worst case, since in all other cases
the overlapping mobile processes will exclude each other in
one step, leading to a configuration with even less partici-
pating mobile hosts. In fact, suppose that m mobile hosts,
m ≤ n are placed on m vertices of G with initial distrib-
ution µ. This case can be reduced to the case of m = n
by using the following construction: We consider m − n
new “virtual” mobile hosts. These hosts are identified with
vm1 = −1, vm2 = −2, . . . , vmm−n = −(m − n) and are
placed on the remaining m− n vertices of G with an initial
distribution µ′. These “virtual” hosts are also participating
in the protocol. Obviously they do not affect the execution
and the final winner since they lose and become inactive the
first time they meet one of the m hosts. According to The-
orem 9, E[Cf ] is at most equal to (2 + log(m0))2ε in this
case too. The chosen initial configurations can be shown to
be the worst case, since in all other cases the overlapping
mobile processes will exclude each other in one step, leading
to a configuration with even less participating mobile hosts.
The case of m > n

In this case, the mobile hosts that reside on the same
node exclude each other in the first step, leading thus to a
sub-case of the previous paragraph.

4.4.3 Discussion of the result
The result of Sections 4.4.1and 4.4.2are implying that

the execution time of the protocol is linear on the average
to the ratio between the volume of space S, V (S), and the
space occupied by the transmission range of a mobile host
V (tr). This is a direct consequence of the construction of G

(see Section 1.2.1) since ε = O(n) and n = O( V (S)
V (tr)

). This

result holds regardless of the choice of the polyhedron that
is used for the quantization of S and the initial positions of
the hosts. It also leads to the (rather intuitive) fact that
powerful transmitters can speed up the protocol execution.

4.5 A variation of the basic protocol with ter-
mination detection

The calculation of the average protocol execution time
allows us to construct a new protocol that provides a unique
leader with a given probability of success. We consider that
the execution of the protocol fails if the mobile hosts stop
the execution of the protocol without having a unique leader.
Note that in this case there is no mobile host whose counter
contains the correct network size. Let pf denote the protocol
failure probability (pf ≡ Pr[Cf > t]).

Lemma 9. For any given failure probability pf , running
the protocol for time t = cε

pf
where c is a constant, suffices to

ensure that the result will be correct with failure probability
at most pf .



Proof.

Pr[Cf > t] <
E[Cf ]

t
⇒

t ≤ E[Cf ]

Pr[Cf > t]

≤ cε

pf

Lemma 9 implies that the mobile hosts may decide on
the duration of the protocol execution only if they know the
total number of edges ε of the underlying graph G. Recall
that in G, the number of edges ε is linear to the number
of vertices n (in the case of a cube-based grid ε is related
to n by the inequality ε ≤ 6n). Intuitively and by taking
into consideration the discussion in Section 1.2.1, a mobile
host must have a feeling of the available space in order to
be able to determine whether the protocol has terminated
or not. Consider, for example, a mobile host moving in the
area of Manhattan, that at time t remains in state partici-
pate having defeated k other mobile hosts. Its estimation of
being a unique winner would be different if the total area in
question is Manhattan, New York or North America.

Finally, note that in the case of time constraints (i.e. the
mobile hosts have to execute the protocol for a specific time
period), Lemma 9 may be applied by the mobile hosts to
calculate the probability of success for a given run time t,
in order to find out how much they can rely on the result.

4.6 Las Vegas Compulsory protocols for leader
election and counting in an ad hoc network
without sense of orientation

Since a major weakness of the basic Non-Compulsory pro-
tocol is that it may never elect a unique leader, the previous
results lead to the specification of a Las Vegas Compulsory
protocol that elects a unique leader in the ad hoc mobile
network in time linear to n with a given probability of suc-
cess. This protocol behaves as the one described in Section
4.2, but in addition, it forces the mobile hosts to perform a
random walk on G. The protocol includes also termination
detection as it is presented in the previous section. The host
can decide on a failure probability pf and use it in order to
find the required time t to run the protocol. If the host after
time t is still in state participate, it is (with probability at
least 1− pf ) the unique leader (on the other hand, if it is in
state inactive it knows that a unique leader has been proba-
bly elected). The proposed Las Vegas Compulsory protocol
can be applied even in the case where the mobile hosts have
no sense of orientation. We further conjecture that this al-
gorithm is optimal in time in the case of mobile hosts with
no sense of orientation. A straightforward extension of this
protocol is a Compulsory counting protocol. After time t,
the leader initiates a flooding phase as follows: Every time
it meets another mobile host it transmits its counter. Each
mobile host that has been informed about the counter be-
haves in exactly the same way. The duration of this phase
is obviously bounded by (2 + log(m0))2ε too.

4.6.1 Anonymous networks
The protocols described in the previous section can also

be applied when the mobile network is anonymous, i.e. the
mobile hosts do not have distinct identities. In the latter

case the proposed variation leads to Las Vegas Compulsory
protocols for leader election and counting in anonymous ad
hoc networks without sense of orientation. The proposed
variation is as follows. Whenever a mobile host meets an-
other host on a vertex of G they choose random identities
over a predefined set and then exchange them. If there is
a conflict, they repeat the procedure. The winner is finally
the one that selected the higher identity. We remark that
the time required for two hosts to select unique identities
when they meet (regardless of the number of conflicts) is
negligible compared to the time required for a mobile host
to move from one vertex of G to another and thus does not
affect the protocol execution time.

4.6.2 Comparison theorems and the steady-state of
the random motion

Let us note that a related “many objects” motion process
is the so called Symmetric Exclusion (SE) process. Let G
be an undirected graph of n vertices. To start, r unlabeled
particles are placed in an initial configuration, 1 ≤ r ≤ n.
At each step, a particle is chosen at random. Then one of
the neighboring sites of this particle is chosen at random.
If the neighboring site is unoccupied, the chosen particle
moves there; if the neighboring site is occupied the system
stays as it was. This is a reversible Markov chain on the
r-sets of 1, 2, . . . , n. The reader can easily recognize that
this is the discrete analog of our proposed model of motions
of the mobile hosts, provided that the “time” in the concur-
rent movement case is replaced by rounds of steps (i.e. a
step sequence in which all particles move at least once). Let
us denote our continuous model by RM . Fill (1991) gave
bounds on the second eigenvalue of SE (but for labeled par-
ticles) on the finite circle of n vertices.

Diaconis and Saloff-Coste [18] study the chain SE by com-
parison with a second Markov chain on r-sets that proceeds
by picking an unoccupied site at random (not necessarily a
neighboring site) and moving the particle to the unoccupied
site. This second process which corresponds to mobile hosts
moving “very fast” or e.g. by teleportation (or other means),
is a well-studied chain (the Bernoulli-Laplace model for dif-
fusion). Its eigenvalues are known. We denote this process
by TP .

The method of comparison of [18] is based on the minimax
characterization of eigenvalues based on the Dirichlet forms
of the chains, viewed as a self-adjoint operator because of
reversibility (see e.g. Horn and Johnson, 1985).

Diaconis and Saloff-Coste developed a method for com-
parison of the Dirilecht forms, which provides tight upper
and lower bounds on the eigenvalues of SE (and thus on
the eigenvalues of RM) by using the eigenvalues of TP and
structural (path) properties of the graph G. The method
gives bounds for the mixing properties of RM on any par-
ticular network G. A crude but universal estimate for the
second largest eigenvalue β1 of SE (the first is unity) is

β1 ≤ 1− 1/rn2d0

where d0 is the maximum degree of the graph. This bound
is easily obtained by the above method.

4.7 Experiments
The basic protocol was implemented and tested using the

Distributed Systems Platform (DSP) 1(see [41]). The DSP

1The DSP tool was designed and implemented during the



tool allows the specification, implementation and testing of
distributed algorithms for fixed and mobile networks. The
simulations focused on the case of m = n, with the mobile
processes performing random walks on the underlying graph.
An example of the simulation results for 10 runs and three
different topologies can be found in the full paper.

In general, the simulations confirmed the theoretical re-
sults. The number of participating hosts decreased exponen-
tially in time. In fact, on the average, one third of the mobile
hosts were defeated during the first step of the protocol.
The protocol execution time was on the average less than
the theoretical result, because of the fact that the analysis
holds for every underlying graph G, while the quantization
of the space leads usually to regular graphs, for which it is
known that the random walks mix faster. As expected, the
average protocol execution time increased for more irregu-
lar topologies as compared to the execution time for regular
topologies of the seme size. Finally, the protocol execution
time increased linear to the number of nodes for regular
topologies of the same degree.

5. FUTURE WORK
We are currently exploring the direction of impossibility

results for any distributed algorithm that attempts to main-
tain structural information of the implied fragile network of
virtual links.

We are also exploring the Physics paradigm of interacting
particles and their modeling, since we feel that mobile hosts
interactions may behave in a similar way.
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