
A Distributed K-Mutual Exclusion Algorithm

Shailaja Bulgannawar Nitin H. Vaidya
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112

Abstract

This paper presents a token-based K-mutual exch-
sion algorithm. The algorithm uses K tokens and a
dynamic forest structure for each token. This struc-
ture is used to forward token requests. The algorithm
is expected to minimize the number of messages and
also the delay in entering the critical section, at low
as well as high loads.

The paper presents samulation results for the pro-
posed algorithm and compares them with three other
algorithms. Unlike previous work, our simulation
model assumes that a finite (non-zero) overhead is en-
countered when a message is sent or received. The
simulation results show that, as compared to other al-
gorithms, the proposed algorithm achieves lower delay
in entering critical section as well as lower number of
messages, without a significant increase in the size of
the messages.

1 Introduction

This paper presents a token-based algorithm for K-
mutual exclusion in a distributed environment wherein
different nodes (processes) communicate via message
passing. The problem requires that at most K nodes
be in a critical section (CS) at any given time. The
proposed algorithm achieves this using K tokens; only
a process in possession of a token may enter the crit-
ical section (CS). Although there has been exten-
sive research on distributed 1-mutual exclusion (e.g.,
[7, 3,4 , 5, 6]), research on distributed IC-mutual exclu-
sion (K > 1) is limited [9, 10, 11, 121. The objective of
this paper is to motivate further research on K-mutual
exclusion, by demonstrating existence of algorithms
that can perform better than the existing ones.

Our approach for K-mutual exclusion is derived by
extending the 1-mutual exclusion algorithm by Tre-
he1 and Naimi [6]. Simulation results for the proposed
algorithm are compared with three other distributed

K-mutual exclusion algorithms [lo, 11, 121. Using
simulations, we show that the proposed algorithm per-
forms better than the existing algorithms under heavy
as well as light load.

In Section 5 we briefly discuss a “partitioning” ap-
proach, for K-mutual exclusion using 1-mutual exclu-
sion algorithms, that performs better than the existing
K-mutual exclusion algorithms.

2 Proposed Algorithm

The nodes (or processes) in the system are num-
bered 1 through N . There are K tokens in the system,
numbered 1 through K . Each node can have at most
one outstanding request to enter the critical section
at any given time. The nodes are assumed to be reli-
able and fully connected. The network is reliable and
delivers messages in first-in-first-out (FIFO) order on
each channel. Initially, token t is possessed by node t ,
l < t < K .

Each node maintains a p o i n t e r array with one en-
try for each token. These pointers define K forests
corresponding to the K tokens, a forest being a col-
lection of trees. By “t-th forest” we refer to the forest
corresponding; to token t formed by pointer[t] at each
node. In each forest, the out-degree of a node is at
most one, but the in-degree can be larger than one.

Note: Actually, the forest structure is sometimes
temporarily violated by the formation of a cycle (as
explained later). However, these cycles do not affect
the correctness of the algorithm. Therefore, we will
continue to use the term forest for the structure de-
fined by the pointers .

pointer[t] of node j contains identifier of the parent
of node j in the t-th forest; poin ter[t] at node j being
equal to j means that node j is at the root of a tree
in the t-th forest. Initially, poin ter[t] for each node is
set equal to t , 1 5 t 5 K . Thus, initially, each forest
contains just ‘one tree, with node t being at the root
of the tree for token t . In general, for token t , the

153
1063-6927195 $4.00 0 1995 IEEE

nodes waiting to receive token t and the node holding
token t are at roots of the trees in the forest for token
t. Each node maintains the following data structures:

token-id indicates the identifier of the token if a
token is present at the node, NULL otherwise.

holding: boolean; TRUE if the node is in the CS,
FALSE otherwise.

waiting-for-token: integer or NULL; indicates
the identifier of the token that the node is waiting
for.

pointer: arruy[l..K] of integer; pointer[i] indi-
cates the path towards token i .

node-queue: FIFO queue; if a node A waiting for
token t receives a request of node B for token t,
then identifier B is stored in the node-queue of
node A.

Every token is associated with a data structure that
is always sent with the token. The data structure is
as follows:

e token-queue: FIFO queue; contains the identi-
fiers of the nodes to which the token must be
forwarded in a FIFO order.

e request-modifier tags: integer or NULL (-); A
tag is attached to each entry in the token-queue.
The tag may often be NULL (-). The use of
these tags will be clearer later. Figure 1 shows a
typical token-queue and its associated tags.

queue front queue rear

token-queue -----3-

request-modifier - 2 4 4

Figure 1: An example of a token-queue

For future reference, define last-unmodif i e d node
in a non-empty token-queue as follows: If the token-
queue contains at least one node whose request-
modifier is null, then the last node in the queue whose
request-modifier is null is the last-unmodif i ed node.
Else, the first node on the token-queue is defined to be
the last-unmodif iednode. For instance, in Figure 1,
the last-unmodif i ed node is node 9. If, in Figure 1,
request-modifier tags for nodes 7 and 9 were not null,
then the last-unmodif i e d node would have been 3.

Three types of messages are used by the proposed
algorithm.

e REQUEST(Y,t) message: Indicates that node Y
has requested token t . The request of a node for
a token typically gets forwarded through a few
nodes, the REQUEST message is used for this
purpose. Thus, Y is not necessarily the sender of
the REQUEST(Y, t) message, Y is the originator
of the request.

e TOKEN(t) message: This message is used to send
a token t and its associated data structures.

e INFORM(X,t) message: A node X sends this
message to another node to inform them that X
has token t .

Pseudecode for the algorithm in a C-like language
is presented first, followed by a verbal explanation of
the algorithm. Note that in the pseudo-code below,
‘I’ denotes identifier of the node executing the proce-
dures. In the pseudo-code the comments are presented
as /* comment */. There are five procedures in all.
Entry-CS and Exit-CS are called when a node wants
to enter or exit the critical section, respectively. The
remaining three procedures are message handlers for
the three types of messages.
Procedure Entry-CS:
{

if (tokenid # NULL) then /* node I has a token */

else {
holding := TRUE

Choose token t using some heuristics;
send REQUEST(1, t) to pointer[t];
waitingfor-token := t;
wait until a TOKEN is received;

1
Enter Critical Section

1
Procedure Exit-CS:
/* Let t be the token possessed by this node */

holding := FALSE;
if token-queue of token t is not empty {

{

tokenid := NULL;
pointer[t] := last-unmodif ied node on token-queue
send TOKEN(t) to the first node on token-queue;

1

1
else send INFORM(1,t) message to v nodes;

Procedure HandleREQUEST (Y ,t) :
/* the request for token t originated at node Y */

{
if (tokenid # NULL) then
{ /* node I has a token */

154

enqueue Y into the token-queue;
if (tokenid # t) then

request-modifier tag of Y := I;
else

request-modifier tag of Y := NULL;
if (holding = FALSE) then
{ /* node I has a token but is not in CS */

send TOKEN(tokenid) to Y;
pointer[token-id] := Y;
tokenid := NULL;

1
1
else if (waiting-for-token = t) then

enqueue Y into the node-queue;
else {

send REQUEST(Y,t) to pointer[t];
pointer[t] := Y;

1
1
Procedure Handle-TOKEN(t):

Append node-queue to token-queue of token t;
if (waiting-forfoken # t) then
{ /* node I had requested some other token */

t

pointer[waiting-forfoken] := request-modifier for I;
For all the nodes that were in the node-queue,

set their request-modifier tags equal to
the request-modifier for I;

1
else
{ /* node I had requested token t */

set their tags equal to NULL;
For all the nodes that were in the node-queue,

1
de-queue node I and its tag from the token-queue;
waiting-forfoken := NULL;
tokenid := t;
pointer[t] := I;
holding := TRUE;
1
Procedure HandlelNFORM (Y,t) :
{ pointer[t] := Y; }

The procedures are explained below. To aid in the
explanation, we first elaborate on the significance of
the request-modifier tags associated with the token-
queue entries. Ordinarily, a node that has requested
token t eventually receives token t. However, if the
request of a node, say A, arrives at some node B that
possesses token U (U # t), then node B adds A’s re-
quest to the token-queue of token U . This essentially
modifies node A’s request for token t into a request for
token U . The fact that node B modified the request is
recorded by setting the request-modifier tag for node
A’s entry in the token-queue equal to B. This informa-

tion is used by node A (when it receives token U) to
maintain the .forest structure for token t (i.e., to avoid
creation of cycles in the t-th forest).

Entry-CS: This procedure is invoked by node I
when it wanh to enter the critical section (CS). If
node I has a token then it can enter CS without any
delay. Otherwise, using some heuristic, it chooses a
token t (1 5 t 5 K), and sends a request for token
t to its parent in the t-th forest (i.e., pointer[t]). In
Figure 2, if node 4 wants to request token 1, it sends
REQUEST(4,l) message to node 3.

n

node 1: pointer[l] = 3
node 2 pointer[l] = 2
node 3: pointer[l] = 5
node 4 pointer[l] = 3
no& 5: pointe.r[l] = 5
node 6 pointer[l] = 2

Figure 2: E:xample: Forest structure for token 1

Exit-CS: Assume that node I has token t. If the
token-queue of token t is empty, then node I continues
to possess token t , but sends INFORM(I, t) messages
to v nodes (where v is a design parameter). INFORM
messages can be useful to reduce the distance of a node
from a token.

If the token-queue is not empty when node I exits
the critical section, I sends the token to the node at
the head of token t’s token-queue. The pointer[t] of
node I is set to last-unmodif ied node to ensure that
the forest striicture is maintained. For example, if
node I has token 2 with the token-queue shown in
Figure 1, the:n it sends the token to node 3 and sets
pointer[2] equd to 9.

Handle lNFORM(Y, t): The INFORM message
indicates that node Y possessed token t at the time
the message was sent. In response to this message,
pointer[t] is set equal to Y. INFORM messages can
help reduce the distance of a node from a token.

Handle-TOKEN(t): This procedure is executed
when a node receives token t . Before entering the CS,
node I checks if token t is the same as the token it
requested. The action taken by the node depends on
the token received.
Case 1: Node I had requested token U , U # t: Here,
the request-modifier tag (say A) of node I in token t’s
token-queue indicates that the request of node I was

155

modified by node A. In this case, the requests waiting
in the node-queue of node I are also considered to
have been effectively modified by node A . Therefore]
in this case, node I appends its node-queue to token
t’s token-queue, and sets the tags (for the newly added
nodes) equal to A. To maintain the forest structures
for token t , node I sets pointer[t] equal to A (the node
that modified I’s request).

Example: If node 3 receives token 2 with token-
queue in Figure 1, but had requested token 1, node 3
sets pointer[l] to 2, which is its tag in the token-queue.
Case 2: Node I had requested token t: (In this case,
the tag of node I in the token-queue of token t is
guaranteed to be NULL.) Node I appends its node-
queue to t’s token-queue, setting their tags equal to
NULL.

HandleREQUEST(Y, t) : This procedure is in-
voked when node I receives a request for a token. Y
is the node that is requesting token t .
Case 1: node I possesses a token U (U may or may
not be equal to t) . In this case, node I adds Y to the
token-queue of token U. The request-modifier tag for
Y is set to I if t # U, and NULL otherwise. If node I
is not in the critical section, then it sets pointer[t]=Y,
and sends the token to node Y.
Case 2: node I does not possess a token and has re-
quested token t . In this case, Y is stored in the node-
queue.
Case 9: node I does not possess a token and has not
requested token t. Node I forwards the request to
pointer[t] and sets pointer[t]=Y. Referring to Figure 2,
if node 3 receives a request from node 4 for token 1,
node 3 forwards the request to node 5 (as at node 3,
pointer[l] = 5) and changes pointer[l] to 4.

A proof of correctness is sketched in [2].

Temporary cycles: When the request of a node A
for token t is modified by some node B by adding A
to the token-queue of token U (U # t) , a cycle can be
created in the structure formed by pointer[u]. Origi-
nally, paths may exist from node A to node B in the
t-th forest as well as the u-th forest. The request from
A for token t travels the links in the t-th forest. Node
A’s request is added to U’S token-queue at node B. If
node B, on exiting from its critical section, finds that
no node on its token-queue has its request-modifier
tag NULL and node A is the first node on the token-
queue, then node B will send token U to node A and
set pointer[u] = A. As a path already exists from A
to B in the u-th forest, a cycle is now formed. This
cycle is broken as soon as token U reaches node A.

Comparison with Trehel and Ndmi [6] The
above algorithm is based on [6], but differs in three
ways: (1) Proposed algorithm maintains explicit
queues, instead of implicit distributed queues in [SI.
(2) Proposed algorithm allows multiple tokens. A
node may request any token, and may possibly re-
ceive a token different from that requested. (3) The
algorithm allows for INFORM messages.

3 Performance

The performance parameters of interest are the av-
erage tame to enter the critical section, the average
number of messages per critical section entry and the
average information per message. The existing papers
on K-mutual exclusion typically present an analytical
estimate of the average number of messages required
per CS entry. The average number of messages is inad-
equate to measure the algorithm performance, because
(as shown later) an algorithm that requires small num-
ber of messages may result in large delays in entering
the CS. In this paper, we present simulation results
rather than analysis.

Under light load (i.e., small request rate), there is a
good chance that the token-queue will be empty when
a node, say I , exits from the critical section. When-
ever the token-queue is empty, the Exit-CS procedure
informs v nodes that node I has a token, say i. This
may reduce the average distance of a node from to-
ken t (at the cost of v extra messages). The net effect
could be a reduction in the average number of mes-
sages required per CS entry.

Under high load, there is a good chance that the
token-queue is not empty when the Exit-CS procedure
is performed. In such a case, our algorithm does not
send the INFORM messages.

When a node i requesting token t receives a re-
quest message of another node j for the same token
il then node i will put node j) s request in its node-
queue, rather than propagating the request as in the
1-mutual exclusion algorithm by Trehel and Naimi [6].
Hence, unnecessary message transmission is avoided.
This reduces the average number of message, at the
cost of an increase in the message size.

Decision Mechanisms

The performance of the above algorithm depends on
three decision mechanisms for choosing:

0 the token requested in Entry-CS.

156

0 the number (v) of INFORM messages sent in
Exit-CS.

0 the destination nodes for the INFORM messages.

In our simulations, somewhat arbitrarily, v is fixed at
2. This is not necessarily optimal (e.g., v = 0 may be
optimal in some cases). Also, instead of fixing v , one
may want to vary v dynamically to adapt the algo-
rithm to a given system. In our simulations, the des-
tination of INFORM messages are chosen randomly.
A good heuristic for choosing these destinations can
potentially improve performance.

Heuristics for choosing a token in Entry-CS

One possibility is to choose the token randomly. The
other possibility is to use a heuristic to choose a to-
ken that is likely to be reached with a small num-
ber of hops. The heuristic that we experimented with
chooses the “last seen token”. t is the last seen to-
ken if either the node recently received token t , or the
node recently received an INFORM message from a
node possessing token t . If a node I remembers that
it had last seen the token t and makes a request for
that token, there may be a better chance of node l‘s
request reaching the token 2 with a small number of
hops. Other heuristics for choosing a token can also
be conceived.

Choice of Decision Mechanisms

The algorithm performance is dependent on the choice
of three decision mechanisms discussed above. Our
intent in this paper is to show that there exists an
instantiation of our algorithm that performs better
than other algorithms - no attempt is made to deter-
mine the optimal instantiation. The choice of decision
mechanisms used in this paper is essentially arbitrary.

For instance, INFORM messages are useful only if
sending v INFORM messages will reduce the number
of other messages by at least v. This paper assumes
v = 2, however, v = 2 is not necessarily optimal.
It is quite possible that, in some systems, INFORM
messages will not help to reduce the total number of
messages - in such a case v should be chosen to be
0. Although we believe that INFORM messages may
be useful to reduce the aggregate number of message
(and, possibly, synchronization delay), this paper does
not explore the impact of INFORM messages on algo-
rithm performance.

4 Simulation

The simulation model used here is a refinement of
the model presented by Singhal[5]. There are N nodes
in the system where each node may request an entry
into critical siection r time units after completing the
previous execution of the critical section, r being ex-
ponentially distributed with mean 1 / X . X is called the
rate of arrival of CS requests. The time spent by each
node in the critical section is denoted by E. Each
node spends T, time units when sending a message
(time spent in the network layer software). Similarly,
each node spends Tr time units when receiving a mes-
sage. Tt is the transmission time between two nodes.
If the same message is sent simultaneously to multiple
destinations, <a cost of T, is encountered for each mes-
sage copy. This assumption should apply to a system
that does not provide a hardware multicast facility.

The simulattion model presented by Singhal [5] as-
sumes that T9 = T, = 0. Essentially, his model as-
sumes that TJ and T, are negligible compared to the
transmission delay Tt . However, with high-speed net-
works, the time spent in the network layer may not
be negligible as compared to the transmission delay,
therefore, T, itnd T, cannot be ignored.

We simulated our algorithm and compared it with
three other K-mutual exclusion algorithms proposed
by Raymond I:lO], Srimani and Reddy [ll] and Makki
et al. [12]. The algorithm by Srimani and Reddy [ll]
assumes finite counters for numbering requests. We
removed this restriction by allowing infinite counters,
somewhat reducing the number of messages required
by their algorithm. For T,, T, # 0, Makki’s algorithm
[12] does not work correctly as such. We simulated a
slightly modifiied version that yields optimistic results
for Makki’s algorithm when T,, T, # 0. In partic-
ular, Makki’s algorithm assumes that time required
for a message to reach its destination and to receive
the response takes 257 time units. This is true when
Tp = T, = 0, and not valid when Tr and T, are non-
zero. In such situations, we “accelerate” the response
messages to reach within 2 x , resulting in optimistic
estimates of CS entry delay and number of messages.
Any adaptation of [12] that will work correctly for
non-zero T, and T, is expected to perform worse than
what our results indicate. The results presented for
T, = T, = 0 iire obtained by simulating the original
algorithm by Makki.

Simulationa were carried out for a system of thirty
nodes (N = 30) and three tokens (K = 3). v was
fixed at 2. Wte simulated using various values of T,,
Tt, Tr and E. For various non-zero T, and T,, the
result trends were similar, therefore we present only

157

one set of results. Similarly, result trends for different
values of E were similar, so we present results only for
one value of E. Specifically, results are presented for
T, = Tr = 0.1, Tt = 0.8, E = 0.0002. E = 0.0002
is identical to that used by Singhal [5]. (Results for
E = 1 are also similar [l].) For comparison, some
results for T, = T r = 0, Tt = 1 are also presented.
(This set of parameters implies that all the message
communication delay is encountered in transmission
alone.).

The simulations were performed for 5000 critical
section entries. This number was chosen because we
observed that the results of the simulation converged
by 5000 entries into the critical section.

4 srimani
5. raymond -.-.-

Figure 3(a) shows the average t ime taken to en-
ter the critical section, by the four different algo-
rithms for T, = X, = 0.1 and Tt = 0.8. In the
graph, ‘new+heuristics’ refers to our algorithm with
the heuristic in the previous section and ‘new+random
token’ refers to our algorithm where a token is chosen
randomly. Our algorithm performed better than other
algorithms for most values of A. (The heuristic has
improved the performance by only a small amount.)
As X increases, the number of requests for entry into
critical section increase, which causes a larger delay
for each node. Hence, the curves show a steady rise
initially. The curves gradually flatten out for greater
values of A (“saturation”).

Figure 3(b) shows the average time taken to enter
the critical section, for Tr = T, = 0 and Tt = 1.0.
Observe that here Raymond’s algorithm [lo] performs
better than us for small A and equally well for large A.
When a node wants to enter CS, Raymond’s algorithm
sends multiple request messages in parallel to other

.r) s
E

tn z

nodes. When T, = 0, the overhead of sending all
these messages is zero (for the sender). When T, is
non-zero, the overhead of sending multiple messages
can be substantial. Therefore, Raymond’s algorithm
performs well when T, = 0, but performs poorly with
the realistic assumption that T, # 0.

The time to enter the critical section is maximum
for Makki’s algorithm [12]. This algorithm uses a to-
ken message to maintain the correctness of the algo-
rithm. At high load, the token message is propagated
through all other nodes before reaching the same node
again. This causes the system to behave similar to a
system with a single token, resulting in significant de-
lays. (A simple modification to this algorithm can
improve its performance [11 .)

Figure 4 plots the average number of messages re-
quired per CS entry versus A. Our algorithm requires
smaller number of messages compared to the other

0 0.1 0.2 0.3 0.4 0.5 0 . 6 0.7 0.8 0.9 1
Lambda

(a) T, = T, = 0.1 and Tt = 0.8

3. makki

5. raymond
2 5

20 I- ; -I

n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lambda

(b) Tr = T, = 0 and Tt = 1.0

Figure 3: Average time to enter the critical section

algorithms, for most values of A. Applying the heuris-
tics for choosing a token has reduced the number of
messages at high load.

Raymond’s algorithm has a lower bound of 2N -
K - 1 on number of messages required per CS entry,
and an upper bound of 2 * (N - 1) [lo]. Srimani’s
analysis suggests that, for their algorithm, the average
number of messages per critical section entry is close
to (N - 1) [ll]. Our simulation results agree with
these analytical results.

For Makki’s algorithm [12] at low load, the num-
ber of messages required is quite large. The number
of messages required becomes smaller with increasing
A , with only three messages being required at heavy
load. Although the number of messages required is

158

2. new+random token ----.
3. makki _- - - - G

4 . sr-mani .rl

5. raymond -.-.-
...........

U

m B
8 d

8
tn

.. 0
w
n

tn
$ bl

$

0’ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0 . 4 0.5 0.6 0.7 0.8 0.9 1
Lambda Lambda

Figure 4: Average number of messages per critical sec-
tion entry for Tr = 0.1, Ta = 0.1 and Tt = 0.8

Figure 5: Average information (in words) per message
for Tr = 0.1, Ira = 0.1 and Tt = 0.8

small, as seen before, with large A, Makki’s algorithm
results in longer delays. (This shows that number of
messages, by itself, is inadequate to evaluate algorithm
performance.)

Measurements for the average number of messages
for E = 1, and also for Tr = 0.05, T, = 0.05, Tt = 0.9
and Tr = 0, T, = 0, Tt = 1.0, indicate that the number
of messages is practically the same for all the cases [l].
This suggests that the average number of messages per
critical section entry is not affected significantly by T, ,
T, and E.

Figure 5 plots the average information that is
passed in the messages by various algorithms. The in-
formation content of a messages was calculated by tak-
ing into account all the fields of the message. For ex-
ample, the TOKEN message contains the token iden-
tifier, token-queue, request-modifier tags, and message
source. (Each message, by default, contains message
source, destination and message type.) The average
information for our algorithm is same with and with-
out the heuristic. When A = 1, the average informa-
tion is about 9 words for our algorithm, 4 words for
Raymond’s algorithm, 6.5 words for Srimani’s algo-
rithm, and 8 words for Makki’s algorithm. All mes-
sages in Raymond’s algorithm are of the same size
(4 words), therefore, that curve is simply a horizon-
tal line. For our algorithms the average message size
is about 1.5 to 2 times larger than the other algo-
rithms. By sending more information in each mes-
sage, our algorithm reduces the number of messages.
As the messages are still quite small, the overhead is
proportional to the number of messages, and quite in-

dependent of the size of the message. All messages,
except TOKEIN, are fixed size. The size of a TOKEN
message can increase at most linearly with the num-
ber of nodes. Therefore, we expect that the increased
average message size for our algorithm (as compared
to other algorithms) will not be a serious limitation
for systems with a larger number of nodes.

Another interesting performance metric is the ((av-
erage informattion transmitted” per CS entry. This
metric would be a measure of “bandwidth” consumed
by the algorithm for each CS entry. Due to lack of
space, we do not present measurements of average in-
formation transmitted per CS entry.

5 System Partitioning

Consider a K-mutual exclusion algorithm Ak. One
way to achieve K-mutual exclusion is to use algorithm
Ak for the N nodes. Another possibility is to partition
the system into K clusters containing approximately
N/K nodes each, and executing algorithm AI (i.e.,
AK with K := 1) within each cluster. While such
a “partitioning” approach may appear inefficient at
first , surprisingly, the partioning approach performs
quite well for the three previous algorithms. For our
algorithm, partitioning approach does not perform
better than the K-mutual exclusion algorithm [l].

For instance, the algorithm in [ll] requires approxi-
mately N- 1 messages per CS entry (for K-mutual ex-
clusion). Clearly, if the partitioning approach is used,
then the number of messages per CS entry will reduce

159

to approximately (N / K) - 1, a significant improve-
ment (for K > 1). (This improvement is often ac-
companied by an improvement in the average time to
enter the CS [l].) Similarly, the average number of
messages (per CS entry) for the K-mutual exclusion
algorithm in [lo] is approximately 2(N - 1). Again,
the average number can be reduced to approximately
2(N/K - 1) by using the partitioning scheme.

These results suggest that superiority of a K -
mutual exclusion algorithm should be demonstrated
by comparing it not only with other K-mutual ex-
clusion algorithms, but also with the “partitioning”
scheme. This paper, however, neglects to present such
a comparison, as the K-mutual exclusion algorithm
is not yet optimized. Optimization requires proper
choice of the three decision mechanisms described ear-
lier. This problem is a subject of future work.

6 Summary

The previous research on distributed K-mutual ex-
clusion is limited. The objective of this paper is to
motivate further research on K-mutual exclusion, by
demonstrating existence of algorithms that can per-
form better than the existing ones.

The paper presents a token-based K-mutual exclu-
sion algorithm and compares simulation results for the
proposed algorithm with three other algorithms. Un-
like previous work, the simulation model assumes that
a finite (non-zero) overhead is encountered when a
message is sent or received. The simulation results
show that, as compared to other algorithms, the pro-
posed algorithm achieves lower delay in entering CS
as well as lower number of messages, without a seri-
ous increase in the size of the messages. Future work
includes algorithm optimization, and evaluation of the
algorithm in “non-homogeneous” environments where
all nodes are not identical.

Acknowledgements
We thank the referees for helpful comments.

References

S. Bulgannawar, A Distributed K-Mutual Exclu-
sion Algorithm, M. S. Thesis, Dept. of Electrical
Eng., Texas A&M University, August 1994.

S. Bulgannawar and N. H. Vaidya, “A distributed
k-mutual exclusion algorithm,” Tech. Rep. 94-
066, Computer Science Department, Texas A&M
University, College Station, November 1994.

M. Raynal, Algorithms for Mutual Exclusion.
Cambridge, MA: MIT Press, 1st ed., 1986.

B. A. Sanders, “The information structure
of distributed mutual exclusion algorithms,”
ACM Trans. Comp. Syst., vol. 5, pp. 284-299,
Aug.1987.

M. Singhal, “A heuristically-aided algorithm for
mutual exclusion in distributed systems,’’ IEEE
Trans. Computers, vol. 38, pp. 651-662, 1989.

M. Trehel and M. Naimi, “A distributed algo-
rithm for mutual exclusion based on data struc-
tures and fault tolerance,” in 6th Annual Inter-
national Phoenix Conference on Computers and
Communications, pp. 35-39, 1987.

J. M. Bernabeu-Auban and M. Ahamad, “Ap-
plying path compression techniques to obtain an
efficient distributed mutual exclusion algorithm,”
in Lecture Notes in Computer Science, vol. 392,
pp. 33-44, 1989.

D. Ginat, D. D. Sleator, and R. E. Tarjan, “A
tight amortized bound for path reversal,” Infor-
mation Processing Letters, vol. 31, April 1989.

S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo, “k-
coteries for fault-tolerant k entries to a critical
section,” in International Conf. Distributed Com-
p u ting Systems, pp. 74-81, 1993.

K. Raymond, “A distributed algorithm for multi-
ple entries to a critical section,” Information Pro-
cessing Letters, vol. 30, pp. 189-193, Feb. 1989.

P. K. Srimani and R. L. Reddy, “Another dis-
tributed algorithm for multiple entries to a crit-
ical section,” Information Processing Letters,
vol. 41, pp. 51-57, January 1992.

K. Makki, P. Banta, K. Been, N. Pissinou, and
E. Park, “A token based distributed k mutual
exclusion algorithm,” in IEEE Proceedings o f the
Symposium on Parallel and Distributed Process-
ing, pp. 408-411, December 1992.

160

