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Abstract 

This paper presents a token-based K-mutual exch- 
sion algorithm. The algorithm uses K tokens and a 
dynamic forest structure for each token. This struc- 
ture is used to forward token requests. The algorithm 
is expected to minimize the number of messages and 
also the delay in entering the critical section, at low 
as well as high loads. 

The paper presents samulation results for the pro- 
posed algorithm and compares them with three other 
algorithms. Unlike previous work, our simulation 
model assumes that a finite (non-zero) overhead is en- 
countered when a message is sent or received. The 
simulation results show that, as compared to  other al- 
gorithms, the proposed algorithm achieves lower delay 
in entering critical section as well as lower number of 
messages, without a significant increase in the size of 
the messages. 

1 Introduction 

This paper presents a token-based algorithm for K- 
mutual exclusion in a distributed environment wherein 
different nodes (processes) communicate via message 
passing. The problem requires that at most K nodes 
be in a critical section (CS) at any given time. The 
proposed algorithm achieves this using K tokens; only 
a process in possession of a token may enter the crit- 
ical section (CS). Although there has been exten- 
sive research on distributed 1-mutual exclusion (e.g., 
[7, 3,4 ,  5, 6]), research on distributed IC-mutual exclu- 
sion ( K  > 1) is limited [9, 10, 11, 121. The objective of 
this paper is to motivate further research on K-mutual 
exclusion, by demonstrating existence of algorithms 
that can perform better than the existing ones. 

Our approach for K-mutual exclusion is derived by 
extending the 1-mutual exclusion algorithm by Tre- 
he1 and Naimi [6]. Simulation results for the proposed 
algorithm are compared with three other distributed 

K-mutual exclusion algorithms [lo, 11, 121. Using 
simulations, we show that the proposed algorithm per- 
forms better than the existing algorithms under heavy 
as well as light load. 

In Section 5 we briefly discuss a “partitioning” ap- 
proach, for K-mutual exclusion using 1-mutual exclu- 
sion algorithms, that performs better than the existing 
K-mutual exclusion algorithms. 

2 Proposed Algorithm 

The nodes (or processes) in the system are num- 
bered 1 through N .  There are K tokens in the system, 
numbered 1 through K .  Each node can have at most 
one outstanding request to enter the critical section 
at any given time. The nodes are assumed to be reli- 
able and fully connected. The network is reliable and 
delivers messages in first-in-first-out (FIFO) order on 
each channel. Initially, token t is possessed by node t ,  
l < t < K .  

Each node maintains a p o i n t e r  array with one en- 
try for each token. These pointers define K forests 
corresponding to the K tokens, a forest being a col- 
lection of trees. By “t-th forest” we refer to the forest 
corresponding; to token t formed by pointer[t]  at each 
node. In each forest, the out-degree of a node is at 
most one, but the in-degree can be larger than one. 

Note: Actually, the forest structure is sometimes 
temporarily violated by the formation of a cycle (as 
explained later). However, these cycles do not affect 
the correctness of the algorithm. Therefore, we will 
continue to use the term forest for the structure de- 
fined by the pointers .  

pointer[t]  of node j contains identifier of the parent 
of node j in the t-th forest; poin ter[ t ]  at node j being 
equal to j means that node j is at the root of a tree 
in the t-th forest. Initially, poin ter[ t ]  for each node is 
set equal to t ,  1 5 t 5 K .  Thus, initially, each forest 
contains just ‘one tree, with node t being at the root 
of the tree for token t .  In general, for token t ,  the 
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nodes waiting to receive token t and the node holding 
token t are at roots of the trees in the forest for token 
t. Each node maintains the following data structures: 

token-id indicates the identifier of the token if a 
token is present at the node, NULL otherwise. 

holding: boolean; TRUE if the node is in the CS, 
FALSE otherwise. 

waiting-for-token: integer or NULL; indicates 
the identifier of the token that the node is waiting 
for. 

pointer: arruy[l..K] of integer; pointer[i] indi- 
cates the path towards token i .  

node-queue: FIFO queue; if a node A waiting for 
token t receives a request of node B for token t, 
then identifier B is stored in the node-queue of 
node A. 

Every token is associated with a data structure that 
is always sent with the token. The data structure is 
as follows: 

e token-queue: FIFO queue; contains the identi- 
fiers of the nodes to which the token must be 
forwarded in a FIFO order. 

e request-modifier tags: integer or NULL (-); A 
tag is attached to each entry in the token-queue. 
The tag may often be NULL (-). The use of 
these tags will be clearer later. Figure 1 shows a 
typical token-queue and its associated tags. 

queue front queue rear 

token-queue -----3- 

request-modifier - 2 4 4 

Figure 1: An example of a token-queue 

For future reference, define last-unmodif i e d  node 
in a non-empty token-queue as follows: If the token- 
queue contains at least one node whose request- 
modifier is null, then the last node in the queue whose 
request-modifier is null is the last-unmodif i ed  node. 
Else, the first node on the token-queue is defined to be 
the last-unmodif iednode. For instance, in Figure 1, 
the last-unmodif i ed  node is node 9. If, in Figure 1, 
request-modifier tags for nodes 7 and 9 were not null, 
then the last-unmodif i e d  node would have been 3. 

Three types of messages are used by the proposed 
algorithm. 

e REQUEST(Y,t) message: Indicates that node Y 
has requested token t .  The request of a node for 
a token typically gets forwarded through a few 
nodes, the REQUEST message is used for this 
purpose. Thus, Y is not necessarily the sender of 
the REQUEST(Y, t )  message, Y is the originator 
of the request. 

e TOKEN(t) message: This message is used to send 
a token t and its associated data structures. 

e INFORM(X,t) message: A node X sends this 
message to another node to inform them that X 
has token t .  

Pseudecode for the algorithm in a C-like language 
is presented first, followed by a verbal explanation of 
the algorithm. Note that in the pseudo-code below, 
‘I’ denotes identifier of the node executing the proce- 
dures. In the pseudo-code the comments are presented 
as /* comment */. There are five procedures in all. 
Entry-CS and Exit-CS are called when a node wants 
to enter or exit the critical section, respectively. The 
remaining three procedures are message handlers for 
the three types of messages. 
Procedure Entry-CS: 
{ 

if (tokenid # NULL) then /* node I has a token */ 

else { 
holding := TRUE 

Choose token t using some heuristics; 
send REQUEST(1, t )  to pointer[t]; 
waitingfor-token := t; 
wait until a TOKEN is received; 

1 
Enter Critical Section 

1 
Procedure Exit-CS: 
/* Let t be the token possessed by this node */ 

holding := FALSE; 
if token-queue of token t is not empty { 

{ 

tokenid := NULL; 
pointer[t] := last-unmodif ied node on token-queue 
send TOKEN(t) to the first node on token-queue; 

1 

1 
else send INFORM(1,t) message to v nodes; 

Procedure HandleREQUEST (Y ,t) : 
/* the request for token t originated at node Y */ 

{ 
if (tokenid # NULL) then 
{ /* node I has a token */ 
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enqueue Y into the token-queue; 
if (tokenid # t) then 

request-modifier tag of Y := I; 
else 

request-modifier tag of Y := NULL; 
if (holding = FALSE) then 
{ /* node I has a token but is not in CS */ 

send TOKEN(tokenid) to Y; 
pointer[token-id] := Y; 
tokenid := NULL; 

1 
1 
else if (waiting-for-token = t) then 

enqueue Y into the node-queue; 
else { 

send REQUEST(Y,t) to pointer[t]; 
pointer[t] := Y; 

1 
1 
Procedure Handle-TOKEN(t): 

Append node-queue to token-queue of token t; 
if (waiting-forfoken # t) then 
{ /* node I had requested some other token */ 

t 

pointer[waiting-forfoken] := request-modifier for I; 
For all the nodes that were in the node-queue, 

set their request-modifier tags equal to 
the request-modifier for I; 

1 
else 
{ /* node I had requested token t */ 

set their tags equal to NULL; 
For all the nodes that were in the node-queue, 

1 
de-queue node I and its tag from the token-queue; 
waiting-forfoken := NULL; 
tokenid := t; 
pointer[t] := I; 
holding := TRUE; 
1 
Procedure HandlelNFORM (Y,t) : 
{ pointer[t] := Y; } 

The procedures are explained below. To aid in the 
explanation, we first elaborate on the significance of 
the request-modifier tags associated with the token- 
queue entries. Ordinarily, a node that has requested 
token t eventually receives token t. However, if the 
request of a node, say A, arrives at some node B that 
possesses token U (U # t), then node B adds A’s re- 
quest to the token-queue of token U .  This essentially 
modifies node A’s request for token t into a request for 
token U .  The fact that node B modified the request is 
recorded by setting the request-modifier tag for node 
A’s entry in the token-queue equal to B. This informa- 

tion is used by node A (when it receives token U) to 
maintain the .forest structure for token t (i.e., to avoid 
creation of cycles in the t-th forest). 

Entry-CS: This procedure is invoked by node I 
when it wanh to enter the critical section (CS). If 
node I has a token then it can enter CS without any 
delay. Otherwise, using some heuristic, it chooses a 
token t (1 5 t 5 K), and sends a request for token 
t to its parent in the t-th forest (i.e., pointer[t]). In 
Figure 2, if node 4 wants to request token 1, it sends 
REQUEST(4,l) message to node 3. 

n 

node 1: pointer[l] = 3 
node 2 pointer[l] = 2 
node 3: pointer[l] = 5 
node 4 pointer[l] = 3 
no& 5: pointe.r[l] = 5 
node 6 pointer[l] = 2 

Figure 2: E:xample: Forest structure for token 1 

Exit-CS: Assume that node I has token t. If the 
token-queue of token t is empty, then node I continues 
to possess token t ,  but sends INFORM(I, t )  messages 
to v nodes (where v is a design parameter). INFORM 
messages can be useful to reduce the distance of a node 
from a token. 

If the token-queue is not empty when node I exits 
the critical section, I sends the token to the node at 
the head of token t’s token-queue. The pointer[t] of 
node I is set to last-unmodif ied node to ensure that 
the forest striicture is maintained. For example, if 
node I has token 2 with the token-queue shown in 
Figure 1, the:n it sends the token to node 3 and sets 
pointer[2] equd to 9. 

Handle lNFORM(Y,  t): The INFORM message 
indicates that node Y possessed token t at the time 
the message was sent. In response to this message, 
pointer[t] is set equal to Y. INFORM messages can 
help reduce the distance of a node from a token. 

Handle-TOKEN(t): This procedure is executed 
when a node receives token t .  Before entering the CS, 
node I checks if token t is the same as the token it 
requested. The action taken by the node depends on 
the token received. 
Case 1: Node I had requested token U ,  U # t:  Here, 
the request-modifier tag (say A) of node I in token t’s 
token-queue indicates that the request of node I was 
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modified by node A.  In this case, the requests waiting 
in the node-queue of node I are also considered to 
have been effectively modified by node A .  Therefore] 
in this case, node I appends its node-queue to token 
t’s token-queue, and sets the tags (for the newly added 
nodes) equal to A. To maintain the forest structures 
for token t ,  node I sets pointer[t] equal to A (the node 
that modified I’s request). 

Example: If node 3 receives token 2 with token- 
queue in Figure 1, but had requested token 1, node 3 
sets pointer[l] to 2, which is its tag in the token-queue. 
Case 2: Node I had requested token t: (In this case, 
the tag of node I in the token-queue of token t is 
guaranteed to be NULL.) Node I appends its node- 
queue to t’s token-queue, setting their tags equal to 
NULL. 

HandleREQUEST(Y, t ) :  This procedure is in- 
voked when node I receives a request for a token. Y 
is the node that is requesting token t .  
Case 1: node I possesses a token U (U may or may 
not be equal to t ) .  In this case, node I adds Y to the 
token-queue of token U. The request-modifier tag for 
Y is set to I if t # U, and NULL otherwise. If node I 
is not in the critical section, then it sets pointer[t]=Y, 
and sends the token to node Y. 
Case 2: node I does not possess a token and has re- 
quested token t .  In this case, Y is stored in the node- 
queue. 
Case 9: node I does not possess a token and has not 
requested token t. Node I forwards the request to 
pointer[t] and sets pointer[t]=Y. Referring to Figure 2, 
if node 3 receives a request from node 4 for token 1, 
node 3 forwards the request to node 5 (as at node 3,  
pointer[l]  = 5) and changes pointer[l]  to 4. 

A proof of correctness is sketched in [2]. 

Temporary cycles: When the request of a node A 
for token t is modified by some node B by adding A 
to the token-queue of token U (U # t ) ,  a cycle can be 
created in the structure formed by pointer[u]. Origi- 
nally, paths may exist from node A to node B in the 
t-th forest as well as the u-th forest. The request from 
A for token t travels the links in the t-th forest. Node 
A’s request is added to U’S token-queue at node B. If 
node B, on exiting from its critical section, finds that 
no node on its token-queue has its request-modifier 
tag NULL and node A is the first node on the token- 
queue, then node B will send token U to node A and 
set pointer[u] = A. As a path already exists from A 
to B in the u-th forest, a cycle is now formed. This 
cycle is broken as soon as token U reaches node A. 

Comparison with Trehel and Ndmi [6] The 
above algorithm is based on [6], but differs in three 
ways: (1) Proposed algorithm maintains explicit 
queues, instead of implicit distributed queues in [SI. 
(2) Proposed algorithm allows multiple tokens. A 
node may request any token, and may possibly re- 
ceive a token different from that requested. (3) The 
algorithm allows for INFORM messages. 

3 Performance 

The performance parameters of interest are the av- 
erage tame to enter the critical section, the average 
number of messages per  critical section entry  and the 
average information per message. The existing papers 
on K-mutual exclusion typically present an analytical 
estimate of the average number of messages required 
per CS entry. The average number of messages is inad- 
equate to measure the algorithm performance, because 
(as shown later) an algorithm that requires small num- 
ber of messages may result in large delays in entering 
the CS. In this paper, we present simulation results 
rather than analysis. 

Under light load (i.e., small request rate), there is a 
good chance that the token-queue will be empty when 
a node, say I ,  exits from the critical section. When- 
ever the token-queue is empty, the Exit-CS procedure 
informs v nodes that node I has a token, say i. This 
may reduce the average distance of a node from to- 
ken t (at the cost of v extra messages). The net effect 
could be a reduction in the average number of mes- 
sages required per CS entry. 

Under high load, there is a good chance that the 
token-queue is not empty when the Exit-CS procedure 
is performed. In such a case, our algorithm does not 
send the INFORM messages. 

When a node i requesting token t receives a re- 
quest message of another node j for the same token 
il then node i will put node j ) s  request in its node- 
queue, rather than propagating the request as in the 
1-mutual exclusion algorithm by Trehel and Naimi [6]. 
Hence, unnecessary message transmission is avoided. 
This reduces the average number of message, at the 
cost of an increase in the message size. 

Decision Mechanisms 

The performance of the above algorithm depends on 
three decision mechanisms for choosing: 

0 the token requested in Entry-CS. 
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0 the number (v) of INFORM messages sent in 
Exit-CS. 

0 the destination nodes for the INFORM messages. 

In our simulations, somewhat arbitrarily, v is fixed at 
2. This is not necessarily optimal (e.g., v = 0 may be 
optimal in some cases). Also, instead of fixing v ,  one 
may want to vary v dynamically to adapt the algo- 
rithm to a given system. In our simulations, the des- 
tination of INFORM messages are chosen randomly. 
A good heuristic for choosing these destinations can 
potentially improve performance. 

Heuristics for choosing a token in Entry-CS 

One possibility is to choose the token randomly. The 
other possibility is to use a heuristic to choose a to- 
ken that is likely to be reached with a small num- 
ber of hops. The heuristic that we experimented with 
chooses the “last seen token”. t is the last seen to- 
ken if either the node recently received token t ,  or the 
node recently received an INFORM message from a 
node possessing token t .  If a node I remembers that 
it had last seen the token t and makes a request for 
that token, there may be a better chance of node l‘s 
request reaching the token 2 with a small number of 
hops. Other heuristics for choosing a token can also 
be conceived. 

Choice of Decision Mechanisms 

The algorithm performance is dependent on the choice 
of three decision mechanisms discussed above. Our 
intent in this paper is to show that there exists an 
instantiation of our algorithm that performs better 
than other algorithms - no attempt is made to deter- 
mine the optimal instantiation. The choice of decision 
mechanisms used in this paper is essentially arbitrary. 

For instance, INFORM messages are useful only if 
sending v INFORM messages will reduce the number 
of other messages by at least v. This paper assumes 
v = 2, however, v = 2 is not necessarily optimal. 
It is quite possible that, in some systems, INFORM 
messages will not help to reduce the total number of 
messages - in such a case v should be chosen to be 
0. Although we believe that INFORM messages may 
be useful to reduce the aggregate number of message 
(and, possibly, synchronization delay), this paper does 
not explore the impact of INFORM messages on algo- 
rithm performance. 

4 Simulation 

The simulation model used here is a refinement of 
the model presented by Singhal[5]. There are N nodes 
in the system where each node may request an entry 
into critical siection r time units after completing the 
previous execution of the critical section, r being ex- 
ponentially distributed with mean 1 / X .  X is called the 
rate of arrival of CS requests. The time spent by each 
node in the critical section is denoted by E. Each 
node spends T, time units when sending a message 
(time spent in the network layer software). Similarly, 
each node spends Tr time units when receiving a mes- 
sage. Tt is the transmission time between two nodes. 
If the same message is sent simultaneously to multiple 
destinations, <a cost of T, is encountered for each mes- 
sage copy. This assumption should apply to a system 
that does not provide a hardware multicast facility. 

The simulattion model presented by Singhal [5] as- 
sumes that T9 = T, = 0. Essentially, his model as- 
sumes that TJ and T, are negligible compared to the 
transmission delay Tt . However, with high-speed net- 
works, the time spent in the network layer may not 
be negligible as compared to the transmission delay, 
therefore, T, itnd T, cannot be ignored. 

We simulated our algorithm and compared it with 
three other K-mutual exclusion algorithms proposed 
by Raymond I:lO], Srimani and Reddy [ll] and Makki 
et al. [12]. The algorithm by Srimani and Reddy [ll] 
assumes finite counters for numbering requests. We 
removed this restriction by allowing infinite counters, 
somewhat reducing the number of messages required 
by their algorithm. For T,, T, # 0, Makki’s algorithm 
[12] does not work correctly as such. We simulated a 
slightly modifiied version that yields optimistic results 
for Makki’s algorithm when T,, T, # 0. In partic- 
ular, Makki’s algorithm assumes that time required 
for a message to reach its destination and to receive 
the response takes 257 time units. This is true when 
Tp = T, = 0, and not valid when Tr and T, are non- 
zero. In such situations, we “accelerate” the response 
messages to reach within 2 x ,  resulting in optimistic 
estimates of CS entry delay and number of messages. 
Any adaptation of [12] that will work correctly for 
non-zero T, and T, is expected to perform worse than 
what our results indicate. The results presented for 
T, = T, = 0 iire obtained by simulating the original 
algorithm by Makki. 

Simulationa were carried out for a system of thirty 
nodes ( N  = 30) and three tokens (K = 3). v was 
fixed at 2. Wte simulated using various values of T,, 
Tt, Tr and E. For various non-zero T, and T,, the 
result trends were similar, therefore we present only 
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one set of results. Similarly, result trends for different 
values of E were similar, so we present results only for 
one value of E.  Specifically, results are presented for 
T, = Tr = 0.1, Tt = 0.8, E = 0.0002. E = 0.0002 
is identical to that used by Singhal [5]. (Results for 
E = 1 are also similar [l].) For comparison, some 
results for T, = T r  = 0, Tt = 1 are also presented. 
(This set of parameters implies that all the message 
communication delay is encountered in transmission 
alone.). 

The simulations were performed for 5000 critical 
section entries. This number was chosen because we 
observed that the results of the simulation converged 
by 5000 entries into the critical section. 

4 srimani ........... 
5. raymond -.-.- 

Figure 3(a) shows the average t ime taken to en- 
ter the critical section, by the four different algo- 
rithms for T, = X, = 0.1 and Tt = 0.8. In the 
graph, ‘new+heuristics’ refers to our algorithm with 
the heuristic in the previous section and ‘new+random 
token’ refers to our algorithm where a token is chosen 
randomly. Our algorithm performed better than other 
algorithms for most values of A.  (The heuristic has 
improved the performance by only a small amount.) 
As X increases, the number of requests for entry into 
critical section increase, which causes a larger delay 
for each node. Hence, the curves show a steady rise 
initially. The curves gradually flatten out for greater 
values of A (“saturation”). 

Figure 3(b) shows the average time taken to enter 
the critical section, for Tr = T, = 0 and Tt = 1.0. 
Observe that here Raymond’s algorithm [lo] performs 
better than us for small A and equally well for large A.  
When a node wants to enter CS, Raymond’s algorithm 
sends multiple request messages in parallel to other 

.r) s 
E 

tn z 

nodes. When T, = 0, the overhead of sending all 
these messages is zero (for the sender). When T, is 
non-zero, the overhead of sending multiple messages 
can be substantial. Therefore, Raymond’s algorithm 
performs well when T, = 0, but performs poorly with 
the realistic assumption that T, # 0. 

The time to enter the critical section is maximum 
for Makki’s algorithm [12]. This algorithm uses a to- 
ken message to maintain the correctness of the algo- 
rithm. At high load, the token message is propagated 
through all other nodes before reaching the same node 
again. This causes the system to behave similar to a 
system with a single token, resulting in significant de- 
lays. (A simple modification to this algorithm can 
improve its performance [ 11 .) 

Figure 4 plots the average number of messages re- 
quired per CS entry versus A.  Our algorithm requires 
smaller number of messages compared to the other 

0 0.1 0.2 0.3 0.4 0.5 0 . 6  0.7 0.8 0.9 1 
Lambda 

(a) T, = T, = 0.1 and Tt = 0.8 

3. makki 

5. raymond 
2 5  

20 I- ; -I 

n 
0 0.1 0.2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Lambda 

(b) Tr = T, = 0 and Tt = 1.0 

Figure 3: Average time to enter the critical section 

algorithms, for most values of A. Applying the heuris- 
tics for choosing a token has reduced the number of 
messages at high load. 

Raymond’s algorithm has a lower bound of 2N - 
K - 1 on number of messages required per CS entry, 
and an upper bound of 2 * ( N  - 1) [lo]. Srimani’s 
analysis suggests that, for their algorithm, the average 
number of messages per critical section entry is close 
to ( N  - 1) [ll]. Our simulation results agree with 
these analytical results. 

For Makki’s algorithm [12] at low load, the num- 
ber of messages required is quite large. The number 
of messages required becomes smaller with increasing 
A ,  with only three messages being required at heavy 
load. Although the number of messages required is 
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Figure 4: Average number of messages per critical sec- 
tion entry for Tr = 0.1, Ta = 0.1 and Tt = 0.8 

Figure 5: Average information (in words) per message 
for Tr = 0.1, Ira = 0.1 and Tt = 0.8 

small, as seen before, with large A, Makki’s algorithm 
results in longer delays. (This shows that number of 
messages, by itself, is inadequate to evaluate algorithm 
performance.) 

Measurements for the average number of messages 
for E = 1, and also for Tr = 0.05, T, = 0.05, Tt = 0.9 
and Tr = 0, T, = 0, Tt = 1.0, indicate that the number 
of messages is practically the same for all the cases [l]. 
This suggests that the average number of messages per 
critical section entry is not affected significantly by T, , 
T, and E.  

Figure 5 plots the average information that is 
passed in the messages by various algorithms. The in- 
formation content of a messages was calculated by tak- 
ing into account all the fields of the message. For ex- 
ample, the TOKEN message contains the token iden- 
tifier, token-queue, request-modifier tags, and message 
source. (Each message, by default, contains message 
source, destination and message type.) The average 
information for our algorithm is same with and with- 
out the heuristic. When A = 1, the average informa- 
tion is about 9 words for our algorithm, 4 words for 
Raymond’s algorithm, 6.5 words for Srimani’s algo- 
rithm, and 8 words for Makki’s algorithm. All mes- 
sages in Raymond’s algorithm are of the same size 
(4 words), therefore, that curve is simply a horizon- 
tal line. For our algorithms the average message size 
is about 1.5 to 2 times larger than the other algo- 
rithms. By sending more information in each mes- 
sage, our algorithm reduces the number of messages. 
As the messages are still quite small, the overhead is 
proportional to the number of messages, and quite in- 

dependent of the size of the message. All messages, 
except TOKEIN, are fixed size. The size of a TOKEN 
message can increase at most linearly with the num- 
ber of nodes. Therefore, we expect that the increased 
average message size for our algorithm (as compared 
to other algorithms) will not be a serious limitation 
for systems with a larger number of nodes. 

Another interesting performance metric is the ((av- 
erage informattion transmitted” per CS entry. This 
metric would be a measure of “bandwidth” consumed 
by the algorithm for each CS entry. Due to lack of 
space, we do not present measurements of average in- 
formation transmitted per CS entry. 

5 System Partitioning 

Consider a K-mutual exclusion algorithm Ak. One 
way to achieve K-mutual exclusion is to use algorithm 
Ak for the N nodes. Another possibility is to partition 
the system into K clusters containing approximately 
N/K nodes each, and executing algorithm AI (i.e., 
AK with K := 1) within each cluster. While such 
a “partitioning” approach may appear inefficient at 
first , surprisingly, the partioning approach performs 
quite well for the three previous algorithms. For our 
algorithm, partitioning approach does not perform 
better than the K-mutual exclusion algorithm [l]. 

For instance, the algorithm in [ll] requires approxi- 
mately N- 1 messages per CS entry (for K-mutual ex- 
clusion). Clearly, if the partitioning approach is used, 
then the number of messages per CS entry will reduce 
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to approximately ( N / K )  - 1, a significant improve- 
ment (for K > 1). (This improvement is often ac- 
companied by an improvement in the average time to 
enter the CS [l].) Similarly, the average number of 
messages (per CS entry) for the K-mutual exclusion 
algorithm in [lo] is approximately 2(N - 1). Again, 
the average number can be reduced to approximately 
2(N/K - 1) by using the partitioning scheme. 

These results suggest that superiority of a K -  
mutual exclusion algorithm should be demonstrated 
by comparing it not only with other K-mutual ex- 
clusion algorithms, but also with the “partitioning” 
scheme. This paper, however, neglects to present such 
a comparison, as the K-mutual exclusion algorithm 
is not yet optimized. Optimization requires proper 
choice of the three decision mechanisms described ear- 
lier. This problem is a subject of future work. 

6 Summary 

The previous research on distributed K-mutual ex- 
clusion is limited. The objective of this paper is to 
motivate further research on K-mutual exclusion, by 
demonstrating existence of algorithms that can per- 
form better than the existing ones. 

The paper presents a token-based K-mutual exclu- 
sion algorithm and compares simulation results for the 
proposed algorithm with three other algorithms. Un- 
like previous work, the simulation model assumes that 
a finite (non-zero) overhead is encountered when a 
message is sent or received. The simulation results 
show that, as compared to other algorithms, the pro- 
posed algorithm achieves lower delay in entering CS 
as well as lower number of messages, without a seri- 
ous increase in the size of the messages. Future work 
includes algorithm optimization, and evaluation of the 
algorithm in “non-homogeneous” environments where 
all nodes are not identical. 
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