
Massachusetts Institute of Technology Lecture 7
6.895: Advanced Distributed Algorithms March 6, 2006
Professor Nancy Lynch

Time Synchronization

Readings:
Fan, Lynch. Gradient clock synchronization
Attiya, Hay, Welch. Optimal Clock Synchronization Under Energy Constraints

1 Introduction

In this lecture, we describe a new type of clock synchronization problem, called gradient clock
synchronization (GCS), which is particularly relevant to radio networks. We then prove there is a
lower bound to how well the problem can be solved, which implies lower bounds to how efficiently
certain algorithms which use synchronized clocks can be executed. We demonstrate GCS by an
example. Suppose two sensor nodes are being used to measure the velocity of a target, with a
desired accuracy of 1%. To do this, each node records its local time when it observes the target.
Then, the nodes exchange their time readings, compute the difference as t, and divide t into d, the
known distance between the sensors. Assuming d to be accurate, the error in the calculation comes
from the clock sync error between the sensors; call this ε. If d is small, then ε must be small, if we
want d

t to be accurate to 1% of the true velocity. But, if d is large, then ε can be proportionally
larger and d

t will still be accurate to 1%.

Thus, the property we want from the clock sync algorithm is: if nodes are close, their clocks are
well synchronized; if nodes are faraway, their clocks are allowed to be more loosely synchronized.
In other words, the acceptable clock skew1 between nodes forms a gradient in their distance.

2 Problem Definition

2.1 Network Model

Let’s now define the problem more rigorously. We first define the network in which the clock sync
algorithm operates. Let N be a network consisting of nodes p1, . . . , pn. We connect two nodes
by an edge if they can directly communicate with each other; assume N is connected. Consider a
particular edge e = (pi, pj), and suppose each message sent from pi to pj (and from pj to pi) takes
at least 0 time, and at most di,j time to reach pj . That is, di,j is the message delay uncertainty
between pi and pj . The delay on each message is adversarially controlled. That is, each message
between pi and pj can have any delay between 0 and di,j . We saw from the previous lecture that
this uncertainty is the main obstacle to accurate clock synchronization between pi and pj . We call
di,j the distance between pi and pj . The distance between different pairs of nodes can vary. Let D
be the maximum distance between any pair of nodes, in the shortest path metric induced by the
distance on edges.

1Note that in this lecture, we use the term skew differently from the GCS lecture. By clock skew, we mean here
the difference in the clock values of two nodes. The RBS paper called this phase offset.

2 Lecture 7: Time Synchronization

2.2 Gradient Clock Synchronization

We now describe what the clock sync algorithm is supposed to accomplish. We assume the algorithm
is deterministic. Intuitively, the algorithm is supposed to produce, at each node and at all times,
a single number which represents that node’s view of global time. Notice that this is somewhat
different from the goal of an algorithm like RBS, which only requires each node to be able to
compute another node’s local time, without adopting either node’s local time as the global time.
Having a global time is necessary for some applications. Global time is also arguably more natural,
simpler, and easier to use. More precisely, we assume that each node pi has a hardware clock, which
is a device which at any realtime t outputs a number Hi(t). The hardware clock is characterized
by its drift rate ρ, where 0 < ρ < 1: we have 1 − ρ ≤ dHi(t)

dt ≤ 1 + ρ. That is, in one second of
realtime, Hi increases between 1 − ρ to 1 + ρ seconds. The drift in Hi is adversarially controlled.
That is, dHi(t)

dt can take any value between 1− ρ and 1 + ρ, at any realtime t. Only pi can look at
Hi. In addition, pi can send messages to other nodes. The messages are assumed to reliably get
to the target node, subject to the message delay uncertainty described above. Using Hi, and the
messages it sends and receives, pi must, at any realtime t, compute a logical clock value Li(t). The
goal of the clock sync algorithm is to make the logical clock values of different nodes as close as
possible.

Notice there is a trivial way to make the node’s logical clocks be close: every node pi sets Li(t) = 0
for all t. But, such a “clock” is useless. To ensure nodes compute useful logical clock values, we
require the following validity condition: for every node pi, at any realtime t, we have dLi(t)

dt ≥ 1
2 .

That is, in one second, a node’s logical clock must increase by at least 0.5 seconds. Note that
the number 0.5 was chosen for simplicity. We could have used any other constant. We can now
formally define the gradient clock synchronization problem.

Definition 2.1 Let f be a function into R, and let A be a clock synchronization algorithm. We
say A satisfies the f-gradient property if in any execution of A, we have

∀i, j ∀t : |Li(t)− Lj(t)| ≤ f(di,j , N)

That is, a clock sync algorithm A satisfies the f -gradient property if it guarantees that at all times,
and for all pairs of nodes, the logical clock skew between the nodes is bounded by f of the distance
between the nodes, and the network N2. Thus, this definition allows the amount of clock skew
between nodes to depend on how far apart they are (in terms of message delay uncertainty). Since
we want nodes to be well synchronized, we want f as small as possible. However, it turns out there
is a lower bound to how small f can be.

3 A Lower Bound on GCS

The rest of this lecture is devoted to showing the following lower bound:

Theorem 3.1 Let A be any clock synchronization algorithm, and suppose A satisfies the f -
gradient property. Then, we have

f(d, N) = Ω(d +
log D

log log D
)

2The reason we have the second argument N is because the skew between two nodes can depend not only on their
distance, but also on the network they are in, as we shall see in the next section.

Lecture 7: Time Synchronization 3

where D is the diameter of network N .

In fact, we will prove a simplified version of this lower bound. In this version, we fix N to be the
line network on n nodes. That is, N contains nodes p1, . . . , pn. There is an edge (pi, pi+1) for all
i = 1, . . . , n− 1. The distance of each edge is 1.

[[[PICTURE]]]

For this N , we will show that f(1) = Ω(log n
log log n). That is, no matter what clock sync algorithm A

we use, there is some execution of A, in which a pair of neighboring nodes, that is, nodes distance
1 apart, have logical clock skew Ω(log n

log log n). We pause to consider this statement. The lower bound
says that the amount of clock skew between two neighboring nodes depends not only on their
distance, but also on the size of the network they are in. This may seem odd. Let pi and pi+1 be
two neighboring nodes. If our goal is simply to synchronize pi and pi+1 as closely as possible, then
we can easily ensure pi and pi+1 have skew at most 1: just have the nodes send each other their
logical clock values, and each node sets its clock to be the larger of its received and its own clock
value. We can do this for any particular pair of neighboring nodes. What the lower bound says
is that we can’t do it for all pairs of neighboring nodes at the same time. That is, if we want to
make pi and pi+1’s clocks to be close, we must sometimes allow pj and pj+1’s clocks be far apart,
for some i and j.

This lower bound has practical implications. We’ll just describe one. Consider the line network
above, and suppose nodes are using TDMA as their MAC protocol. If each pair of neighboring
nodes have a message delay uncertainty of 10 µsec, say using reference broadcasts, and each message
takes 10 µsecs to send, one might think the nodes can use a repeating TDMA schedule of two 20
µsec slots, one for each neighbor. What this lower bound says is that the slots need to be much
longer. In fact, if we want to guarantee that messages never collide, the slots should be at least
10 + Ω(log n

log log n) µsec in width. That is, as the network size grows, the TDMA slots need to be
arbitrarily long, even though each node only has two neighbors!

4 Proof Overview

Before proving f(1) = Ω(log n
log log n), we first show something simpler: f(1) ≥ 1

8 . This proof intro-
duces the key indistinguishability principle and scaling argument, which are also the basis for the
Ω(log n

log log n) proof. We first describe the indistinguishability principle, which is used in different
forms in almost all, if not all, lower bounds in distributed computing.

4.1 Indistinguishability Principle

To model a clock synchronization algorithm A, we stated in section 2.2 that each node has access to
a private hardware clock, subject to drift, and could send and receive messages from its neighbors,
subject to message delay uncertainty. Thus, a node’s hardware clock, and the messages it receives,
are its only view of the world. Since the algorithm is deterministic, then the actions a node performs
are completely determined by the content of the messages it gets, and the values of its hardware
clock when it receives the messages. More formally, suppose in an execution α of A, a node pi

received messages m1,m2, . . . ,mk. Let Hi(mj) be pi’s hardware clock value at the moment it
received message mj , and let T (mj) be the realtime at which pj received mj . Suppose there is
another execution β of A, in which pi receives messages n1, . . . , nk. Now, assume that mj = nj ,

4 Lecture 7: Time Synchronization

and also Hi(mj) = Hi(nj), for all j = 1, . . . , k. Then pi will perform the exact same actions in α
and β. This is true even if for some j, T (mj) 6= T (nj); that is, even if the realtime at which pi

received some message is different in α and β. This is because pi has no way to observe realtime.
Given all the things pi can observe, the message contents and its hardware clock values, α and β
are indistinguishable to pi.

4.2 Scaling Arguments

To prove f(1) ≥ 1
8 , we use a technique called a scaling argument. For clarity in demonstrating

the technique, we assume that there are only two nodes, p1 and p2, with distance 1 between them.
Basically, we will create two executions α and β which look indistinguishable to p1 and p2, but in
which the realtime at which events occur in α and β are different. Then, we can argue that p1 and
p2’s clock skew is at least 1

8 , in α or β.

Let α be any execution of A satisfying the following properties. The delay for all messages between
p1 and p2 is 1

2 . p1 and p2’s hardware clock rates are 1 at all times. Lastly, the duration of α is
exactly 1+ρ

2ρ . Now, create a second execution β, in which p1 and p2 perform the exact same actions
as in α. The hardware clock rate of p2 is 1 throughout β, and the hardware clock rate of p1 is 1+ρ.
Every action at p2 occurs at the same realtime in α and β. If an action occurs at realtime t at p1

in α, then it occurs at realtime t
1+ρ at p1 in β. Thus, in β, p2’s execution has been scaled down by

a factor of 1 + ρ.

[[[PICTURE]]]

We now state some properties about α and β. First of all, we can easily check that α and β are
indistinguishable to p1 and p2, and thus p1 and p2 behave the same in both executions.

Next, we can check that the delay of all messages sent between p1 and p2 in β is between 0 and 1.
To see this, first consider a message sent from p1 to p2. Suppose that in α, p1 sent the message at
realtime t1, and p2 received the message at realtime t2. Then in β, p1 sends the message at realtime
t′1 = t1

1+ρ , and p2 receives the message at realtime t2. Thus, the delay of this message in β is

t2 − t′1 = t2 − t1 + t1 − t′1

=
1
2

+
ρt1

1 + ρ

≤ 1
2

+
1
2

= 1

The last inequality follows because t1 ≤ 1+ρ
2ρ , the duration of α. Thus, every message from p1 to p2

has delay at most 1 in β, which is within the legal bounds. It’s easy to show it has delay at least
0 also.

Similarly, if in α, p2 sent a message to p1 at realtime t2, and p1 received the message at realtime t1,
then in β, p2 sends the same message at t2, and p1 receives the messages at t1

1+ρ . Thus, the delay
of the message is

t′1 − t2 = t′1 − t1 + t1 − t2

=
−ρt1
1 + ρ

+
1
2

≥ −1
2

+
1
2

= 0

Lecture 7: Time Synchronization 5

Thus, every message from p2 to p1 has delay at least 0 in β, which is within the legal bounds.
It’s easy to show it has delay at most 1 also. Thus, we conclude that β is a legal execution of A,
because all hardware clock rates are between 1− ρ and 1 + ρ, and all message delays are between
0 and 1.

Let L1 and L2 be p1 and p2’s logical clock values at the end of α, resp. Also, let L′
1 and L′

2 be
p1’s and p2’s logical clock value in β at realtime 1

2ρ , resp. Now, notice that p1’s hardware clock
value is the same at realtime 1

2ρ in β, as it is at realtime 1+ρ
2ρ in α. Therefore, since α and β are

indistinguishable to p1, we have L′
1 = L1. What is L2 in terms of L′

2? We claim that

L2 ≥ L′
2 +

1
2
(
1 + ρ

2ρ
− 1

2ρ
)

= L′
2 +

1
2

1
2

= L′
2 +

1
4

To see the first equality, notice that L′
2 is p2’s logical clock value in β at realtime 1

2ρ , and L2 is p2’s
logical clock value in β at realtime 1+ρ

2ρ . Then, by the validity property stated in section 2.2, p2’s
clock value must increase by at least 1

2(1+ρ
2ρ − 1

2ρ) = 1
4 between realtimes 1

2ρ and 1+ρ
2ρ .

[[[PICTURE]]]

Now, to recap, we have shown that L′
1 = L1, and L′

2 ≤ L2 − 1
4 . Thus, at realtime 1+ρ

2ρ in α, the
clock skew between p1 and p2 is ∆ = L1−L2. Also, at realtime 1

2ρ in β, the clock skew between p1

and p2 is ∆′ = L1−L′
2 = L1−L′

2 ≥ L1−L2 + 1
4 = ∆ + 1

4 . Now, it is clear that max(|∆|, |∆′|) ≥ 1
8 .

Thus, we have shown that at the end of either α or β, the clock skew between p1 and p2 is at least
1
8 . This lower bound holds for any clock sync algorithm A.

5 Proving f(1) = Ω(log n
log log n)

Consider once again the line network on n nodes defined earlier. The scaling argument from section
4.2 can be easily extended to show that for any algorithm A, if there is an execution α of A such
that two neighboring nodes have ∆ clock skew at the end of α, then there is an execution β of A
such that the same two neighbors have ∆ + 1

4 clock skew at the end of β. What can we say about
the skew between non-neighboring nodes?

5.1 Add Skew Lemma (ASL)

Let pi and pj be two arbitrary nodes, with j > i. Let α be an execution of A satisfying the following
properties:

1. The realtime duration of α is at least C1(j − i), for a sufficiently large constant C1. Let γ be
the suffix of α of realtime duration C1(j − i).

2. The message delay between all neighbors is 1
2 during γ.

3. The hardware clock rates of all nodes is 1 throughout γ.

4. At the end of α, we have Lα
i − Lα

j = ∆, for some ∆.

6 Lecture 7: Time Synchronization

Then, we claim there is an execution β of A such that

1. The message delay between any pair of neighbors in β is between 1
4 and 3

4 .

2. The hardware clock rates of all nodes is between 1 and 1 + ρ
2 throughout β.

3. At the end of β, we have Lβ
i − Lβ

j ≥ ∆ + C2(j − i), for some constant C2.

That is, β increases the skew between pi and pj by C2(j − i), as compared to α. This is called the
Add Skew Lemma in the Fan, Lynch paper, and is proved in section 6 of that paper. We won’t go
through the full proof here; see the paper for details. We simply give the intuition for the proof.
The Add Skew Lemma is basically just an enhanced version of the scaling argument we gave in
section 4.2. To increase the skew between pi and pj , we create an execution β containing the same
actions as α. In β, we increase the hardware clock rates of all nodes p1 through pi to 1 + ρ, for
some amount of time. We also increase pi+1 through pj−1’s hardware clock rates to 1 + ρ. But for
each pk, i ≤ k ≤ j − 2, we let pk’s hardware clock run fast somewhat longer than we let pk+1’s
hardware clock run fast. We don’t change the hardware clock rates of nodes pj through pn. In
addition, for i ≤ k ≤ j, we increase the message delay from pk to pk+1, and decrease the message
delay from pk+1 to pk, and for 1 ≤ k ≤ i − 1, we decrease all the message delays between pk and
pk+1. Lastly, we change the realtime at which actions occur in β so that any action at any node
occurs at the same hardware clock value of that node in α and β. Note the similarity between this
construction and the scaling argument, where we also sped up some nodes, changed the realtimes
at which actions occurred, and adjusted message delays asymmetrically. The net effect of these
changes is that α and β are indistinguishable, to every node p1, . . . , pn. Now, at a certain realtime,
called T ′ in the paper, node pi has the same logical clock value at T ′ in β as it has at realtime T
in α. But we can show using the validity condition from section 2.2 that pj ’s logical clock value
at T ′ in β is at least C1(j − i) less than its clock value at T in α. Thus, the clock skew between
pi and pj at realtime T ′ in β is at least C1(j − i) larger than their clock skew at realtime T in α.
Furthermore, we can show that all message delays between neighbors in β are between 1

4 and 3
4 .

This proves the Add Skew Lemma.

[[[PICTURE]]]

5.2 Bounded Increase Lemma

When we apply the Add Skew Lemma, we can increase the skew between two arbitrary nodes pi

and pj by an amount C1(j − i). Therefore, the skew between a pair of neighbors between pi and
pj must increase by at least C1. Can we simply apply the Add Skew Lemma Ω(log n

log log n) times, to

make the skew between some pair of neighbors Ω(log n
log log n)? No! The reason is, in order to apply

the ASL to an execution α, to produce β with greater skew, α must satisfy certain preconditions.
For example, the message delay between all neighbors must be 1

2 . But execution β doesn’t satisfy
those preconditions. For example, all we can say about β is that the message delay between all
neighbors is between 1

4 and 3
4 . Therefore, we can’t apply the ASL to β, and in general, we can’t

apply the ASL to the same execution more than once. Yet, we can still use the ASL multiple times
to produce superconstant skew between some neighbors. This is described in the next section.
First, we describe the Bounded Increase Lemma, which is used in the next section.

Intuitively, the BIL says that no node can increase its logical clock too quickly. The intuition is
that if a node pi increased its clock quickly by a large amount, say 2f(1), then its neighbor pi+1

won’t have time to find out about pi’s increase. Before pi’s increase, its clock skew with pi+1 was

Lecture 7: Time Synchronization 7

at most f(1), by the f -gradient property. That is, Li ≥ Li+1 − f(1), where Li and Li+1 are pi

and pi+1’s logical clock values before pi’s increase. After the increase, we have L′
i > Li + 2f(1) >

Li+1 + f(1) = L′
i+1 + f(1), where L′

i and L′
i+1 are pi and pi+1’s clock values immediately after pi’s

increase. However, that means pi’s clock value is more than f(1) greater than Li+1’s clock value,
contradicting the gradient property. Thus, pi can’t increase its clock very quickly.

A bit more formally, let α be any execution of A satisfying the following properties:

1. All nodes have hardware clock rate between 1 and 1 + ρ
2 throughout α.

2. All neighbors have message delay between 1
4 and 3

4 .

3. α has duration at least 1
ρ .

Then for any t ≥ 1
ρ , we have Li(t + 1) − Li(t) ≤ C4f(1), for some constant C4. That is, in one

second of realtime, pi doesn’t increase its logical clock by more than C4f(1).

This is shown by creating an execution β, in which pi’s hardware clock rate is increased to 1 + ρ,
and the hardware clock rates of other nodes are not changed. Then, the realtime of actions and
the message delays between nodes are adjusted to make α and β indistinguishable to all the nodes.
However, by increasing pi’s hardware clock rate, this has the effect of increasing the skew between
pi and its neighbors. In particular, the amount of increased skew is related to the rate of increase
of pi’s logical clock. For the right setting of constants, we can show that the skew is increased
by 2f(1) in β as compared to α. As we noted above, this contradicts the gradient property. See
section 7 of [FL] for more details.

5.3 Putting It Together

To prove the lower bound on f(1), we invoke the Add Skew Lemma multiple times, and also use the
Bounded Increase Lemma. Suppose by induction that after k applications of the ASL, we produce
an execution αk with the following properties:

1. There is a set of nodes pik , . . . , pjk
, for some 1 ≤ ik < jk ≤ n, such that Lik−Ljk

≥ C5k(jk−ik),
for some constant C5, where Lik and Ljk

are the logical clock values of pik and pjk
at the end

of αk.

2. Let γk be the suffix of αk with realtime duration C5(ik−jk)
2C4f(1) . The delay of all messages between

neighbors during γk is 1
2 , and all nodes have hardware clock rates 1 throughout γk.

3. The delays of all messages between neighbors in αk is between 1
4 and 3

4 , and the hardware
clock rates of all nodes is between 1 and 1 + ρ

2 throughout αk.

Intuitively, these properties say that at the end of iteration k, we have an execution αk such that
the set of neighboring nodes between pik and pjk

have, on average, C5k amount of clock skew.
Furthermore, there is a long suffix γk of αk which is well-behaved, in the sense that the message
delay between neighbors is 1

2 , and the hardware clock rates of nodes are all 1. In particular, γk

satisfies the preconditions of the ASL (for an appropriate choice of i and j in the ASL, which we
describe later). Also, αk satisfies the preconditions of the BIL.

How do we use αk? Let αk = βk ◦ γk. That is, αk has prefix βk, and suffix γk. Define

nk+1 =
C5(jk − ik)
2C1C4f(1)

(1)

8 Lecture 7: Time Synchronization

Now, since neighbors between pik and pjk
have average skew C5k, then there must be two nodes

ik+1 and jk+1 = ik+1 + nk+1 with Ljk+1
− Lik+1

≥ C5nk+1k, where Lik+1
and Ljk+1

are pik+1
and

pjk+1
’s logical clock values at the end of αk, resp. We can check that we can apply the ASL, with

i and j in the lemma set to ik+1 and jk+1, resp., to produce an execution α′
k = βk ◦ γ′k, such that

L′
jk+1

−L′
ik+1

≥ C5nk+1k +C2nk+1, where L′
ik+1

and L′
jk+1

are pik+1
and pjk+1

’s logical clock values

at the end of α′
k. Now, we extend α′

k by a realtime duration of C5(jk+1−ik+1)
2C4f(1) . In this extension, we

set the message delay between all neighbors be 1
2 , and set the hardware clock rates of all nodes to

be 1. We call this extended execution αk+1. We can check that αk+1 satisfies the preconditions of
the Bounded Increase Lemma. Now, let L′′

jk+1
and L′′

ik+1
are pik+1

and pjk+1
’s logical clock values

at the end of αk+1. Then we can check that

L′′
jk+1

− L′′
ik+1

≥ C5nk+1k + C2nk+1 − C4f(1)
C5(jk+1 − ik+1)

2C4f(1)

= C5nk+1k + C2nk+1 −
C5(jk+1 − ik+1)

2
= C5nk+1(k + 1)

where to obtain the last equality, we set C5 = 2C2
3 . The last inequality follows because pik+1

’s logical
clock value can increase by at most C4f(1)C5(jk+1−ik+1)

2C4f(1) during the extension, by the BIL. Thus,
αk+1 satisfies the first of the inductive properties about the αk’s. We can also check that it satisfies
the other two properties. Therefore, we have managed to inductively create execution αk+1, in
which the neighboring nodes between nodes pik+1

and pjk+1
have average skew C5k(jk+1 − ik+1).

[[[PICTURE]]]

We can continue the above inductive construction as long as jk − ik ≥ 1. Now, we can start the
construction with j1−i1 = n, and by equation 1, we have jk+1−ik+1 = jk−ik

C6f(1) , for some constant C6.
Thus, we can continue the construction for logC6f(1) n iterations. However, on the (logC6f(1) n)’th
iteration, we have two neighboring nodes with logical clock skew equal to C5 logC6f(1) n, by the first
condition in the inductive hypothesis. By the gradient property, we then have C5 logC6f(1) n ≤ f(1).
Rearranging the inequality, this says that (C7f(1))f(1) ≥ n, for some constant C7. Solving for f(1),
we get f(1) = Ω(log n

log log n).

6 Energy Constrained Clock Synchronization

Attiya, Hay, Welch

External synchronization, based on one or more “source clocks”.

They consider a tradeoff, broadcasting with smaller or larger power. Larger power means fewer
hops, which means more accurate clock synch. They prove a result that yields optimal clock synch,
for given energy constraints.

6.1 Introduction

Power needed to broadcast to distance d is γdβ, where β ≥ 1 is the distance-power gradient, γ > 0
is the transmission quality parameter

Lecture 7: Time Synchronization 9

Clock skew: Max difference between logical clock reading and real time. Clock skew depends on
uncertainty about delay of delivering messages between the nodes. Thus, clock skew increases as
number of intermediate hops increases.

Try to minimize power: To save energy usage. To help avoid interference.

This paper relates the energy constraints with the optimal skew that a clock synch algorithm can
guarantee. Given individual energy budgets, they get exact bounds on the optimal skew that can
be achieved, as a f unction of uncertainty in message delays.

Optimal skew = minimum depth of a particular spanning forest rooted at the time sources, of the
topology graph induced by the energy budgets.

Upper bound: They show how to construct a shallow forest, with minimum depth. Use simple BFS
algorithms. Then propagate the time down the trees. Skew = sum of the uncertainties along the
path.

Lower bound: Based on shifting techniques.

They get a nice closed form. Situation is better than in Halpern et al. results for “internal” clock
synch (with no external source)—they didn’t get a closed form solution.

Survey by Elson and Romer may be interesting. RBS broke new ground, by exploiting nature of
wireless bcasts. Other papers study tradeoffs between accuracy and energy, but measure energy
expenditure in terms of number of messages sent.

6.2 The system model

n nodes in plane Stationary. Bcast has distance d. Recipients are the nodes within distance d of
the sender. Power is γdβ . Proportional to the energy consumed when bcasting to distance d.

Events Hardware clock HCi Function from real time to hardware clock time, write as t + oi, where
o is the offset. Assumes the hardware clocks have no drift, so the offsets are constant.

Deterministic state machine. But with (nondeterministic) set of possible initial states. Also has
final states (but why?). Transition function takes current state, HC, and current event (input or
internal) and produces a new state and possibly a message to be bcast to a certain distance.

Hmm...so it’s interrupt-driven only. But how do the internal events get generated? Timers get
set somehow by the transition function? I suppose that the state must have deadline variables as
usual...

History: Alternating sequence of states and pairs (event, HC-value). HC values are strictly increas-
ing, for each node.

Timed history: History plus a real time for each pair. They define the value of a variable at a real
time t to be the last value that occurs at that time.

Execution: A set of timed histories for all the nodes. Assume bcasts are reliable.

6.3 Problem statement

LCi = HCi + adji, adjustment variable

Source nodes have perfect time, ST. LCi(t) = ST (t) = t for all source nodes i.

10 Lecture 7: Time Synchronization

Every node is supposed to set the adjustment vars to try to minimize the difference between its
clock and the source time.

They have the nodes enter final states when they are “done synchronizing”. When they halt, they
should all be synchronized to external time, to within some epsilon (must be the same epsilon in
all executions).

Given an energy bound for each node, energyi, then can compute its neighborhood Ni. This is the
set of nodes within Euclidean distance that can be reached by the given power; well, actually, the
neighborhood is determined bidirectionally—both nodes must be able to reach each other within
their given powers.

So is this the only way they use the power information? To determine the neighborhoods? That
gives rise to an undirected graph describing the single-hop neighbor relationship. Assume this
graph is connected. (They say strongly connected, but of course this is an undirected graph, so
they must mean just “connected”.)

Each undirected link gets delay delta and uncertainty (plus or minus) u. They regard the uncer-
tainties as weights on the edges. Then they measure the cost (uncertainty) of a path by the sum
of the uncertainties along the edges.

Define: Minimum-uncertainty path between two nodes Minimum-uncertainty path between a node
and some source.

They want to minimize maximumi (skew of LCi). In fact, their algorithm minimizes the clock
skew for each node separately.

Comments on their assumptions: Bidirectional links justification: Message delays and uncertainties
mostly due to processing in the nodes and contention in the physical layer. Nodes have similar
hardware/software. Contention similar within a neighborhood. Delays between sender and different
receivers can be quite different. Different assumption from RBS. Justify by saying the receive times
can be different, and may need different numbers of retransmissions.

6.4 Multi-hop broadcast-based clock synch

4.1. A generic synchronization algorithm

Assumes we have the spanning forest already, each source the root of a tree. Each source sends
its time along its tree. Other nodes adopt the time, adjusted by the median delay along the path.
Trivial algorithm.

The max clock skew for any node is the cost of its path in this forest—the sum of the uncertainties.
So, obviously, what we need is to construct the forest to minimize this max cost.

4.2. Precomputing a BFS forest

Centralized or distributed. Distributed: Nodes determine their neighbors by doing bcasts and
waiting for acks. Then use a standard distributed BFS algorithm.

4.3. Computing the BFS on-the-fly

This doesn’t seem too interesting in the static setting they describe. But it might make sense in a
more dynamic, say mobile setting.

A standard relaxation algorithm keeps recalculating the best path. And at the same time, calculates
the clock adjustment corresponding to that path.

They redo the standard argument for relaxation algorithms (in Lemma 1).

Lecture 7: Time Synchronization 11

6.5 Optimality

Claim that the synchronization achieved over a shallow spanning forest is optimal for the topology
graph. More specifically, for each node i, they prove a lower bound of umin

i for the guaranteeable
skew. Why isn’t this obvious? Because the model doesn’t rule out “overhearing”, which could
potentially yield algorithms with lower skew then the spanning forest could. But guaranteeable
lower skew? It seems like overhearing is accidental.

They state the standard shifting lemma from LL84. Then they use this to prove their main
optimality result, Theorem 3. It focuses on getting the worst skew for a particular node i. Start
with an execution with exactly median delays. Now they consider two cases: LCi ≤ ST Shift every
node j later by umin

j , the best uncertainty for j. Nice little argument shows this leaves the delays
within bounds. A picture would be good to show this. LCi > ST Similar argument, but shift
earlier. In either case, the resulting skew is ≥ umin

i (using the shifting lemma).

6.6 Discussion

Main contribution: Method of picking the multi-hop bcasts in a way that minimizes the worst-case
accumulated uncertainty, subject to energy constraints. “Shallow energy-constrained spanning
forests”

Future work: Use the same forest construction, but consider other ways of estimating clocks and
combining info, perhaps optimizing other measures (e.g., expected skew instead of worst-case).
Optimizing skew on a per-execution basis (for changing topologies/mobile case?)

