
Massachusetts Institute of Technology Lecture 17
6.895: Advanced Distributed Algorithms April 19, 2006
Professor Nancy Lynch

Global Infrastructure

Readings:
Global infrastructures Elkin: Distributed approximations—a survey

Kuhn, Wattenhofer: Distributed dominating set approximation
Kuhn, Moscibroda, Wattenhofer: What cannot be computed locally!

Constant Time Distributed Dominating Set Approximation

1 Introduction

In the first part of this lecture, we study a distributed algorithm to compute an approximate
minimum dominating set of a graph. Given a graph G = (V,E), a dominating set of G is a set of
nodes V ′ ⊆ V such that every node in V is either in V ′, or is a neighbor of a node in V ′. Our goal
is to compute the smallest such set V ′. We call such a set a minimum dominating set (MDS).

Dominating sets have many applications in distributed computing, and especially in ad-hoc radio
networks. One way they are used is in routing: given a graph G representing the communication
graph of an ad-hoc network, we can choose the nodes of a dominating set to act as cluster heads.
Subsequently, routing is done from cluster head to cluster head, as opposed to from node to node.
This reduces the number of nodes we have to route through, and consequently improves the routing
efficiency. The smaller the dominating set we use, the more the efficiency improves.

There are many sequential (centralized) algorithms for computing a graph’s (approximate) MDS.
Therefore, if we can collect the entire communication graph at a single node, then that node
can compute an MDS and distribute the answer to the rest of the network. However, if the
communication graph has diameter D, then such an algorithm takes at least O(D) time, simply from
the collection and broadcast portions. The Kuhn, Wattenhofer algorithm computes a dominating
set in o(D) time. Though the dominating set is in general not the smallest possible, it is guaranteed
to be not much larger than the MDS. In particular, for any k ≥ 1, the KW algorithm uses O(k2)
time to compute a dominating set which is at most O(k∆2/k log ∆) times larger than the smallest
dominating set of the graph. Here, ∆ is the largest degree of any node in the graph. The algorithm
consists of several parts. First, they formulate the MDS problem as a linear program (LP). Then,
they give a distributed algorithm to solve the LP. Lastly, they use randomized rounding to extract
a dominating set from the solution to the LP. Before going over the steps of the algorithm, we first
present some background information.

2 Background

Finding the MDS of a graph is known to be NP-complete. Furthermore, even finding a DS which is
not much larger than the MDS is hard. We say an algorithm has approximation ratio α ≥ 1 for the

2 Lecture 17: Global Infrastructure

MDS problem if whenever a graph has an MDS of size s, the algorithm returns a dominating set
of size at most αs. It has been shown that unless all NP problems can be solved in deterministic
nO(log log n) time, then the smallest approximation ratio of any polynomial time algorithm for MDS
is ln∆. In fact, this approximation ratio is achieved by a simple greedy algorithm: use an iterative
algorithm, where at each stage, we add the node with the highest degree to the dominating set,
then remove the node and all its edges from the graph.

The greedy algorithm described above is centralized, because it needs to know the entire graph at
each iteration. We are more interested in round-based distributed algorithms. In these algorithms,
computation proceeds in rounds, where in each round, a node can send a (possibly different) message
to each of its neighbors, and receive a message from each of its neighbors. We do not restrict the
size of the messages, nor the amount of computation a node performs to compute the messages.
Notice therefore, that in O(D) rounds, where D is the diameter of the graph, we can compute an
optimal dominating set by performing all computations at a centralized node. However, if we want
to use o(D) rounds, then the problem becomes more challenging.

There is a randomized distributed algorithm which computes an O(log ∆)-approximate DS using
expected O(log n log ∆) rounds, where n is the number of nodes in the graph. The MDS problem
is related to the problem of solving positive LP’s, i.e., LP’s where all the coefficients are positive.
There are distributed algorithms which produce a (1 + ε)-approximation to an LP, for any ε > 0,
in a polylogarithmic number of rounds.

3 The Kuhn/Wattenhofer Algorithm

As stated earlier, the KW algorithm consists of three parts. First, we formulate MDS as an LP. Then
we use a distributed algorithm to solve the LP. Finally, we use rounding to produce a dominating
set from the solution to the LP. Below, we describe these three steps. We will actually describe
third step before the second, since it is simpler.

3.1 Formulating MDS as an LP

MDS is formulated as a combinatorial problem, and many algorithms for solving MDS are combi-
natorial in nature. However, another powerful technique for solving MDS, and many other graph
problems, is to formulate them algebraically, and then apply algebraic techniques. In particular,
in this section we describe how to formulate MDS as a linear program. A linear program (LP)
consists of optimizing a linear function subject to linear inequality constraints. In general, this can
be expressed in the following way. Here, b, c and x are vectors, and A is a matrix.

min c · xT

subject to AxT ≥ b

How can we model MDS as an LP? Let G = (V,E) be a graph, and suppose we want to compute a
dominating set S of G. For each node vi ∈ V , let Ni denote the neighbors of vi, including vi itself.
That is, Ni = {vj | (vi, vj) ∈ E} ∪ {vi}. We will associate a variable xi with every node vi ∈ V . xi

will be set to a value in [0, 1]. The idea is that xi = 1 if and only if vi belongs to the dominating
set. For S to be a dominating set, we need to satisfy the condition

Lecture 17: Global Infrastructure 3

∀i ∈ [n] :
∑

j∈Ni

xj ≥ 1

This follows because for every node vi, we need at least one of vi’s neighbors to be in S. That is,
we need there to be some vj ∈ Ni such that xj = 1. Minimizing the size of the dominating set
corresponds to minimizing the sum of the xi’s. Let x = [x1, x2, . . . , xn]T be the array of the xi

values, and let 0,1 be the all 0 and all 1 vectors, respectively. Also, let N be the adjacency matrix
of G. That is, Ni,j = 1 if (vi, vj) ∈ E, and Ni,j = 0 otherwise. Then, we can formulate the MDS
problem in the following way:

min

n∑

i=1

xi

subject to N · x ≥ 1 (LP1)

x ≥ 0

3.2 Rounding LP1 to an MDS

In the previous section, we formulated MDS as the linear program LP1. Before discussing how to
solve LP1, we first describe how to relate a solution to LP1 to a solution to MDS. In fact, we will
relate an approximate solution of LP1 to an approximate solution to MDS.

Let x∗ be an optimal solution to LP1, and let x(α) be an α-approximation for LP1. That is, x(α)

satisfies all the constraints of LP1, and

n∑

i=1

x
(α)
i ≤ α

n∑

i=1

x∗
i (1)

Notice that x(α) may contain fractional values. Our goal when creating LP1 was to include vi in the
dominating set S if and only if xi = 1. To produce an integral vector from x(α), we will round the

i’th component of the vector to 1 with probability proportional to x
(α)
i . This procedure is called

randomized rounding. For any i ∈ [n], let δi be the degree of node vi. Also, let δ
(1)
i and δ

(2)
i be the

maximum degree of any 1 and 2 hop neighbors of vi. Consider the algorithm given in figure 1.

Let S = {i |xDS,i = 1} be the components of xDS which are set to 1 after running algorithm 1.
We check that S is a dominating set of G. That is, for any node v ∈ V , either v ∈ S, or v has
a neighbor in S. This is easy to see. Indeed, line 5 of the algorithm checks, for every node vi,
whether none of vi’s neighbors are in the DS. If this is the case, line 6 adds vi to the DS.

Let S∗ be a MDS of G. We now show that S is not too much larger than S∗. Notice that because
algorithm 1 is randomized, the size of S is a random variable. We have the following theorem.

Theorem 3.1 E[|S|] ≤ (1 + α ln(∆ + 1))|S∗|

That is, in expectation, S is at most (1 + α ln(∆ + 1)) times larger than the size of an MDS of G.
To prove theorem 1, we first show

4 Lecture 17: Global Infrastructure

Figure 1: Producing a solution for MDS from a solution for LP1

Claim 3.2 Let x∗ be an optimal solution to LP1. Then |S∗| ≥
∑n

i=1 x∗
i .

Proof. Create an n-vector x(S∗), where x
(S∗)
i = 1 if and only if vi ∈ S∗. Then, it is easy to check

that x(S∗) satisfies the constraints of LP1. Indeed, for any i ∈ [n], let Ni be the i’th row of N ,
which gives the neighbors of vi. Since S∗ is a dominating set, we know that either vi ∈ S∗, or some

neighbor vj of vi is in S∗. In the first case, we have Ni · x
(S∗) ≥ Ni,i · x

(S∗)
i = 1 · 1 = 1. In the

second case, we have Ni · x
(S∗) ≥ Ni,j · x

(S∗)
j = 1 · 1 = 1. Now, since x∗ is an optimal solution to

LP1, we have that
∑n

i=1 x∗
i ≤

∑n
i=1 x

(S∗)
i = |S∗|.

We can now prove theorem 1.

Proof. A node can join S in either line 3 or 6 of algorithm 1. Let X be the number of nodes that
join S in line 3, and let Y be the number of nodes that join S in line 6. We have

E[X] =
n∑

i=1

pi

≤

n∑

i=1

x
(α)
i · ln(δ

(2)
i + 1)

≤ ln(∆ + 1)

n∑

i=1

x
(α)
i

≤ α ln(∆ + 1)
n∑

i=1

x∗
i

≤ α ln(∆ + 1)|S∗|

The first inequality follows because of line 2 of algorithm 1. The third inequality follows because
of equation 1. The last inequality follows by claim 3.2.

To compute the expected value of Y , let qi be the probability that none of node vi’s neighbors
were added to S in step 3 of the algorithm. We compute

Lecture 17: Global Infrastructure 5

qi =
∏

j∈Ni

(1− pj)

≤
∏

j∈Ni

(1− x
(α)
j · ln(δ

(1)
i + 1))

≤

(
1−

∑
j∈Ni

x
(α)
j ln(δ

(1)
i + 1)

δi + 1

)δi+1

≤

(
1−

ln(δ
(1)
i + 1)

δi + 1

)δi+1

≤ e− ln(δ
(1)
i +1)

=
1

δ
(1)
i + 1

The expressions may look more complicated than they actually are. The first equality follows
because the neighbors of vi choose independently whether to join S, and the probability that
vj ∈ Ni does not join S is 1 − pj. The second inequality follows from the arithmetic-geometric
mean inequality, which states that for any set A of positive real numbers,

∏

x∈A

x ≤

(∑
x∈A x

|A|

)|A|

In our case, we set A = Ni, and x = −x
(α)
j · ln(δ

(1)
i + 1). The third inequality follows because

∑
j∈Ni

x
(α)
j ≥ 1, since x(α) satisfies the constraints of LP1. The last inequality follows from a

standard expression for ex.

Since a node is added to Y only in the case that none of its neighbors were added to X, then
node vi is added to Y with probability qi. Thus,

E[Y] =

n∑

i=1

qi ≤

n∑

i=1

1

δ
(1)
i + 1

To finish the proof of the theorem, we claim that

n∑

i=1

1

δ
(1)
i + 1

≤ |S∗|

This can be seen in several ways, for example by considering LP duality, as in lemma 1 of the
KW paper. More directly, one can consider, for every node v ∈ S∗, splittings its cost (of 1) equally
among its δi +1 neighbors (including itself), then summing up the cost of S∗ this way. We leave the
details to the reader. To conclude, we have shown that E[|S|] = E[X]+E[Y] ≤ (1+α ln(∆+1))|S ∗|.

Theorem 3.1 shows that if we round an α approximate solution to LP1 to an integral solution to
MDS, as in algorithm 1, then the resulting dominating set has cost at most (1+α ln(∆+1)) times
the size of the MDS.

6 Lecture 17: Global Infrastructure

3.3 Approximating LP1

We saw in the previous section that if we can find a good approximation for LP1, then we can find
a good approximation for MDS. In this section, we describe an algorithm which finds an O(k∆2/k)
approximation of LP1 in O(k2) rounds. We will describe an algorithm in which each node knows
the maximum node degree ∆. A similar, but more complicated algorithm also works when nodes
do not know ∆; see the KW paper for details. Before describing the algorithm, we note a peculiar
property of the approximation ratio. The function O(k∆2/k) is convex, and has minimum value
O(log ∆) for k = O(log ∆). It tends to infinity for k → 0 and k → ∞. This seems to suggest
that the algorithm performs arbitrarily bad if we run it for an arbitrary number of rounds, which
is clearly impossible. In fact, it is possible to show that the approximation ratio of the algorithm
approaches O(log ∆) as k →∞. We leave this as an exercise for the reader.

Figure 2: Algorithm for approximating LP1

The approximate LP algorithm is given in figure 2. It follows a natural greedy idea. Consider our
task in solving LP1: we are trying to find small values of xi which satisfy all the constraints. Each
constraint is given by a row of the matrix N . Consider a node vi with high degree; it is involved in
many constraints. By increasing xi, we can satisfy many rows of N , that is, many constraints, at
the same time. Therefore, a greedy method to solve LP1 is to increase the xi for nodes vi of high
degree. However, we do not want to increase their x values too quickly. Indeed, consider a case
where there are multiple nodes of high degree. We may be able to satisfy most of the constraints by
just increasing the x value of a few of the nodes. Another way to say this is that we would like to
break the symmetry between multiple nodes of high degree, and only select a few of them. We will
achieve the effect of symmetry breaking as follows: we increase the x values of high degree nodes
slowly. After each increase, each node vi checks to see if its local constraints have been satisfied;
that is, whether Ni · x ≥ 1. If so, vi stops increasing xi; otherwise, it continues.

Lecture 17: Global Infrastructure 7

We now compare this description with algorithm 2. We first define some terminology. At any point
during the algorithm, we say a node vi is white if

∑
j∈Ni

xj < 1. That is, vi’s constraint is not yet
satisfied. If vi’s constraint is satisfied, we say it is gray. For every node vi, the algorithm maintains
a variable δ̃(vi), which equals the number of white neighbors of vi. This is called vi’s dynamic
degree. Initially, all nodes are white, and so δ̃(vi) = δi + 1 for all vi. The algorithm consists of an
outer and an inner loop. In each iteration of the outer loop, the algorithm increases the x values
of nodes whose dynamic degree exceeds a certain threshold. In particular, in round `, where `
decreases from k − 1 to 0, it considers nodes whose dynamic degree exceeds (∆ + 1)`/k. For such
a node vi, it increases xi in the inner loop, first slowly, then faster. In particular, in iteration m
of the inner loop, where m decreases from k − 1 to 0, it sets xi ← max{xi,

1
(∆+1)m/k }. Note that

1
(∆+1)m/k increases as m decreases. After each increase of xi, vi send xi to all its neighbors. Using

the received values, it checks if it should now be colored gray; that is, whether
∑

j∈Ni
xj ≥ 1. Then,

vi sends its color to its neighbors, and updates δ̃(vi) to be the number of white neighbors.

Since there are k iterations of both the outer and inner loops, and each loop involves one lo-
cal broadcast, the algorithm finishes in O(k2) rounds. We now show that it gives an O(k∆2/k)
approximation to LP1. We need several lemmas.

Lemma 3.3 At the beginning of each iteration ` of the outer loop, we have for any node vi that
δ̃(vi) ≤ (∆ + 1)(`+1)/k .

Proof. This lemma says each node’s dynamic degree is not too large at the beginning of iteration
`. Indeed, choose any node vi, and suppose we are in iteration ` of the outer loop. Then in
the previous iteration ` + 1 of the outer loop, in the final iteration m = 0 of the inner loop, if
δ̃(vi) ≥ (∆ + 1)(`+1)/k , then we will set xi ←

1
(∆+1)m/k = 1. After this, the constraints of all

the neighbors of vi are satisfied. Therefore, all the neighbors of vi become gray, and the dynamic
degree of vi becomes 0. Thus, at the beginning of iteration `, the dynamic degrees of all nodes are
≤ (∆ + 1)(`+1)/k .

In each iteration of the outer loop, only nodes with δ̃(vi) ≥ (∆ + 1)`/k increase xi. We call such
nodes active nodes. For any vi, let a(vi) be the number of neighbors of vi which are active. We
define a(vi) = 0 if vi is gray. Note that a(vi) changes during the execution of the algorithm. We
have the following lemma.

Lemma 3.4 At the beginning of each iteration of the inner loop, we have a(vi) ≤ (∆ + 1)(m+1)/k .

Proof. This lemma says that the number of active neighbors of vi decreases during the course of
the inner loop. We show that any node vi with a(vi) > (∆ + 1)(m+1)/k is gray, and so a(vi) = 0.
Indeed, suppose a(vi) > (∆ + 1)(m+1)/k . Let vj be any active neighbor of vi in the m’th iteration;
then vj was also active in the previous, m + 1’st iteration. vj set xj ≥

1
(∆+1)(m+1)/k in the m + 1’st

iteration of the inner loop. So at the beginning of the m’th iteration, we have

∑

(j∈Ni)∧(vj is active)

xj ≥ a(vi)
1

(∆ + 1)(m+1)/k

≥ (∆ + 1)(m+1)/k/(∆ + 1)(m+1)/k = 1

8 Lecture 17: Global Infrastructure

That is, after the m + 1’st iteration of the inner loop, vi is gray.

Next, we bound the total amount of increase of all the x values in one iteration of the outer loop.
We associate a variable zi with each vi. At the beginning of every iteration of the outer loop, we
reset zi to 0. During an iteration of the outer loop, whenever a node vi increases xi, we distribute
the increase equally among the zj’s of all neighbors vj of vi which were white before the increases
of xi. Note that the sum of all the increases in the x values in an iteration of the outer loop is
equal to the sum of all the z values at the end of that iteration. We have the following.

Lemma 3.5 At the end of an iteration of the outer loop, we have zi ≤
1

(∆+1)(`−1)/k .

Proof. Note that 1
(∆+1)(`−1)/k increases as ` decreases. This lemma says the amount of increase

in all the z values in an iteration of the outer loop is not too large. To show this, consider any node
vi which is white at the beginning of the iteration. Note that zi can only increase if vi is white,
because increases in xj are only distributed among white neighbors. We divide the outer loop into
two phases. The first consists of all iterations of the inner loop where vi is still white. The second
phases consists of the iteration when vi becomes gray, and all subsequent iterations. We bound the
value zi in the two phases separately.

In the first phase, since vi is white, we have
∑

j∈Ni
xj < 1. Any neighbor vj of vi which increases

xj must satisfy the condition in line 6 of the algorithm; that is, it must have at least (∆ + 1)`/k

white neighbors. Therefore, the increase in xj is distributed among at least (∆ + 1)`/k z values.
Thus, the increase to zi during the first phase due to all its neighbors is

zi <

∑
j∈Ni

xj

(∆ + 1)`/k
≤

1

(∆ + 1)`/k

Suppose vi becomes gray in iteration m of the inner loop. Then, in the previous iteration, vi’s
active neighbors, which are the nodes which contributed to the increase in zi, increased their xj

values from at least 1
(∆+1)(m+1)/k to 1

(∆+1)m/k . Again, these increases were distributed among at

least (∆ + 1)`/k z values. Therefore, the increase to zi is at most

(∆ + 1)−m/k − (∆ + 1)−(m+1)/k

(∆ + 1)`/k
a(vi)

By lemma 3.4, we have that a(vi) ≤ (∆ + 1)(m+1)/k . Plugging this into the above formula and
also adding in the increase in zi from the first phase, we get that zi ≤

1
(∆+1)(`−1)/k .

Now, we are finally ready to prove the main theorem.

Theorem 3.6 In 2k2 rounds, algorithm 2 produces a k(∆ + 1)2/k approximate solution to LP1.

Proof. It is easy to see that algorithm 2 produces a feasible solution to LP1, because for iteration
` = 0,m = 0, if any node vi has any white neighbors (including itself), then line 6 of the algorithm
is triggered, and vi sets xi ← 1.

To see the approximation guarantee, we show that in each of the k iterations of the outer loop,
the total increase in all the x values is at most (∆ + 1)2/k. Thus, in the k iterations, the sum of all
the x values is at most k(∆ + 1)2/k.

Lecture 17: Global Infrastructure 9

By lemma 3.3, we know that at the beginning of iteration ` of the outer loop, we have δ̃(vi) ≤
(∆+1)(`+1)/k for every vi. Thus, since we only increase the z values of white nodes, then there are
at most (∆+1)(`+1)/k nonzero z values during iteration `. Also, from lemma 3.5, we know that for
any vj, zj ≤ (∆ + 1)−(`−1)/k . Thus, we have

∑

j∈Ni

zj ≤
(∆ + 1)(`+1)/k

(∆ + 1)(`−1)/k
= (∆ + 1)2/k (2)

We claim that equation 2 implies

n∑

i=1

zi ≤ (∆ + 1)2/k|S∗| (3)

where S∗ is an MDS. Indeed, we have

n∑

i=1

zi ≤
∑

i∈S∗

∑

j∈Ni

zj

≤ |S∗|(∆ + 1)2/k

Here, the first inequality follows because S∗ is a dominating set, and therefore, for any term zj in
the first sum, there exists a vi such that either vi = vj or vj ∈ Ni. In either case, zj also occurs as
a term in the second sum. The second inequality follows because by equation 2, we have that for
any vi,

∑
j∈Ni

zj ≤ (∆ + 1)2/k.

Thus, we have shown that equation 3 holds. Recall that in any iteration, the increase in the x
values is equal to the sum of the z values. Therefore, the increase in x values in iteration ` is at
most (∆ + 1)2/k|S∗|, which proves the theorem.

If we set k = O(log ∆), then algorithm 2 gives an O(log ∆) approximation to LP1, and by theorem
3.1, the expected size of the dominating set produced by algorithm 1 is within O(log2 ∆) times the
size of the MDS. Note however that these results are not the best known. The algorithm of Jia,
Rajaraman and Suel produces a O(log ∆) approximate DS in O(log n log ∆) rounds. Furthermore,
the algorithm of Bartal, Byers and Raz, and an improved algorithm by Kuhn and Wattenhofer
compute an 1+ ε approximate solution to any positive LP, including LP1, in polylogarithmic time.
However, for small (e.g. constant) values of k, the KW algorithm is the best known.

What Cannot be Computed Locally!

We now give a very brief overview of the Kuhn, Moscibroda and Wattenhofer paper showing
that problems like minimum vertex cover (MVC)1 and minimum dominating set (MDS) cannot
be approximated well if we use only a few rounds. In particular, they show that any algorithm
which only runs for k rounds cannot approximate MVC and MDS to better than a factor of
Ω(nc/k2

/k) and Ω(∆1/k/k), where n and ∆ denote the number of nodes and the largest degree of

1The MVC problem consists of finding the smallest set of vertices in a graph such that for every edge in the graph,

at least one endpoint of the edge is in the set.

10 Lecture 17: Global Infrastructure

any node, respectively. Some of these lower bounds are tight or nearly tight. For example, Kuhn
and Wattenhofer have shown an algorithm which approximates MVC to within polylogarithmic
factors in O(log ∆/ log log ∆) rounds, matching the lower bound.

Note that this overview does not, and is not meant to do justice to this very interesting and
important, though perhaps slightly technical paper. We will just give the main ideas behind the
result, so that the interested reader might find the actual paper somewhat easier to understand.

The basic idea for the lower bound is as follows. In k rounds, a node can receive messages from
nodes which are at most k hops away. Based on these messages, the node must make some decision,
e.g. whether to join the MVC. Another way to say this is that the node’s decision is completely
determined by the topology of its k-hop neighborhood. Therefore, if two nodes both run for k
rounds and see the same k-hop topology, they will make the same decision. The KMW lower
bound is for the MVC problem (it proves lower bounds for other problems by reduction), and
consists of constructing a graph such that two sets of node, one large and one small, both see the
same k-hop topology. Therefore, given any algorithm which only runs for k rounds, there is an
execution of the algorithm in which both sets of nodes must decide to join the MVC (the sets
cannot both not join the MVC because then not all edges would be covered). However, in the
minimum VC, it suffices for the smaller set of nodes to join the VC. Therefore, the approximation
ratio of the algorithm is at least the size of the large set divided by the set of the small set.

In a bit more detail, to show the lower bound for any particular k, the paper starts by constructing
a cluster tree of height k + 2. This tree is constructed in a way that the root of the tree, which we
call v0, and one of its children, v1, see the same topology for up to k hops. Then, each node in the
cluster tree is replaced by a set (cluster) of nodes. In particular, the root of the tree is replaced
by δ2k nodes, for some δ, and the number of nodes in the cluster for a node distance d away from
the root is δ2k−d. After replacing nodes in the cluster tree by clusters of nodes, we also replace
edges in the cluster tree by sets of edges. In particular, if (v, w) is an edge in the cluster tree, and
v and w are replaced by clusters C(v) and C(w), then (v, w) is replaced by the edges of a bipartite
graph with vertex sets C(v) and C(w). The bipartite graph is regular, meaning that all nodes in
each bipartition have the same degree. The degrees need to be carefully chosen. The idea at this
point is that the new graph, which we call the cluster graph, inherits the properties of the cluster
tree. Namely, all the nodes in C(v0), the cluster replacing v0, are supposed to have the same k hop
view as all the nodes in C(v1). However, it may be difficult to show this directly. To make the
task easier, we perform the so called Lazebnik-Ustimenko transformation on the cluster graph to
increase its girth to 2k +1. The girth of a graph is the length of the shortest cycle it contains. In a
graph of girth 2k + 1, the k-hop neighborhood of every node looks like a tree. This makes proving
the equivalence of views between the nodes in C(v0) and C(v1) easier (actually, when performing
the LU transformation, the clusters C(v0) and C(v1) are transformed into other sets of nodes). At
this point, the paper goes through a technically detailed proof that the views from C(v0) and C(v1)
actually are equal. Thus, we conclude that for any k round algorithm, there is some execution in
which both the nodes of C(v0) and C(v1) are included in the vertex cover. However, it turns out
that the minimum vertex cover only needs to include the nodes of C(v1). Recall that |C(v0)| = δ2k

while |C(v1)| = δ2k−12, because v1 is one hop away from v0 in the cluster tree. Therefore, the
vertex cover the algorithm computes is at least δ times larger than necessary. It turns out that δ
can be chosen to make the claimed lower bounds work out.

2Actually, I fudged some of these numbers to simplify the discussion.

