6.875/18.875 Cryptography and Cryptanalysis February 4, 2004

Handout 4: Definitional Exercises
Instructor: Silvio Micali
Teaching Assistant: abhi shelat

These definitional exercises are due in class on Monday, February 9, 2004.
You will enjoy Monday's lecture if you turn in a solution to the following two definitional problems. You can refer to Handout 3 for a primer on our notation.

Definitional problem 1

$$
\begin{aligned}
& \forall I_{p p t}, \forall c>0, \exists k_{c} \text { such that } \forall k>k_{c} \\
& \operatorname{Pr}\left[x \leftarrow\{0,1\}^{k} ; y \leftarrow f(x) ; z \leftarrow I_{p p t}(y): f(z)=y\right]<k^{-c}
\end{aligned}
$$

Some of you objected to the fact that the parameter k_{c} depended on the particular inverting algorithm $I_{p p t}$ (which, however was necessary because this algorithm could have enough states to code the value of f on all inputs of length less than some particular constant).

Try to find a "less objectionable" definition using the following suggestions:

1. An F-family of non-uniform polynomial time machines is an infinite sequence of machines, M_{1}, M_{2}, \ldots where F is a monotonically increasing function from natural number to natural numbers, the description length of M_{i} is less than $F(i)$, and M_{i} is only run on inputs of length i and terminates in less than $F(i)$ steps.
2. Make a strong non-uniform assumption about your inverting algorithm, and remember that 2^{300} upper bounds the number of particles in the universe.

Definitional problem 2

Define a trap-door permutation using the notation given in class.

