6.875/18.875 Cryptography and Cryptana	lysis	February 4, 2004
Handout 4: Definitional Exercises		
Instructor: Silvio Micali	Teaching Assa	istant: abhi shelat

These definitional exercises are due in class on Monday, February 9, 2004.

You will enjoy Monday's lecture if you turn in a solution to the following two definitional problems. You can refer to Handout 3 for a primer on our notation.

Definitional problem 1

$$\forall I_{ppt}, \ \forall c > 0, \ \exists k_c \text{ such that } \forall k > k_c$$

$$\Pr[x \leftarrow \{0,1\}^k; y \leftarrow f(x); z \leftarrow I_{ppt}(y): f(z) = y] < k^{-c}$$

Some of you objected to the fact that the parameter k_c depended on the particular inverting algorithm I_{ppt} (which, however was necessary because this algorithm could have enough states to code the value of f on all inputs of length less than some particular constant).

Try to find a "less objectionable" definition using the following suggestions:

- 1. An *F*-family of non-uniform polynomial time machines is an infinite sequence of machines, M_1, M_2, \ldots where *F* is a monotonically increasing function from natural number to natural numbers, the description length of M_i is less than F(i), and M_i is only run on inputs of length *i* and terminates in less than F(i) steps.
- 2. Make a strong non-uniform assumption about your inverting algorithm, and remember that 2^{300} upper bounds the number of particles in the universe.

Definitional problem 2

Define a trap-door permutation using the notation given in class.