
6.869 Advances in Computer Vision: Learning and Interface 1

Problem Set 4
Assigned: 04/14/2005

Due: 04/28/2005

Please submit an electronic copy of your writeup and code for each problem
to 6869-submit@csail.mit.edu.

Problem 1 Support Vector Machine

In this problem you will use an SVM to classify two types of images: natu-
ral landscape and man-made structure. The feature used is a simple global
statistic: the histogram of gradient direction weighted by gradient magni-
tude. (You can use extractfeature.m to extract the features from images.
16-bins is found to perform best.) For convenience, features are already ex-
tracted from all images and saved in features.mat. In this file, nttrain
mmtrain nttest mmtest are the natural landscape training set, man-made
structure training set, natural landscape test set and man-made structure
test set respectively. They are all 16×100 matrices, with columns as fea-
tures. The first columns of nttrain mmtrain nttest mmtest correspond
to ‘train nt001.jpg’, ‘train mm001.jpg’, ‘test nt001.jpg’ and ‘test mm001.jpg’
respectively, and so on.

A widely used SVM implementation is available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm. This LibSVM is a C im-
plementation. As linked from the webpage, a Matlab interface package is
available at http://www.ece.osu.edu/∼maj/osu svm. You will use this
package for this problem.

(a) First, do PCA on all features from the 200 training samples together.
Project features to the first two principal components. Remember to
subtract the mean before projection. The resulting 2D coefficients will
be inputs to the SVM. This gives classification in a low-dimensional
subspace.

Try both polynomial-kernel and radial basis kernel SVM. For consis-
tency, use C-SVC type of SVM, use +1 as one class label and -1 for
the other. For polynomial-kernel SVM, use 3rd-degree kernel with
‘Gamma’=1 and ‘Coefficient’=0. For radial basis kernel SVM, use



6.869 Advances in Computer Vision: Learning and Interface 2

‘Gamma’=1. In both cases, You should try to train and test with sev-
eral different parameter of ‘C’, such as [1 10 100 1000].(‘C’ sets the
trade-off between the size of margin and the error tolerance on training
samples.) For each ‘C’, use the provided function svm plot.m{preferred}
or SVMPlot.m in the package to plot the data, the support vectors and
decision boundary. Attach the plots in your write-up.

Write down the error rates on the training set and test set for each ‘C’.
For each SVM, which ‘C’ gives the best performance on the test set?
Does it give the lowest error rate on the training set? {In practice, to
select reasonable model parameters, techniques such as MDL and cross-
validation will be used, but you don’t need to implement these here.}

(b) Now let’s examine the role of the parameter ‘Gamma’ for radial basis
kernel SVM. Fix ‘C’ as 1, try ’Gamma’ = [0.001 1000]. For each
case, draw the decision boundary and write down classification error
rates on training and test sets. What do you observe?

(c) The values of the discriminant function indicate the ”easiness” of cor-
rectly classifying corresponding objects. (The discriminant function
is the function inside the sgn() of the SVM decision function.) For
the positive class, the larger the value is, the easier the sample to
be classified. Vice versa for the negative class. Use the provided
svm discrim func.m to compute these values.

For radial basis kernel SVM, identify the hardest samples (one from
the positive class, one from the negative class) in the training set and
test set respectively. Give a brief justification.

(d) Extra credit

Can you think of a representation for the images that might give a
better classification performance? Does it?

Problem 2 Image Segmentation

In this problem you will compare the performance of two different clustering
algorithms for image segmentation: k-means and mean-shift. The k-means
algorithm is discussed in Chapter 14 of Forsyth and Ponce. The mean-shift
image segmentation algorithm is discussed in the paper, D. Comaniciu and
P. Meer: ”Robust Analysis of Feature Spaces: Color Image Segmentation”,



6.869 Advances in Computer Vision: Learning and Interface 3

provided as additional reading.

This problem is structured into two parts. The first part focuses on the im-
plementation of the k-means and mean-shift algorithms as general nD-data
point clustering algorithms. The second part applies these algorithms to per-
form image segmentation.

k-Means and Mean-Shift Clustering

(a) Implement the k-means clustering algorithm described as Algorithm
14.5 in Forsyth and Ponce. Your function should have the following
syntax:

function [labels, means] = kmeans(data, k)

where data is a matrix storing the n-dimensional data as its column
vectors and k is the number of desired clusters you wish the algorithm
to form. The cluster labels are returned as labels, a vector that has
an entry for each data column of data storing for each data point an
associated cluster label. means is a matrix storing the centers of each
cluster as its columns.

The MATLAB data file pts.mat stores a set of 3D points belonging
to two 3D Gaussians. Test and debug your algorithm using this data
set with k = 2. Plot the resulting clusters using the provided function
plot3dclusters.

(b) The mean-shift algorithm is discussed in the paper by Comaniciu and
Meer assigned as additional reading. Below we provide the details of
an implementation of the mean-shift algorithm.

As discussed in the paper, the mean-shift algorithm clusters an n-
dimensional data set by associating each point to a peak of the data
set’s probability density. For each point, mean-shift computes its as-
sociated peak by first defining a spherical window at the data point of
radius r and computing the mean of the points that lie within the win-
dow. The algorithm then shifts the window to the mean and repeats
until convergence, i.e. the shift is under some threshold ε (we found
ε = 0.01 to work well). With each iteration the window will shift to a
more densely populated portion of the data set until a peak is reached,



6.869 Advances in Computer Vision: Learning and Interface 4

where the data is equally distributed in the window. Implement the
peak searching processes as the function

function peak = findpeak(data, idx, r)

where data is the n-dimensional data set as before, idx is the column
index of the data point for which we wish to compute its associated
density peak and r is the search window radius. The algorithm’s de-
pendence on r will become apparent from the experiments performed
below.

Implement the mean-shift function, which calls findpeak for each point
and then assign a label to each point according to its peak. This
function should have the syntax

function [labels, peaks] = meanshift(data, r)

where labels are the same as for part (a) and peaks is a matrix storing
the density peaks found using meanshift as its columns. Note the mean-
shift algorithm requires that peaks are compared after each call to
findpeak and for similar peaks to be merged. For our implementation
of meanshift, we will consider two peaks to be the same if the distance
between them is ≤ r/2. Also, if the peak of a data point is found to
already exist in peaks then for simplicity its computed peak is discarded
and it is given the label of the associated peak in peaks.

Debug your algorithm using the data set from part (a) with r = 2 (this
should give two clusters). Plot your result using the plot3dclusters

function.

(c) Using the data set stored by pts.mat run k-means with k = 1, 2, 4, 8
and mean-shift with r = 1, 2, 4, 5, 10. Plot the results of k-means and
mean-shift in two separate subplots labelling each plot with its corre-
sponding k or r value. Observe the results and discuss the differences
between each of the algorithms. How is varying the search window ra-
dius r in mean-shift different from varying the k parameter of k-means?
How are they the same?

(d) As implemented, the mean-shift algorithm of part (b) is too slow to
be realized for image segmentation. We will therefore incorporate the
following two speedups into our implementation. Upon finding a peak,



6.869 Advances in Computer Vision: Learning and Interface 5

X

Basin of Attraction

Points Associated with Peak

Starting Point
x

Search Path

r/4

Peak

(a) (b)

Figure 1: Speedups incorporated into the mean-shift algorithm: (a) basin of
attraction, (b) points along the search path are associated with the converged
peak.

the first speedup will be to associate each data point that is at a dis-
tance ≤ r from the peak with the cluster defined by that peak. This
speedup is known as basin of attraction and is based on the intuition
that points that are within one window size distance from the peak
will with high probability converge to that peak (see Figure 1(a)). The
second speedup is based on a similar principle, where points that are
within a distance of r/c of the search path are associated with the con-
verged peak, where c is some constant value (see Figure 1(b)). We will
choose c = 4 for this problem.

Incorporate the above speedups into your mean-shift implementation
by modifying your implementation from part (b). The resulting modi-
fied function should have syntax

function [labels, peaks] = meanshift opt(data, r).

To realize the second speedup you will need to modify findpeak as
follows:

function [peak, cpts] = findpeak opt(data, idx, r)

where cpts is a vector storing a 1 for each point that is a distance of
r/4 from the path, 0 otherwise.



6.869 Advances in Computer Vision: Learning and Interface 6

Image Segmentation

(a) In this section you will build upon your implementations of k-means
and mean-shift to perform image segmentation. To do so, implement
the function

function segmIm = imSegment(im, p, alg)

where im is a color input image, p is the parameter associated with
the k-means and mean-shift algorithms (i.e. p represents either k or r
depending on which algorithm is run) and alg={’kmeans’,’meanshift’}
specifies which clustering algorithm to use. In summary, this function is
constructed by reshaping the image into RGB vectors and then clusters
the resulting color data using either k-means or mean-shift depending
on the value of alg. The segmented image is then constructed using
the cluster labels and mean or peak values.

Note k-means and mean-shift both cluster using Euclidean distance
metrics. As we saw earlier in the class when we studied the MacAdam
ellipses of the CIE xy chromaticity diagram, Euclidean distance in RGB
space does not correlate well to the perceived change in color. For exam-
ple, in the green portion of the spectrum large distances are perceived
as the same color, whereas in the blue part of the spectrum a small
distance may represent a large change in perceived color (see Figures
6.13 and 6.14 of Forsyth and Ponce). For this reason we will use the
non-linear Luv color space. In this space Euclidean distance better
models the perceived change in color. In imSegment cluster the image
data in the Luv color space by first converting the RGB color vectors
to Luv using the provided MATLAB function rgb2luv. Then convert
the resulting cluster centers back to RGB using the function luv2rgb.

(b) Segment the images sunset.bmp and terrain.bmp using both k-means
and mean-shift with k = 3, 5, 7, 10 and r = 5, 10. For each segmenta-
tion method, display the results of each segmentation in a subplot,
labelling each image with its corresponding k or r value. What effect
does varying k and r have on the resulting segmentations? Compare the
regions formed by k-means for different values of k. How are these re-
gions different than those formed by mean-shift for the different values



6.869 Advances in Computer Vision: Learning and Interface 7

of r? Explain. Note, although more efficient implementations exist,
the above simplified implementation of mean-shift may take several
minutes to run for the provided input images.


