
6.869 Advances in Computer Vision: Learning and Interfaces 1

Problem Set 1
Assigned: 02/15/2005

Due: 02/24/2005

Problem 1 Camera Calibration

(a) Original image. (b) Detected features.

Figure 1: Input image and detected features.

The goal of this problem is to implement a linear calibration algorithm in
MATLAB based on the method described in Section 3.2 (Forsyth and Ponce).
Provided an input image, we want to extract the intrinsic (focal length and
center of image) and extrinsic (rotation and translation) parameters of the
camera used to grab this image. We assume no radial distortion.

A typical way to calibrate a camera is to take a picture of a calibration
object, find 2D features in the picture and derive the calibration from the
2D features and their corresponding positions in 3D. In our case, we use
a 2m-wide cube as calibration object textured with a checkerboard pattern
(see Figure 1(a)). We search in the image (of size 600x600) for the 2D
features corresponding to corners of the checkerboard. Figure 1(b) shows
these features.

Since we know its exact size (2m), we can find the exact 3D position of
each 2D feature relative to the center of the cube. This process of finding
correspondences is simple but time consuming. We did this part of the
work for you. Features2D.mat and Features3D.mat contain the 2D corner
features and the corresponding 3D positions.



6.869 Advances in Computer Vision: Learning and Interfaces 2

(a) Your first task is to write a MATLAB function which takes these two
lists as input and returns the calibration parameters as output. Your
function should have the following syntax:

function [α, β, θ, u0, v0, R, t] = calibrate(f2D, f3D)

where α and β are the horizontal and vertical scale factors of the camera
CCD (in pixels), θ is the camera skew (in radians), u0 and v0 are
the center of the image (in pixels), and [R t] is the relative rigid
transformation between the center of the cube and the camera. Also
compute the camera focal length, f , in meters. The size of the camera
CCD is (1 x 1) square inches and its pixels are square (i.e. α = β).

(b) To check your solution create the function,

function f2D = pcamview(f3D, α, β, θ, u0, v0, R, t)

where f2D are the 2D projections of the points f3D, and the cam-
era intrinsic and extrinsic parameters are as defined above. Using
this function project the provided 3D features onto the camera fo-
cal plane. Check your solution from part (a) by superimposing the
projected points onto the original image checkercube.bmp.

Please submit the files calibration-[last name].m and pcamview-[last n

ame].m by email to 6869-submit@csail.MIT.EDU. In your problem set so-
lution, write the values (α, β, θ, f, u0, v0, R and t) you found using
the cube data set. Also include the result image of part (b) and a printout of
your code.

Problem 2 Image Pyramids

This problem uses pyramid image processing. Download and install the mat-
labPyrTools from http://www.cns.nyu.edu/~eero/software.html. When
forming pyramid decompositions for this problems, you may always use the
default decomposition filters. For this problem submit your MATLAB code
and include a printout.

Subjectively, our visual world appears to us to be high resolution every-
where. However, we have much higher spatial resolution in the center of our



6.869 Advances in Computer Vision: Learning and Interfaces 3

(a) (b)

Figure 2: (a) Measures of acuity. (b) Plots of eccentricity versus accuity.

field of view than in the periphery. In this problem, we will synthesize an
image approximating our visual resolution as a function of eccentricity.

Figure 2 shows a plot of the minimum angle resolvable as a function of
the visual eccentricity. The visual eccentricity is measured in degrees away
from the center of fixation. (From Rodieck, ”The First Steps in Seeing”,
Sinauer, 1998).

Approximate acuity, a, in minutes of arc (60 minutes to a degree) as a
function of eccentricity, e, in degrees, by the expression,

a = 0.23e + 0.7. (1)

We will create an image with the effective spacing of the pixels equal to the
angular size of the acuity limit. In the figure, that limit is defined as the
white space between two ends of a circle. Adjacent black, white, black pixels
could approximately represent that circle opening if the pixel spacing were
equal to the angular size of the acuity limit.

Assume that the image (or monitor) is square, and that you view it from a
distance of two times the length of one side of the image. Where convenient,
you may assume angles are small enough so that tan(θ) ≈ θ.

(a) How many evenly spaced pixels per side does the image need to have
in order that the highest resolution part of the image has one pixel per
length of finest acuity? Assume that the highest resolution image point
lies at half the maximum acuity, where maximum acuity is as specified
by (1).

(b) Let the upper left corner of the image be (0,0), and the right and bottom
edges of the picture be at a distance 1 from this corner. Assume that



6.869 Advances in Computer Vision: Learning and Interfaces 4

the upper left corner is the center of fixation. What effective pixel
spacing, as a function of these units, causes the pixel spacing to equal
the spatial acuity for the corresponding eccentricity?

(c) We can approximate images of this resolution by using a Gaussian
pyramid, which generates images at different numbers of pixel samples,
dividing the number of pixels by two at each level of the Gaussian
pyramid. Start from an image at the full resolution of part (a). Each
pyramid level increases the effective size of its pixels by a factor of two
in each dimension. As a function of the coordinate system used in (b),
by how many factors of two should the resolution of the original image
be reduced as a function of position in the image in order to simulate
the human visual acuity, assuming the viewer stares at the upper left
corner of the image?

(d) The expression in (c) involves fractional pyramid levels. We can visually
approximate images at those intermediate resolution levels by linearly
interpolating between our Gaussian pyramid levels. On the class web
site is a 2000x2000 image, which should be more than enough pixels
for you. Crop that image to the desired resolution such that the up-
per left corner will be at half the maximum visual acuity, when viewed
from 2 picture lengths away. Use the Gaussian pyramid to create an
image that simulates the fall-off in visual acuity, assume the fixation
point is at the upper left corner. At any given pixel, determine the
coefficients for interpolating between images by linearly interpolating
the corresponding pixel dimensions.

Hint: You will want to use the upBlur function to transform the Gaus-
sian pyramid levels to all have the same number of pixels. Assume that
a pyramid level after upBlur has effectively the same number of pixels
(in terms of picture content) as the original pyramid band before the
upBlur operation. That is a reasonable approximation (take 6.341 for
the details that we’re glossing over here).

Problem 3 Texture Synthesis

In this problem you will implement the Efros and Leung algorithm for
texture synthesis discussed in Section 9.3 of Forsyth and Ponce. In addition



6.869 Advances in Computer Vision: Learning and Interfaces 5

to reading the textbook you may also find it helpful to visit Efros’ texture syn-
thesis website: http://www.cs.berkeley.edu/~efros/research/synthesi
s.html, from which many of the implementation details described below can
be found.

As discussed in class, the Efros and Leung algorithm synthesizes a new
texture by performing an exhaustive search of a source texture for each syn-
thesized pixel in the target image, in which sum-of-squared differences (SSD)
is used to associate similar image patches in the source image with that of
the target. The algorithm is initialized by randomly selecting a 3x3 patch
from the source texture and placing it in the center of the target texture.
The boundaries of this patch are then recursively filled until all pixels in the
target image have been considered.

Implement the Efros and Leung algorithm as the following MATLAB
function:

synthIm = SynthTexture(sample, w, s)

where sample is the source texture image, w is the width of the search window,
and s=[ht wt] specifies the height and width of the target image synthIm.
As described above, this algorithm will create a new target texture image,
initialized with a 3x3 patch from the source image. It will then grow this
patch to fill the entire image. As discussed in the textbook, when growing
the image un-filled pixels along the boundary of the block of synthesized val-
ues are considered at each iteration of the algorithm. A useful technique for
recovering the location of these pixels in MATLAB is using dilation, a mor-
phological operation that expands image regions (it performs the opposite
function of the erode operation from the previous problem set). Use MAT-
LAB’s imdilate and find routines to recover the un-filled pixel locations
along the boundary of the synthesized block in the target image.

In addition to the above function we ask you to write a subroutine that for
a given pixel in the target image, returns a list of possible candidate matches
in the source texture along with their corresponding SSD errors. We ask this
function to have the following syntax:

[bestMatches, errors] = FindMatches(template, sample, G)

where bestMatches is the list of possible candidate matches with correspond-
ing SSD errors specified by errors. template is the w × w image template
associated with a pixel of the target image, sample is the source texture im-
age, and G is a 2D Gaussian mask discussed below. This routine is called by



6.869 Advances in Computer Vision: Learning and Interfaces 6

SynthTexture and a pixel value is randomly selected from bestMatches to
synthesize a pixel of the target image. To form bestMatches accept all pixel
locations whose SSD error values are less than the minimum SSD value times
(1+ ε). To avoid randomly selecting a match with unusually large error, also
check that the error of the randomly selected match is below a threshold δ.
Efros and Leung use threshold values of ε = 0.1 and δ = 0.3.

Note template can have values that have not yet been filled in by the
image growing routine. Mask the template image such that these values
are not considered when computing SSD. Efros and Leung suggest using the
following image mask:

Mask = G . ∗ validMask

where validMask is a square mask of width w that is 1 where template is
filled, 0 otherwise and G is a 2D zero-mean Gaussian with variance σ = w/6.4
sampled on a w × w grid centered about its mean. G can be pre-computed
using MATLAB’s fspecial routine. The purpose of the Gaussian is to down-
weight pixels that are farther from the center of the template. Also, make
sure to normalize the mask such that its elements sum to 1.

Test and run your implementation using the grayscale source texture im-
age rings.jpg, with window widths of w = 5, 7, 13, s=[100 100] and an
initial starting seed of (x, y) = (4, 32). Explain the algorithms performance
with respect to window size. For a given window size, if you re-run the algo-
rithm with the same starting seed do you get the same result? Why or why
not? Is this true for all window sizes?

Please include the synthesized textures that correspond to each window size
along with answers to the above questions and a printout of your code in your
writeup. Also, submit the files synthtexture-[last name].m and findmatch

es-[last name].m by email to 6869-submit@csail.MIT.EDU.

Problem 4 Color Representation and Matching

The Matlab data file CIE.mat contains the spectra which will be needed
for this problem. The vectors cx, cy, and cz give the CIE color matching
functions for the X, Y , and Z color coordinates, respectively (these are also
plotted in Figure 6.7 of Forsyth and Ponce). These functions are sampled at
5 nm intervals for wavelengths from 400 through 700 nm.



6.869 Advances in Computer Vision: Learning and Interfaces 7

(a) What are the CIE X, Y , and Z coordinates of the light corresponding
to the power spectrum in the vector sA? What are the normalized CIE
coordinates, x and y?

(b) Suppose you have a test color specified as a linear combination of pri-
maries at 450, 550, and 650 nm, given by (a, b, c)T , respectively. What
linear combination of light sources at 460, 510, and 590 nm is need to
match the test color?

(c) We want to specify one possible spectral power distribution of the non-
physical primary lights of the CIE color coordinate system, correspond-
ing to the color matching functions cx, cy, cz. Suppose you insist that
the spectral power of the CIE primaries be zero for all wavelengths ex-
cept at 460, 510, and 640 nm. Specify the linear combination of lights
at 460, 510, and 640 nm that corresponds to the primary lights of the
CIE color coordinate system.


