Recognizing objects and actions in images and video

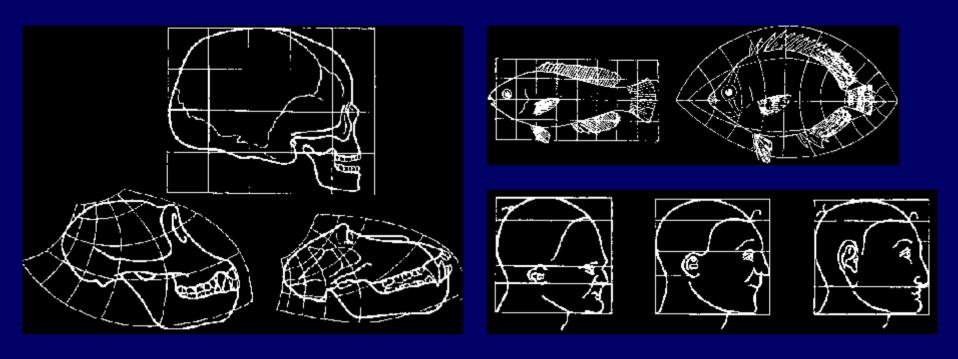
Jitendra Malik

U.C. Berkeley

Outline

- Finding boundaries
- Recognizing objects
- Recognizing actions

Biological Shape

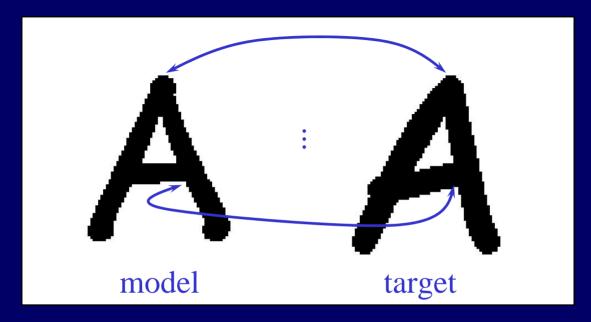


- D'Arcy Thompson: On Growth and Form, 1917
 - studied transformations between shapes of organisms

Deformable Templates: Related Work

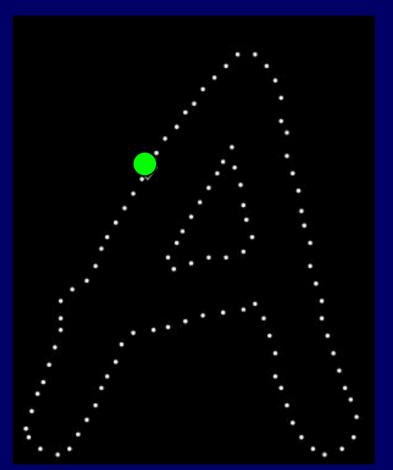
- Fischler & Elschlager (1973)
- Grenander et al. (1991)
- von der Malsburg (1993)

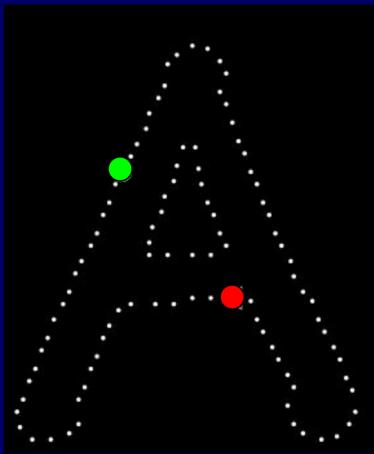
Matching Framework



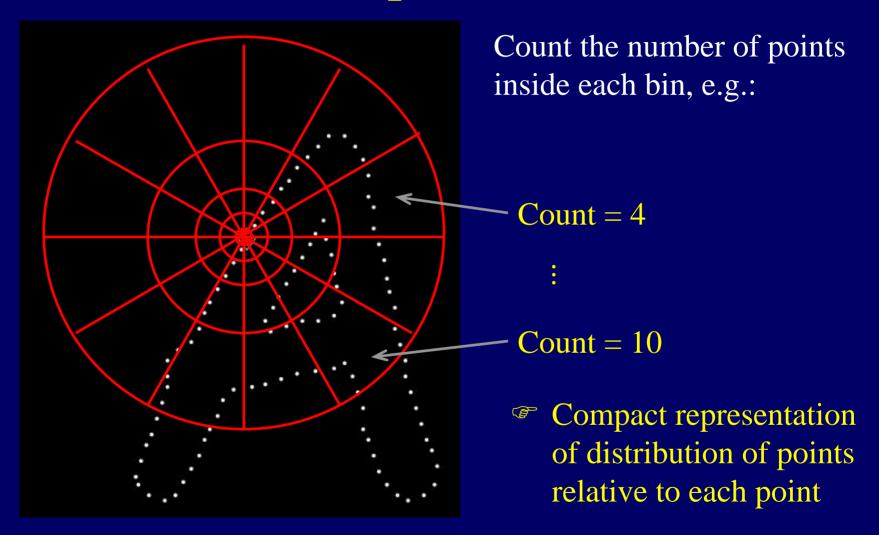
- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

Comparing Pointsets

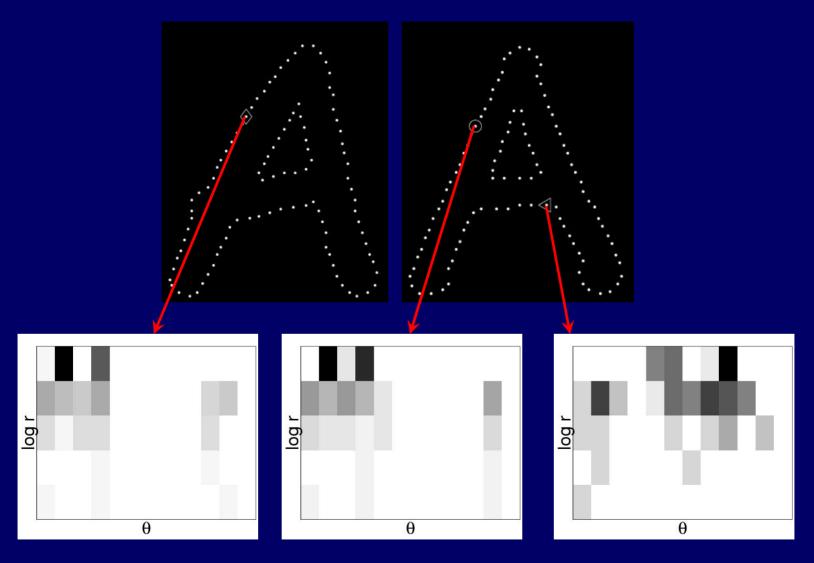




Shape Context



Shape Context

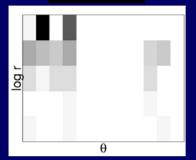


Shape Contexts

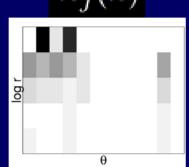
- Invariant under translation and scale
- Can be made invariant to rotation by using local tangent orientation frame
- Tolerant to small affine distortion
 - Log-polar bins make spatial blur proportional to r

Cf. Spin Images (Johnson & Hebert) - range image registration

Comparing Shape Contexts



 $h_j(k)$



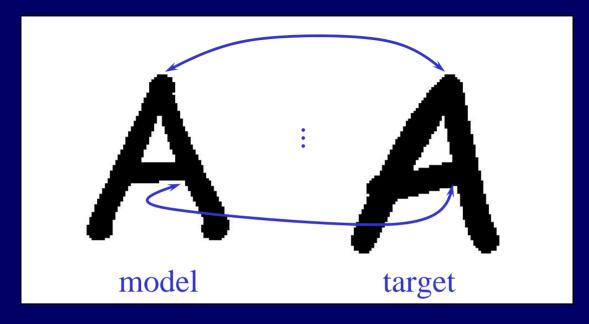
Compute matching costs using Chi Squared distance:

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

Recover correspondences by solving linear assignment problem with costs C_{ij}

[Jonker & Volgenant 1987]

Matching Framework



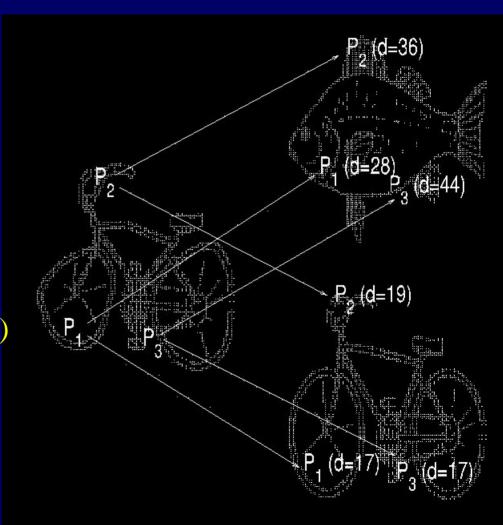
- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

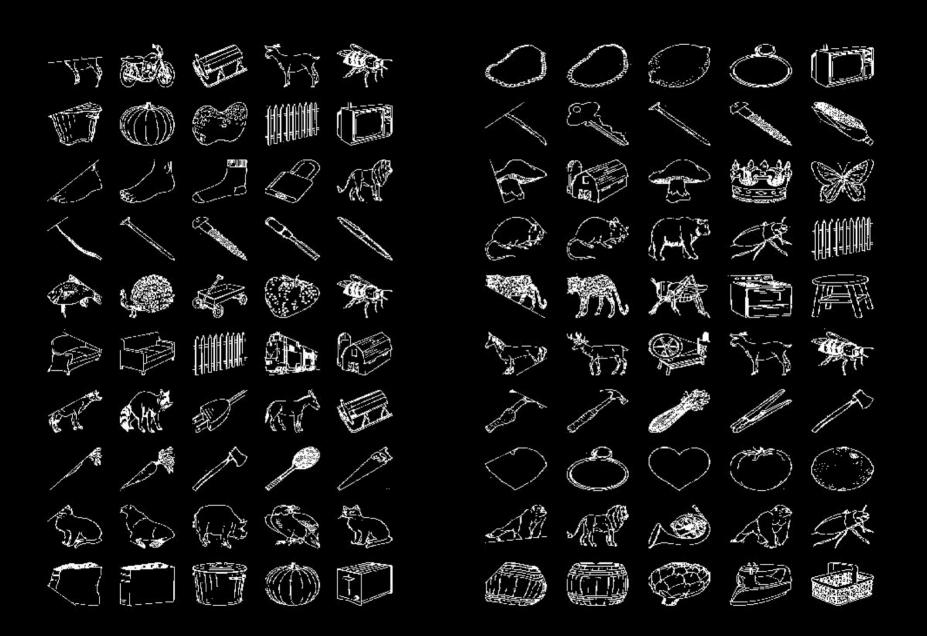
Fast pruning

• Find best match for the shape context at only a few random points and add up

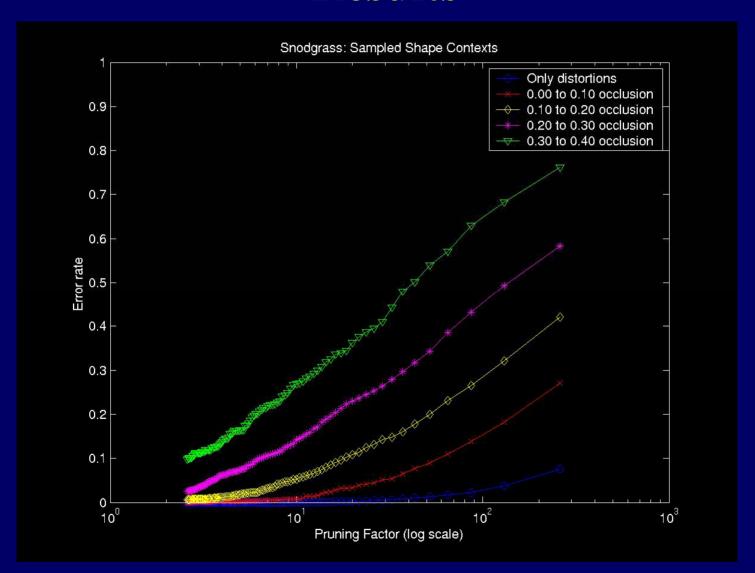
$$\operatorname{cost}_{\operatorname{dist}(S_{\operatorname{query}}, S_i)} = \sum_{j=1}^r \chi^2(SC_{\operatorname{query}}^j, SC_i^*)$$

$$SC_i^* = \operatorname{arg\,min}_u \chi^2(SC_{query}^j, SC_i^u)$$

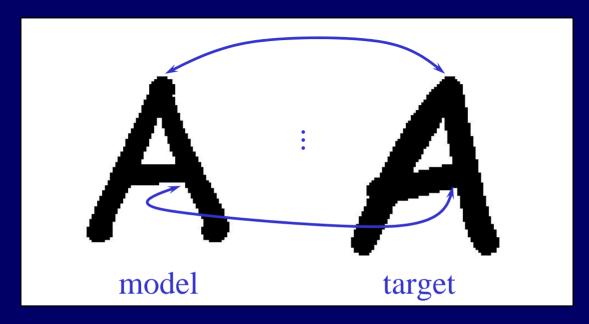




Results



Matching Framework



- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

Thin Plate Spline Model

• 2D counterpart to cubic spline:

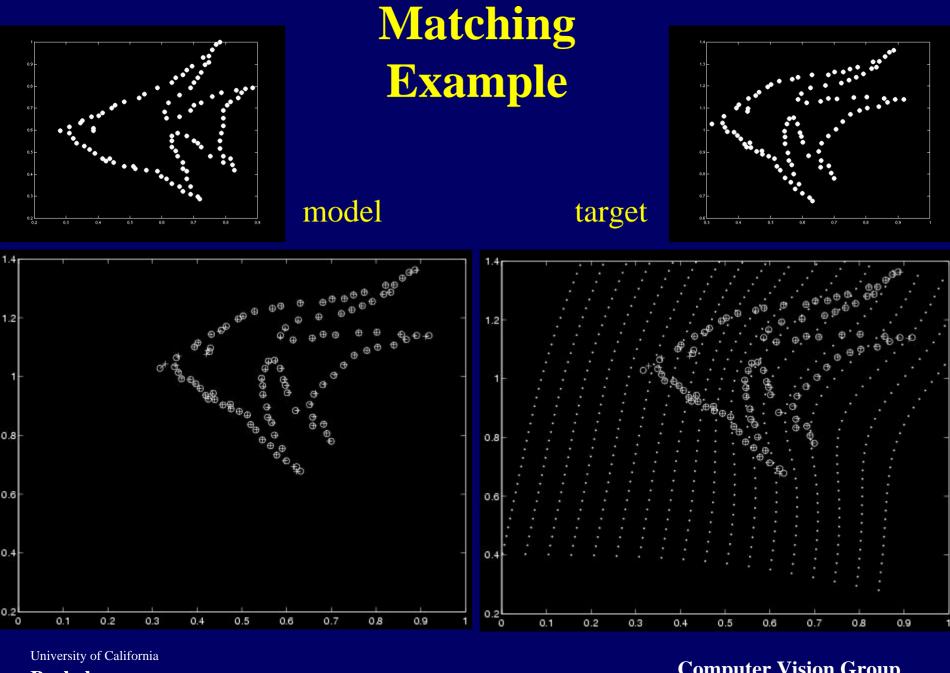
$$U(r) = r^2 \log r, \quad r > 0$$

• Minimizes bending energy:

$$I_f = \int \int_{\mathbb{R}^2} \left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 dx dy$$

- Solve by inverting linear system
- Can be regularized when data is inexact

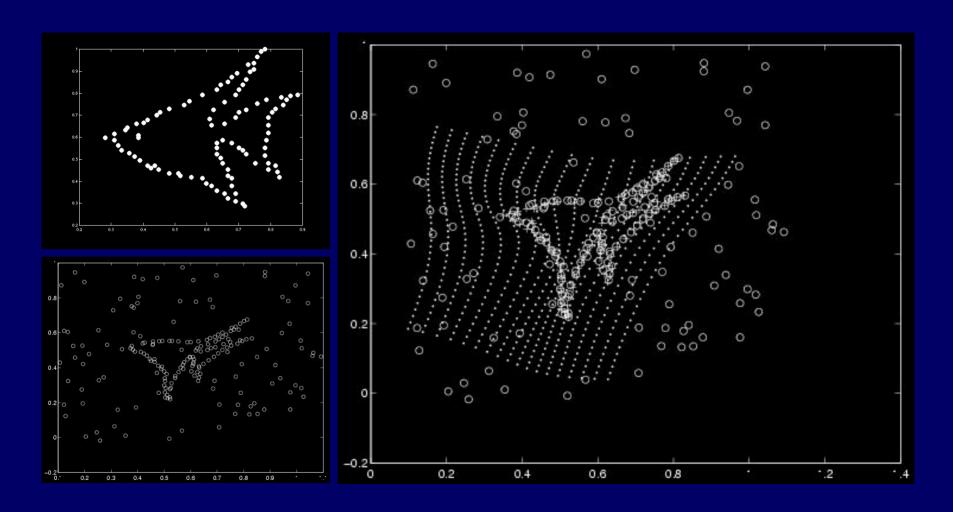
Duchon (1977), Meinguet (1979), Wahba (1991)



Berkeley

Computer Vision Group

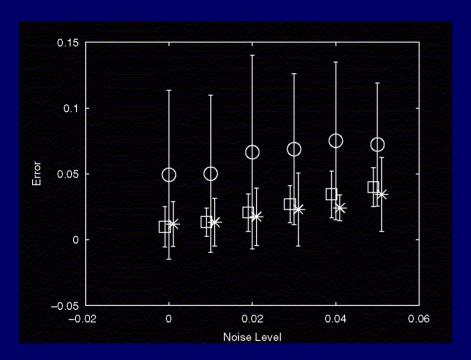
Outlier Test Example

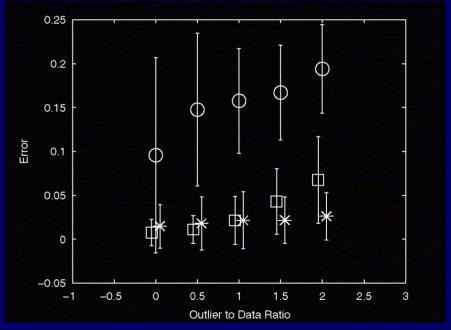


Synthetic Test Results

Fish - deformation + noise

Fish - deformation + outliers





O ICP

Terms in Similarity Score

- Shape Context difference
- Local Image appearance difference
 - orientation
 - gray-level correlation in Gaussian window
 - ... (many more possible)
- Bending energy

Object Recognition Experiments

- Handwritten digits
- COIL 3D objects (Nayar-Murase)
- Human body configurations
- Trademarks

Handwritten Digit Recognition

• MNIST 60 000:

- linear: 12.0%
- 40 PCA+ quad: 3.3%
- 1000 RBF +linear: 3.6%
- K-NN: 5%
- K-NN (deskewed): 2.4%
- K-NN (tangent dist.): 1.1%
- SVM: 1.1%
- LeNet 5: 0.95%

• MNIST 600 000 (distortions):

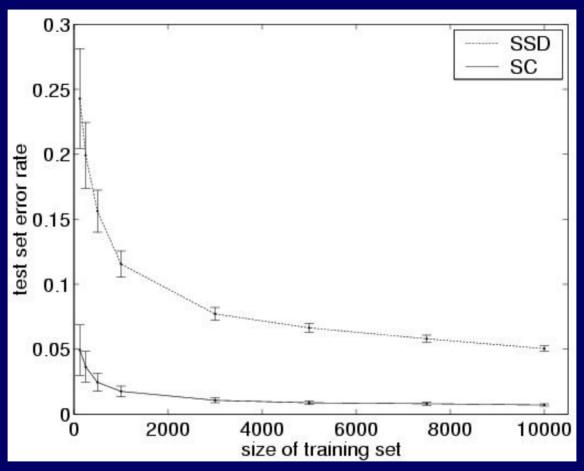
- LeNet 5: 0.8%
- SVM: 0.8%
- Boosted LeNet 4: 0.7%

• MNIST 20 000:

K-NN, Shape Context matching: 0.63%

210:9→7	448:4 → 9	583:8→3	692:8→9	717: 1 → 7 7	948:8→9	1034:8 → 0	1113: 4→6	1227: 7 → 2
1248:9 → 5	1300: 5 → 7	1320:8→3	1531:8 → 7	1682:3→7	1710:9→5 S	1791:2 → 7	3 3 3 3 3 3 3 3 3 3	1902: 9 → 4
2041:5→6	2074: 5 → 6 5	2099: 2 → 0	2131: 4 → 9	2183:1 → 2	2238: 5 → 6	2448: 4 → 9	2463: 2→ 0	2583: 9 → 7
2598:5 → 3	2655: 6 → 1	2772: 4 → 9	2940: 9 → 7	3063:8→6	3074:1 → 2	3251:2→6	3423: 6 → 0	3476: 3 → 7
3559:5 → 0	3822: 9 → 4	3851: 9 → 4	4094: 9 → 7	4164:9→7	4202: 1 → 7	4370: 9 → 4	4498: 8 → 7	4506: 9 → 7
4663:9 → 7	4732: 8 → 9	4762: 9 → 4	5736: 5 → 3	5938:5 → 3	6555:2 → 7	6572:9 → 7	6577: 7 → 1	6598: 0 → 7
6884:1 → 2	8066: 8 → 0	8280: 8 → 4	8317: 7 → 2	8528: 4 → 9	9506: 7 → 2	9643:9 → 7	9730: 5 → 6	9851:0→6

Results: Digit Recognition

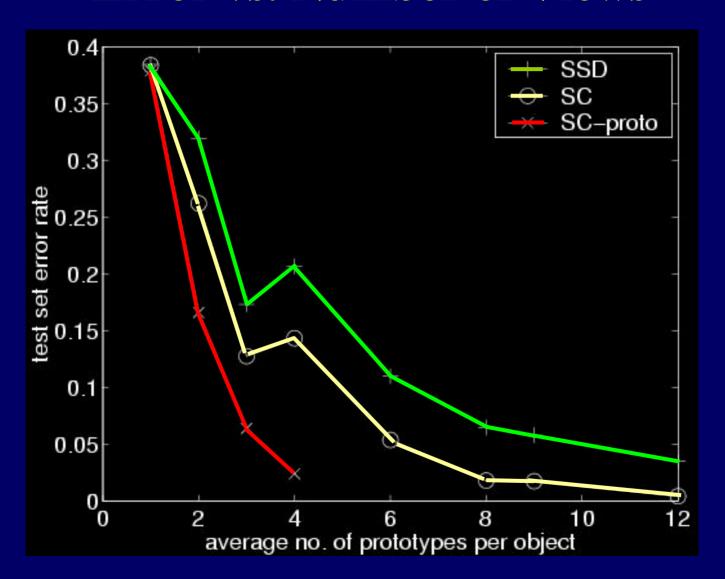


1-NN classifier using:

Shape context + 0.3 * bending + 1.6 * image appearance

COIL Object Database

Error vs. Number of Views



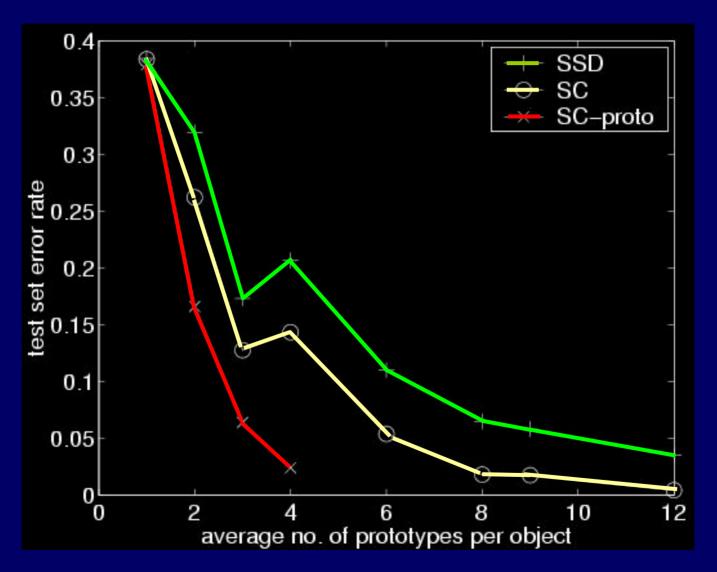
Prototypes Selected for 2 Categories

Details in Belongie, Malik & Puzicha (NIPS2000)

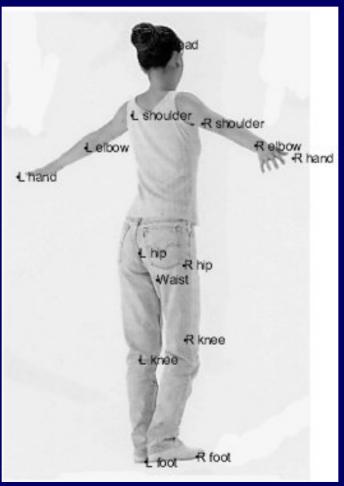
Editing: K-medoids

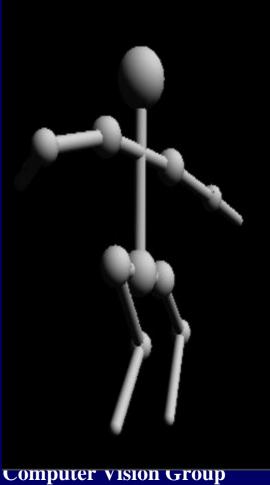
- Input: similarity matrix
- Select: K prototypes
- Minimize: mean distance to nearest phototype
- Algorithm:
 - iterative
 - split cluster with most errors
- Result: Adaptive distribution of resources (cfr. aspect graphs)

Error vs. Number of Views



Human body configurations

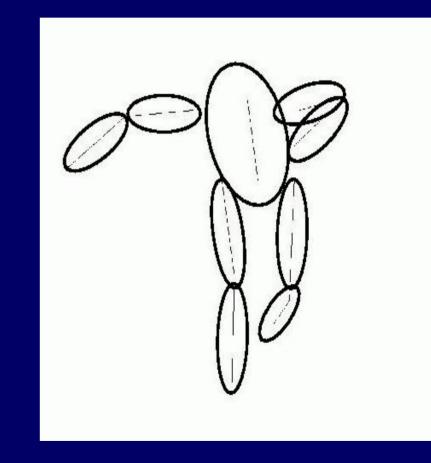




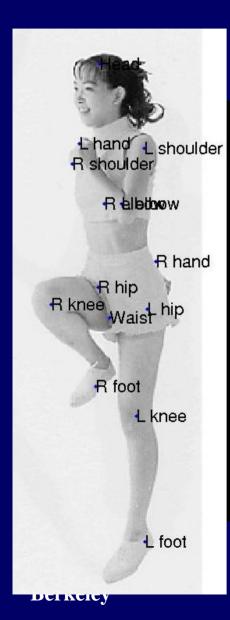
Berkeley

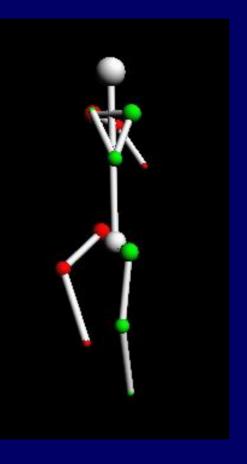
Deformable Matching

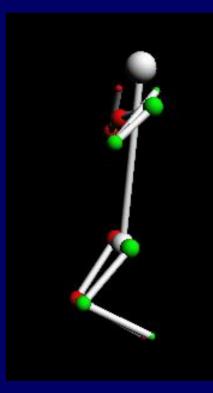
- Kinematic chain-based deformation model
- Use iterations of correspondence and deformation
- Keypoints on exemplars are deformed to locations on query image

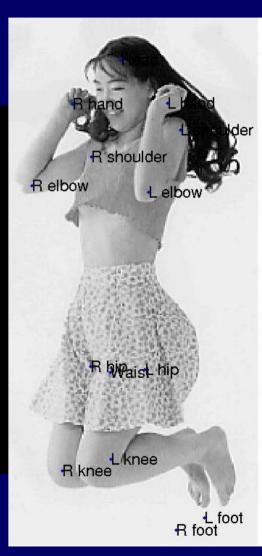


Results









Computer Vision Group

Trademark Similarity

query

query

1: 0.046

query

1: 0.046

2: 0.107

3: 0.114

query

1: 0.092

3: 0.102

Recognizing objects in scenes

Shape matching using multi-scale scanning

- Shape context computation (10 Mops)
 - Scales * key-points * contour-points (10*100*10000)
- Multi scale coarse matching (100 Gops)
 - Scales * objects * views * samples * key-points* dim-sc
 (10*1000*10*100*100*100)
- Deform into alignment (1 Gops)
 - Image-objects * shortlist * (samples)^2 *dim-sc (10*100*10000*100)

Shape matching using grouping

- Complexity determining step: find approx. nearest neighbors of 10^2 query points in a set of 10^6 stored points in the 100 dimensional space of shape contexts.
- Naïve bound of 10^9 can be much improved using ideas from theoretical CS (Johnson-Lindenstrauss, Indyk-Motwani etc)

Putting grouping/segmentation on a sound foundation

- Construct a dataset of human segmented images
- Measure the conditional probability distribution of various Gestalt grouping factors
- Incorporate these in an inference algorithm