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Outline

• Finding boundaries

• Recognizing objects

• Recognizing actions
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Biological Shape

• D’Arcy Thompson: On Growth and Form, 1917
– studied transformations between shapes of organisms
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Deformable Templates: Related Work

• Fischler & Elschlager (1973) 

• Grenander et al. (1991)

• von der Malsburg (1993)
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Matching Framework

• Find correspondences between points on shape

• Fast pruning

• Estimate transformation & measure similarity

model target

...
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Comparing Pointsets
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Shape Context
Count the number of points 
inside each bin, e.g.:

Count = 4

Count = 10

...

Compact representation 
of distribution of points 
relative to each point
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Shape Context
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Shape Contexts

• Invariant under translation and scale

• Can be made invariant to rotation by using 
local tangent orientation frame

• Tolerant to small affine distortion
– Log-polar bins make spatial blur proportional to r 

Cf. Spin Images (Johnson & Hebert) - range image registration
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Comparing Shape Contexts
Compute matching costs using 
Chi Squared distance:

Recover correspondences by 
solving linear assignment 
problem with costs Cij

[Jonker & Volgenant 1987]
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Matching Framework

• Find correspondences between points on shape

• Fast pruning

• Estimate transformation & measure similarity

model target

...
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Fast pruning

• Find best match for 
the shape context at  
only a few random 
points and add up 
cost 
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Snodgrass Results
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Results
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Matching Framework

• Find correspondences between points on shape

• Fast pruning

• Estimate transformation & measure similarity

model target

...
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• 2D counterpart to cubic spline:

• Minimizes bending energy:

• Solve by inverting linear system

• Can be regularized when data is inexact

Thin Plate Spline Model

Duchon (1977), Meinguet (1979), Wahba (1991)
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Matching
Example

model target
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Outlier Test Example
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Synthetic Test Results

Fish - deformation + noise Fish - deformation + outliers

ICP Shape Context Chui & Rangarajan
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Terms in Similarity Score
• Shape Context difference

• Local Image appearance difference
– orientation
– gray-level correlation in Gaussian window
– … (many more possible)

• Bending energy
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Object Recognition Experiments

• Handwritten digits

• COIL 3D objects (Nayar-Murase)

• Human body configurations

• Trademarks
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Handwritten Digit Recognition

• MNIST 60 000:
– linear: 12.0%
– 40 PCA+ quad: 3.3%
– 1000 RBF +linear: 3.6%
– K-NN: 5%
– K-NN (deskewed): 2.4%
– K-NN (tangent dist.): 1.1%
– SVM: 1.1%
– LeNet 5: 0.95%

• MNIST 600 000 
(distortions):
– LeNet 5: 0.8%
– SVM: 0.8%
– Boosted LeNet 4: 0.7%

• MNIST 20 000:
– K-NN, Shape Context 

matching: 0.63%
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Results: Digit Recognition

1-NN classifier using:
Shape context + 0.3 * bending + 1.6 * image appearance
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COIL Object Database
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Error vs. Number of Views
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Prototypes Selected for 2 Categories

Details in Belongie, Malik & Puzicha (NIPS2000)
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Editing: K-medoids

• Input: similarity matrix

• Select: K prototypes 

• Minimize: mean distance to nearest prototype

• Algorithm:
– iterative
– split cluster with most errors

• Result: Adaptive distribution of resources (cfr. aspect 
graphs)
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Error vs. Number of Views
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Human body configurations
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Deformable Matching

• Kinematic chain-based 
deformation model

• Use iterations of 
correspondence and 
deformation

• Keypoints on exemplars 
are deformed to locations 
on query image

Computer Vision Group
University of California

Berkeley

Results
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Trademark Similarity
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Recognizing objects in scenes
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Shape matching using multi-scale 
scanning

• Shape context computation (10 Mops)
– Scales * key-points * contour-points (10*100*10000)

• Multi scale coarse matching (100 Gops)
– Scales * objects * views * samples * key-points* dim-sc 

(10*1000*10*100*100*100)

• Deform into alignment (1 Gops)
– Image-objects * shortlist * (samples)^2 *dim-sc 

(10*100*10000*100)
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Shape matching using grouping

• Complexity determining step: find approx. 
nearest neighbors of 10^2 query points in a set 
of  10^6 stored points in the 100 dimensional 
space of shape contexts.

• Naïve bound of 10^9 can be much improved 
using ideas from theoretical CS (Johnson-
Lindenstrauss, Indyk-Motwani etc)
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Putting grouping/segmentation  on a 
sound foundation 

• Construct a dataset of human segmented 
images

• Measure the conditional probability distribution 
of  various Gestalt grouping factors

• Incorporate these in an inference algorithm


