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Local Features

Matching points across images important for:
object identification (instance recognition)
object (class) recognition
pose estimation
stereo (3-d shape)
motion estimate
stitching together photographs into a mosaic
etc

Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]

Correspondence using window matching

Points are highly individually ambiguous...

More unique matches are possible with small
regions of image.

Correspondence using window matching

Left Right

error

Criterion function:

disparity
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Sum of Squared (Pixel) Differences

(XLv yL) (XL ’dv yL)

w, and w, are corresponding m by m windows of pixels.

We define the window function :

W, (X, y)={u,v|x-2<u<x+2,y-2<v<y+2}

The SSD cost measures the intensity difference as a function of disparity :
Cxyd)= DI (UV)-leu-d v

(UV)eWy (x.y)

Image Normalization

* Even when the cameras are identical models, there
can be differences in gain and sensitivity.

 The cameras do not see exactly the same surfaces,
so their overall light levels can differ.

* For these reasons and more, it is a good idea to
normalize the pixels in each window:

I= (e D u,v) Average pixel
(U (%)
B > ) .
It oy = SIHu,v)] Window magnitude
(V)W (x5)
1oun=1 Normalized pixel

IA(Xry): Hl 1

Wi (x,y) 8

Images as Vectors

“Unwrap”
image to form
vector, using
raster scan order

W
row 1 m
m
" o2 "
Each window is a vector w
in an m? dimensional L
row 3 m

vector space.
Normalization makes
them unit length.

Image windows as vectors

Possible metrics

Distance? Wy (d )
WL

Angle?

Image Metrics

(Normalized) Sum of Squared Differences
w, (d) Con(d)= PN V) ~Tu-d ]
R @Oy (x)

= |w, —we @)
Normalized Correlation

Cocd = DI W)izu-dv)

(Uv)eWy (x,y)

=W,_-Wg(d)=cosé

d* =argmin |w, —w (d)|* = argmax, w, - we(d)




Local Features

Not all points are equally good for
matching...

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow




Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

(Review) Differential approach:
Optical flow constraint equation

Brightness should stay
constant as you track

motion [(X+udt,y+vat,t+a)=1(x,y,t)

1t order Taylor series,
valid for small &t

[(x,y,t) +udtl, +vatl, +dtl, = 1(x,y,t)

Constraint equation

ul, +vl, +1, =0

“BCCE” - Brightness Change Constraint Equation|

Aperture Problem and Normal Flow

The gradient constraint:

Lu+l v+l =0

VieU =0

Defines a line in the (u,v) space

v
Normal Flow:

I, VI

I EN “

Combining Local Constraints

ViteU =-I!

VIZeU =-1?

VI‘eU =-I}
u etc.




Lucas-Kanade: Integrate
gradients over a Patch

Assume a single velocity for all pixels within an image patch

E(u,v) = Z(Ix(x, YU+ 1, (x y)v+ It)z

= Bl

On the LHS: sum of the 2x2 outer product
tensor of the gradient vector

SviviTg ==Y v,

Local Patch Analysis

Selecting Good Features

« What’s a “good feature”?
— Satisfies brightness constancy
— Has sufficient texture variation
— Does not have too much texture variation
— Corresponds to a “real” surface patch
— Does not deform too much over time

Good Features to Track

& 3 -E
A u = b

When is This Solvable?
* A should be invertible
+ A should not be too small due to noise
— eigenvalues 1, and %, of A should not be too small
« A should be well-conditioned
— M/ &, should not be too large (i, = larger eigenvalue)

Both conditions satisfied when min(i,, &,) > ¢

Harris detector

Auto-correlation matrix

2 (L (% Y )) P MEMBIN D)

(XY )eW O Y )eW

PANCHAINCND) DU,

(i yi)eW (% Vi )ew

¢ Auto-correlation matrix
— captures the structure of the local neighborhood
— measure based on eigenvalues of this matrix
2 strong eigenvalues => interest point
 1strong eigenvalue => contour
« 0eigenvalue => uniform region
« Interest point detection
— threshold on the eigenvalues
— local maximum for localization

Selecting Good Features

A, and 2, are largg,




Selecting Good Features

Selecting Good Features

large Ay, small &,

small &;, small %, ,

Today

Interesting points, correspondence.

Scale and rotation invariant descriptors [Lowe]

CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department
University of British Columbia

Invariant Local Features

< Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

SIFT Features

Advantages of invariant local features

 Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

« Distinctiveness: individual features can be
matched to a large database of objects

¢ Quantity: many features can be generated for
even small objects

« Efficiency: close to real-time performance

« Extensibility: can easily be extended to wide
range of differing feature types, with each
adding robustness




Scale invariance

Requires a method to repeatably select points in location

and scale:

The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984; Lindeberg, 1994)

An efficient choice is to detect peaks in the difference of
Gaussian pyramid (Burt & Adelson, 1983; Crowley &
Parker, 1984 — but examining more scales)
Difference-of-Gaussian with constant ratio of scales is a
close approximation to Lindeberg’s scale-normalized
Laplacian (can be shown from the heat diffusion
equation)

Scale space processed one octave at a time

Scale : =
(rext
octave)

Scale
{first
actave)

Difference of
Gaussian Gaussian (DOG)
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Key point localization

Detect maxima and minima of
difference-of-Gaussian in scale
space

Fit a quadratic to surrounding
values for sub-pixel and sub-scale
interpolation (Brown & Lowe,
2002)

Taylor expansion around point:

T
o s

ap’ 1 @D
Dix) = Do o= x b 5xToox

Offset of extremum (use finite
differences for derivatives):
FDhan

= —

e ox

Select canonical orientation

 Create histogram of local
gradient directions computed
at selected scale

» Assign canonical orientation
at peak of smoothed
histogram

» Each key specifies stable 2D
coordinates (x, y, scale,
orientation)

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle
curvatures (Harris approach)

4 (a) 233x189 image

(b) 832 DOG extrema
(c) 729 left after peak

E value threshold

® (d) 536 left after testing
ratio of principle
curvatures

SIFT vector formation
 Thresholded image gradients are sampled over 16x16
array of locations in scale space
Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128 dimensions
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Feature stability to noise

¢ Match features after random change in image scale &
orientation, with differing levels of image noise

 Find nearest neighbor in database of 30,000 features
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Feature stability to affine change

» Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

* Find nearest neighbor in database of 30,000 features

100
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0 Nearest descriptor
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Viewpoint angle (degrees)

Distinctiveness of features

« Vary size of database of features, with 30 degree affine
change, 2% image noise

« Measure % correct for single nearest neighbor match

100
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Numbor of kiypoints in database (log scabe)

Figure 12: The traming images for two objects are shown on the lefi. These can be recognized in a

eluntered image with extensive occlusion, shown i the middle. The results of recognition are shown
on the right. A parallelogran is drown around cach recognized object showing the boundarics of the
ariginal training image under the affi ne trnrsformation solved for during recognition, Smaller squares

indicate the keypoints that were used for recognition,

A good SIFT features tutorial

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf

By Estrada, Jepson, and Fleet.




An application of SIFT features in my
own research...

The couch potato project:
Learning from looking at images.

Bill Freeman, MIT
Joint work with: Josef Sivic, Andrew Zisserman (Oxford);
Bryan Russell (MIT), Alyosha Efros (CMU).

December 18, 2004

What can you learn about
object categories by simply
looking at images?

0
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Labelled training databases

Labelling object classes in images is tedious,
and can introduce biases.

Overview of our Method

Form histogramsl

Docurnents

Discover tOpICS dmmmm—

Veseatuilary Wendy

Extracting Words

+ Find interest points using
shape adapted (white) and
maximally stable (yellow)
regions

« Map ellipses to a circle

e Compute SIFT descriptor
over circle




SIFT (scale invariant feature transforms)

David Lowe,
1JCV 2004

Visual words

* Vector quantize SIFT descriptors to a
vocabulary of 2237 “visual words”.

« Heuristic design of descriptors makes these
words somewhat invariant to:
— Lighting
— 2-d Orientation
- 3-d Viewpoint

Examples of visual words

ﬂﬂll.
EEEne
EEE
PPV

More visual words

~AANAl

Polysemy—the same word
with different meanings

RENEP ™
‘HFEERES

jelcld s

Figure 3: Polysemy. Example of a single visual word comrespond-

ing to two different (but locally similar) parts on two different ob-

jeet categories. {a) Top row shows occurrences of this visual word

on the motorbike category, bottem row on the airplane category.

The parts tend to oceur consistently on different categories, i.e. this

visual word fires mostly on the motorbike saddle and the airplane

wing. (b) Corresponding normalized frames. Note the similarity 59
of the normalized patches.

Experiment E

i '
E i -
v —— a
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Observation matrix — experiment E

piriariZtu UpsSTrvatiult itiatl tA —
experiment E
Visual T e
word #

1000 1500 20m0

Frame #

13.8 % non-zero entries

Visual o
word # - .
Frame #
13.8 % non-zero entries
61
Results: All Experiments
Ex | Categories pLSA LDA Texture
% # % # % #
A | 1,2ub 100 1 99 7 91 53
B | 1-3ub 100 2 96 40 |94 55
C |13 97 56 (96 71 |91 170
D |14 98 70 |87 365 |72 1060
E | 1-4 +bg 78 931 |77 970 |73 1174
F | 1-57-8+bg | 69 1515 |64 1458 | 47 2093

Example segmentations

Faces I Background |
Motorbikes B Background Il
Airplanes [ Background Il
Cars

111

Original images

Segmentations

All detected visual words
T
| Sk C T r
= By [EENER

000117 000306 001448 001567 001986 002359 010748 640758
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I Background |
Il Background Il
== Background 11l

Motorbikes

[ Faces
[

[ Airplanes
B cars
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Faces
Motorbikes
Airplanes
Cars

I Background |
Il Background I
[ Background Iit

Figure 11: Multiple objects an image. (a) pLSA example: Two
objects are present in this image: a motorbike (topic 1 - green )
and a car (topic 6 - red). The learned mixture coefficients P(z|d)
are (.41 (motorbikes - green), 0,02 (bg 1 - magenta), 0,16 (face -
yellow), 0.19 (bg 11 - cyan), 0.04 (bg 111 - blue), 0,14 (cars - red),
0,02 (airplane - black). In total there are 740 elliptical regions in
this image of which 95 (72 unique visual words) are shown (have
(2w, d) above 0.8). (b) LDA example: Two objects are present
in this image. a face (vellow) and a car (red). The leamed mixing
weights @ are 0.19 car (red), 0.07 motorbike (green), 0.16 airplane
(black), 0.14 background (bluc), 0.44 face (yellow).
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