Mtp://courses.csail.mit.edu/6.0	969/nyRabus.html					e 🔁 😂		
		Course Calendar						
	Lecture	Date	Description	Readings	Assignments	Material		
	1	2/1	Course Introduction Cameras and Lenses	Req: FP 1.1, 2.1, 2.2, 2.3, 3.1, 3.2	PSo out			
	2	2/3	Image Filtering	Req: FP 7.1 - 7.6				
	3	2/8	Image Representations: Pyramids	Req: FP 7.7, 9.2				
	-4	2/10	Image Statistics		PSo due			
	5	2/15	Texture	Req: FP 9.1, 9.3, 9.4	PS1 out			
	6	2/17	Color	Req: FP 6.1-6.4				
	7	2/22	Guest Lecture: Context in vision					
	8	2/24	Guest Lecture: Medical Imaging		PS1 due			
	9	3/1	Multiview Geometry	Req: Mikolajczyk and Schmid; FP 10	PS2 out			
	10	3/3	Local Features	Req: Shi and Tomasi; Lowe				

	Course Calendar						
	Lecture Date	Description	Readings	Assignments Materia			
Today	6 2/17 0	Color	Req: FP 6.1-6.4				

Why does a visual system need color?

Why does a visual system need color? (an incomplete list...)

- To tell what food is edible.
- To distinguish material changes from shading changes.
- To group parts of one object together in a scene.
- To find people's skin.
- Check whether a person's appearance looks normal/healthy.
- · To compress images

Lecture outline

• Color physics.

• Color representation and matching.

Outline

- Color physics.
- Color representation and matching.

Measure color by color-matching paradigm

- Pick a set of 3 primary color lights.
- Find the amounts of each primary, e₁, e₂, e₃, needed to match some spectral signal, t.
- Those amounts, e₁, e₂, e₃, describe the color of t. If you have some other spectral signal, s, and s matches t perceptually, then e₁, e₂, e₃ will also match s, by Grassman's laws.
- Why this is useful—it lets us:
 - Predict the color of a new spectral signal
 - Translate to representations using other primary lights.

How to compute the color match for any color signal for any set of primary colors

- Pick a set of primaries, $p_1(\lambda), p_2(\lambda), p_3(\lambda)$
- Measure the amount of each primary, $c_1(\lambda)$, $c_2(\lambda)$, $c_3(\lambda)$ needed to match a monochromatic light, $t(\lambda)$ at each spectral wavelength λ (pick some spectral step size). These are called the color matching functions.

Are the color matching functions we observe obtainable from some 3x3 matrix transformation of the human photopigment response curves?

Since we can define colors using almost any set of primary colors, let's agree on a set of primaries and color matching functions for the world to use...

CIE XYZ color space

- · Commission Internationale d'Eclairage, 1931
- "...as with any standards decision, there are some irratating aspects of the XYZ color-matching functions as well...no set of physically realizable primary lights that by direct measurement will yield the color matching functions."
- "Although they have served quite well as a technical standard, and are understood by the mandarins of vision science, they have served quite poorly as tools for explaining the discipline to new students and colleagues outside the field."

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995

Some other color spaces...

