

## Color

- Reading:
- Chapter 6, Forsyth \& Ponce
- Optional reading:
- Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this.

Feb. 17, 2005
MIT 6.869
Prof. Freeman


## Lecture outline

- Color physics.
- Color representation and matching.
- To tell what food is edible.
- To distinguish material changes from shading changes.
- To group parts of one object together in a scene.
- To find people's skin.
- Check whether a person's appearance looks normal/healthy.
- To compress images



## Radiometry for colour

- All definitions are now "per unit wavelength"
- All units are now "per unit wavelength"
- All terms are now "spectral"
- Radiance becomes spectral radiance
- watts per square meter per steradian per unit wavelength
- Irradiance becomes spectral irradiance
- watts per square meter per unit wavelength





## Overhead projector demo

- Subtractive color mixing

$$
\begin{aligned}
& \text { Low-dimensional models for color spectra } \\
& \left(\begin{array}{c}
\vdots \\
e(\lambda) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
E_{1}(\lambda) & E_{2}(\lambda) & E_{3}(\lambda) \\
\vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right)
\end{aligned}
$$

How to find a linear model for color spectra:
--form a matrix, D, of measured spectra, 1 spectrum per column.
$--[u, s, v]=\operatorname{svd}(D)$ satisfies $D=u^{*} s^{*} v^{\star}$
--the first n columns of u give the best (least-squares optimal) n-dimensional linear bases for the data, $D$ : $D \approx u(:, 1: n) * s(1: n, 1: n) * v(1: n,:)^{\prime}$

Basis functions for Macbeth color checker


## Matlab demonstration

## Outline

- Color physics.
- Color representation and matching.

| wisa $\cdot \sim$ - ט Color standards are important in industry |  |
| :---: | :---: |
| Absmex |  |
| AM, | Fruit and Vegetable Programs |
| Win Processed Products standards and Quality Certification <br> Visual Aids and Inspection Aids Approved For Use in Ascettaining Grades of Processed Fruits and Vegctables (Photo) |  |
|  |  |
| - Frozen Red Tart Cherries 2 New Reze 1 -merend memet bsturer |  |
| - Orange Juice (Processed) | Fib ele Wer Furates Toub Heb |
| - Canned Tomatoes |  |
| - Erozen French Fried Potatoes | Adters |
| - Tomato Products <br> - Maple Synup <br> - Honey |  |
| - Frozen Lima Beans <br> - Canned Mushrooms |  |
| - Peanut Butter |  |
| - Canned Pimientos <br> - Frozen Peas | mod |
| - Canned Clingstone Peaches |  |
| - Headspace Gauge <br> - Canned Applesauce |  |
| Canned Freestone Peaches |  |
| Return to: Processed Products Brans |  |



## An assumption that sneaks in here

- We know color appearance really depends on:
- The illumination
- Your eye's adaptation level
- The colors and scene interpretation surrounding the observed color.
- But for now we will assume that the spectrum of the light arriving at your eye completely determines the perceived color.

Color matching experiment

4.10 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and adjusts the intensities of the three primary lights to match the appearance of the test light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to the observer. After Judd and Wyszecki, 1975.
ndations of Vision, by Brian Wandell, Sinauer Assoc., 1995


Color matching experiment 1


Color matching experiment 2


## Color matching experiment 2




## Measure color by color-matching paradigm

- Pick a set of 3 primary color lights.
- Find the amounts of each primary, $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$, needed to match some spectral signal, t.
- Those amounts, $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$, describe the color of t . If you have some other spectral signal, s , and $s$ matches $t$ perceptually, then $e_{1}, e_{2}, e_{3}$ will also match s, by Grassman's laws.
- Why this is useful-it lets us:
- Predict the color of a new spectral signal
- Translate to representations using other primary lights.


## Color matching experiment 2



## Grassman’s Laws

- For color matches:

| - symmetry: | $\mathrm{U}=\mathrm{V}<=>\mathrm{V}=\mathrm{U}$ |
| :--- | :--- |
| - transitivity: | $\mathrm{U}=\mathrm{V}$ and $\mathrm{V}=\mathrm{W}=>$ |
| $\mathrm{U}=\mathrm{W}$ |  |
| - proportionality: $\quad \mathrm{U}=\mathrm{V}<=>\mathrm{t} \mathrm{U}=\mathrm{tV}$ |  |
| - additivity: if any two (or more) of the statements |  |
| $\mathrm{U}=\mathrm{V}$, |  |
| $\mathrm{W}=\mathrm{X}$, |  |
| $(\mathrm{U}+\mathrm{W})=(\mathrm{V}+\mathrm{X})$ are true, then so is the third |  |

- These statements are as true as any biological law. They mean that additive color matching is linear.

Forsyth \& Ponce

How to compute the color match for any color signal for any set of primary colors

- Pick a set of primaries, $p_{1}(\lambda), p_{2}(\lambda), p_{3}(\lambda)$
- Measure the amount of each primary, $c_{1}(\lambda), c_{2}(\lambda), c_{3}(\lambda)$ needed to match a monochromatic light, $t(\lambda)$ at each spectral wavelength $\lambda$ (pick some spectral step size). These are called the color matching functions.


Using the color matching functions to predict the primary match to a new spectral signal Store the color matching functions in the rows of the matrix, C
$C=\left(\begin{array}{lll}c_{1}\left(\lambda_{1}\right) & \cdots & c_{1}\left(\lambda_{N}\right) \\ c_{2}\left(\lambda_{1}\right) & \cdots & c_{2}\left(\lambda_{N}\right) \\ c_{3}\left(\lambda_{1}\right) & \cdots & c_{3}\left(\lambda_{N}\right)\end{array}\right)$
Let the new spectral signal be described by the vector t .

$$
\vec{t}=\left(\begin{array}{c}
t\left(\lambda_{1}\right) \\
\vdots \\
t\left(\lambda_{N}\right)
\end{array}\right) \quad \begin{aligned}
& \text { Then the amounts of each primary needed to } \\
& \text { match } \mathrm{tare:}
\end{aligned} \quad \mathrm{C} \vec{t}
$$

## So color matching functions translate like this:

From previous slide $\vec{t}=C P^{\prime} C^{\prime} \vec{t} \quad$| But this holds for any |
| :--- |
| input spectrum, t , so... |

Using the color matching functions to predict the primary match to a new spectral signal

```
We know that a monochromatic light of \(\lambda_{i}\)
wavelength will be matched by the
amounts \(c_{1}\left(\lambda_{i}\right), c_{2}\left(\lambda_{i}\right), c_{3}\left(\lambda_{i}\right)\)
of each primary.
```

And any spectral signal can be thought of as a linear combination of very many monochromatic lights, with the linear coefficient given by the spectral power at $\left(t\left(\lambda_{1}\right)\right)$ each wavelength.

$$
\vec{t}=\left(\begin{array}{c}
t\left(\lambda_{1}\right) \\
\vdots \\
t\left(\lambda_{N}\right)
\end{array}\right)
$$

How do you translate colors between different systems
of primaries? (and why would you need to? $)$

## How do you translate from the color in one set of primaries to that in another?

$$
e=\underbrace{C P} e^{\prime}
$$

the same $3 x 3$ matrix

P' are the old primaries
C are the new primaries’ color matching functions
What's the machinery in the eye?


Are the color matching functions we observe obtainable from some $3 \times 3$ matrix transformation of the human photopigment response curves?


Color matching functions (for a particular set of spectral primaries


Comparison of color matching functions with best $3 \times 3$ transformation of cone responses


## CIE XYZ color space

- Commission Internationale d’Eclairage, 1931
- "... as with any standards decision, there are some irratating aspects of the XYZ color-matching functions as well...no set of physically realizable primary lights that by direct measurement will yield the color matching functions."
- "Although they have served quite well as a technical standard, and are understood by the mandarins of vision science, they have served quite poorly as tools for explaining the discipline to new students and colleagues outside the field."

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995
Forsyth \& Ponce

Since we can define colors using almost any set of primary colors, let's agree on a set of primaries and color matching functions for the world to use...




## Uniform color spaces

- McAdam ellipses (next slide) demonstrate that differences in $\mathrm{x}, \mathrm{y}$ are a poor guide to differences in color
- Construct color spaces so that differences in coordinates are a good guide to differences in color.



Variations in color matches on a CIE $x$, $y$ space. At the center of the ellipse is the color of a test light; the size of the ellipse represents the scatter of lights that the human observers tested would match to the test color; the boundary shows where the just noticeable difference is. The ellipses on the left have been magnified 10x for clarity; on the right they are plotted to scale. The ellipses are known as MacAdam ellipses after their inventor. The ellipses at the top are larger than those at the bottom of the figure, and that they rotate as they move up. This means that the magnitude of the difference in $\mathrm{x}, \mathrm{y}$ coordinates is a poor guide to the difference in color
Forsyth \& Ponce

## Color metamerism

Two spectra, t and s , perceptually match when

$$
C \vec{t}=C \vec{s}
$$

where C are the color matching functions for some set of primaries.



## Color constancy demo

- We assumed that the spectrum impinging on your eye determines the object color. That's often true, but not always. Here's a counter-example...

