

Non-linear filtering example

Radius 1 median filter

Because the filter is non-linear, it has the opportunity to remove the scratch noise without blurring edges.

CCD color sampling
Color sensing, 3 approaches

- Scan 3 times (temporal multiplexing)
- Use 3 detectors (3-ccd camera, and color film)
- Use offset color samples (spatial multiplexing)

Typical errors in spatial multiplexing approach.
Color fringes.

Color sampling artifacts

Interpolated pixel colors,
for grey edge falling on colored detectors (linear interpolation). The edge is aliased (undersampled) in the samples of any one color. That aliasing manifests itself in the spatial domain as an incorrect estimate of the precise position of the edge. That disagreement about
 the position of the

The response of independently the position of the edge results in a interpolated color bands to an edge. color fringe artifact.

Typical color moire patterns

Blow-up of electronic camera image. Notice spurious colors in the regions of fine detail in the plants.

Color sampling artifacts

Median Filter Interpolation

1) Perform first interpolation on isolated color channels.
2) Compute color difference signals.
3) Median filter the color difference signal.
4) Reconstruct the 3-color image.

R - G, median filtered (5x5)

References on color interpolation

- Brainard
- Shree nayar.

Image texture

The Goal of Texture Synthesis

- Given a finite sample of some texture, the goal is to synthesize other samples from that same texture
- The sample needs to be "large enough"

Texture

- Key issue: representing texture
- Texture based matching
- little is known
- Texture segmentation
- key issue: representing texture
- Texture synthesis
- useful; also gives some insight into quality of representation
- Shape from texture
- cover superficially

The Goal of Texture Analysis

Compare textures and decide if they're made of the same "stuff".

Pre-attentive texture discrimination

Pre-attentive texture

 discrimination
Pre-attentive texture discrimination

Julesz

- Textons: analyze the texture in terms of statistical relationships between fundamental texture elements, called "textons".
- It generally required a human to look at the texture in order to decide what those fundamental units were...

Influential paper:

Early vision and texture perception

James R. Bergen* \& Edward H. Adelson**

* SRI David Sarnoff Research Center, Princeton, New Jersey 08540, USA
** Media Lab and Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Representing textures

- Textures are made up of quite stylised subelements, repeated in meaningful ways
- Representation:
- find the subelements, and represent their statistics
- But what are the subelements, and how do we find them?
- recall normalized correlation
- find subelements by applying filters, looking at
the magnitude of the
- What filters?
- experience suggests spots and oriented bars at a variety of different scales
- details probably don't matter
- What statistics?
- within reason, the more the merrier.
- At least, mean and standard deviation
- better, various conditional histograms.

Malik J, Perona P. Preattentive texture discrimination with early vision mechanisms. J OPT SOC AM A 7: (5) 923932 MAY 1990

Show block diagram of heeger bergen

- And demonstrate it working with matlab code. Ask ted for example.

Matlab examples

Portilla and Simoncelli

- Parametric representation.
- About 1000 numbers to describe a texture.
- Ok results; maybe as good as DeBonet.

Zhu, Wu, \& Mumford, 1998

- Principled approach.
- Synthesis quality not great, but ok.

Portilla and Simoncelli

What we learned from Efros and Leung regarding texture synthesis

- Don't need conditional filter responses across scale
- Don't need marginal statistics of filter responses.
- Don't need multi-scale, multi-orientation filters.
- Don't need filters.

Efros \& Leung '99

- The algorithm
- Very simple
- Surprisingly good results
- Synthesis is easier than analysis!
- ...but very slow
- Optimizations and Improvements
- [Wei \& Levoy,'00] (based on [Popat \& Picard,'93])
- [Harrison,'01]
- [Ashikhmin,'01]

- Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block

- Exactly the same but now we want $P(\mathbf{B} \mid \mathrm{N}(\mathbf{B}))$
- Much faster: synthesize all pixels in a block at once
- Not the same as multi-scale!
- The "Corrupt Professor's Algorithm":
- Plagiarize as much of the source image as you can
- Then try to cover up the evidence
- Rationale:
- Texture blocks are by definition correct samples of texture so problem only connecting them together

Our Philosophy

Image Quilting

- Idea:
- let's combine random block placement of Chaos Mosaic with spatial constraints of Efros \& Leung
- Related Work (concurrent):
- Real-time patch-based sampling [Liang et.al. '01]
- Image Analogies [Hertzmann et.al. '01]

Algorithm

- Pick size of block and size of overlap
- Synthesize blocks in raster order

- Search input texture for block that satisfies overlap constraints (above and left)
- Easy to optimize using NN search [Liang et.al., '01]
- Paste new block into resulting texture
- use dynamic programming to compute minimal error boundary cut

Texture Transfer

- Take the texture from one object and "paint" it onto another object
- This requires separating texture and shape
- That's HARD, but we can cheat
- Assume we can capture shape by boundary and rough

shading sadd another constraint when sampling: similarity to underlying image at that spot

Summary of image quilting

- Quilt together patches of input image
- randomly (texture synthesis)
- constrained (texture transfer)
- Image Quilting
- No filters, no multi-scale, no one-pixel-at-a-time!
- fast and very simple
- Results are not bad
end

