

Non-linear filtering example

Degraded image

Radius 2 median filter

Comparison with linear blur of the amount needed to remove the scratches

CCD color sampling

Color sensing, 3 approaches

- Scan 3 times (temporal multiplexing)
- Use 3 detectors (3-ccd camera, and color film)
- Use offset color samples (spatial multiplexing)

Typical errors in temporal multiplexing approach

Color offset fringes

Typical errors in spatial multiplexing approach.

Color fringes.

Median Filter Interpolation

- 1) Perform first interpolation on isolated color channels.
- 2) Compute color difference signals.
- 3) Median filter the color difference signal.
- 4) Reconstruct the 3-color image.

References on color interpolation

- Brainard
- Shree nayar.

Image texture

Texture

- Key issue: representing texture
 - Texture based matching
 - · little is known
 - Texture segmentation
 - key issue: representing texture
 - Texture synthesis
 - useful; also gives some insight into quality of representation
 - Shape from texture
 - cover superficially

- Given a finite sample of some texture, the goal is to synthesize other samples from that same texture
 - The sample needs to be "large enough"

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Julesz

- Textons: analyze the texture in terms of statistical relationships between fundamental texture elements, called "textons".
- It generally required a human to look at the texture in order to decide what those fundamental units were...

	L	L	L	\top	\top	\top	Т
l	I		1	\top	\top	\top	\top

Influential paper:

Early vision and texture perception

James R. Bergen* & Edward H. Adelson**

- SRI David Sarnoff Research Center, Princeton,
- New Jersey 08540, USA

 ** Media Lab and Department of Brain and Cognitive Science,
 Massachusetts Institute of Technology, Cambridge,
 Massachusetts 02139, USA

Representing textures

- Textures are made up of quite stylised subelements, repeated in meaningful ways
- Representation:
 - find the subelements, and represent their statistics
- But what are the subelements, and how do we find them?
 - recall normalized correlation
 - find subelements by applying filters, looking at the magnitude of the

- · What filters?
 - experience suggests spots and oriented bars at a variety of different scales
 - details probably don't matter
- What statistics?
 - within reason, the more the merrier.
 - At least, mean and standard deviation
 - better, various conditional histograms.

Show block diagram of heeger bergen

• And demonstrate it working with matlab code. Ask ted for example.

Matlab examples

Portilla and Simoncelli

- Parametric representation.
- About 1000 numbers to describe a texture.
- Ok results; maybe as good as DeBonet.

Portilla and Simoncelli

Zhu, Wu, & Mumford, 1998

- Principled approach.
- Synthesis quality not great, but ok.

What we've learned from the previous texture synthesis methods

From Adelson and Bergen:

examine filter outputs

From Perona and Malik:

use multi-scale, multi-orientation filters.

From Heeger and Bergen:

use marginal statistics (histograms) of filter responses.

From DeBonet:

use conditional filter responses across scale.

What we learned from Efros and Leung regarding texture synthesis

- Don't need conditional filter responses across scale
- Don't need marginal statistics of filter responses.
- Don't need multi-scale, multi-orientation filters.
- · Don't need filters.

Efros & Leung '99

- · The algorithm
 - Very simple
 - Surprisingly good results
 - Synthesis is easier than analysis!
 - ...but very slow
- · Optimizations and Improvements
 - [Wei & Levoy,'00] (based on [Popat & Picard,'93])
 - [Harrison,'01]
 - [Ashikhmin,'01]

Efros & Leung '99 extended

- Observation: neighbor pixels are highly correlated Idea: unit of synthesis = block
 - Exactly the same but now we want P(B|N(B))
 - Much faster: synthesize all pixels in a block at once
 - Not the same as multi-scale!

Image Quilting

- Idea:
 - let's combine random block placement of Chaos Mosaic with spatial constraints of Efros & Leung
- Related Work (concurrent):
 - Real-time patch-based sampling [Liang et.al. '01]
 - Image Analogies [Hertzmann et.al. '01]

Our Philosophy

- The "Corrupt Professor's Algorithm":
 - Plagiarize as much of the source image as you can
 - Then try to cover up the evidence
- Rationale:
 - Texture blocks are by definition correct samples of texture so problem only connecting them together

Algorithm

- Pick size of block and size of overlap
- Synthesize blocks in raster order

- Search input texture for block that satisfies overlap constraints (above and left)
 - Easy to optimize using NN search [Liang et.al., '01]
- Paste new block into resulting texture
 - use dynamic programming to compute minimal error boundary cut

Texture Transfer

- Take the texture from one object and "paint" it onto another object
 - This requires separating texture and shape
 - That's HARD, but we can cheat

Assume we can capture shape by boundary and rough shading

Then, Just add another constraint when sampling: Similarity to underlying image at that spot

Portilla & Simoncelli

Xu, usuo & Snulm

cola munimee taipin, helole eniomat

cor a since taipin that neuribs the wealth of simple

and and matheurophysiologically-3-a

na land matheurophysiologically-3-a

na land matheurophysiologically-3-a

na had ell redoming filtipur ed thos

na had dell redoming filtipur ed thos

na had ell redoming filtipur ed thos

na had ell redoming filtipur ed thos

na na composar a filtipur ed thos

na na na theurophysiologically-3-a

na na matheurophysiologically-3-a

na na matheurophysio Wei & Levoy

Homage to Shannon!

The state of the state o

Summary of image quilting

- · Quilt together patches of input image
 - randomly (texture synthesis)
 - constrained (texture transfer)
- Image Quilting
 - No filters, no multi-scale, no one-pixel-at-a-time!
 - fast and very simple
 - Results are not bad

end	