

Lecture Date	Description	Keadings	Assignments materials

Today

3	2/8	Image Representations: Pyramids	Req: FP 7.7, 9.2		
4	2/10	Image Statistics		PSo due	

Reading

- Related to today's lecture:
 - Adelson article on pyramid representations,
 posted on web site.
 - Farid paper posted on web site.

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

Steerable pyramids

• Good:

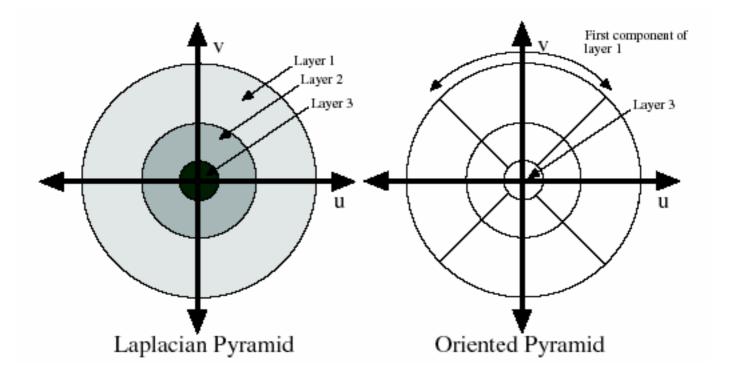
- Oriented subbands
- Non-aliased subbands
- Steerable filters

• Bad:

- Overcomplete
- Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.

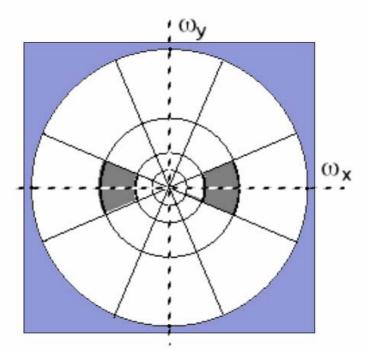
Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - by clever filter design, we can simplify synthesis
 - this represents image information at a particular scale and orientation



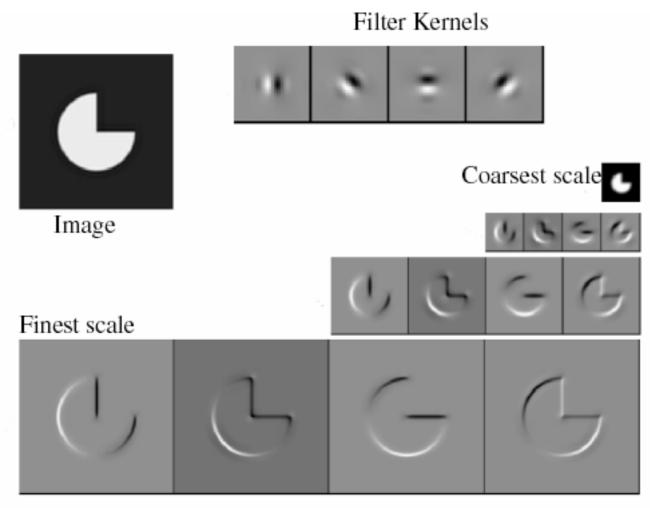
	Laplacian Pyramid	Dyadic QMF/Wavelet	Steerable Pyramid
self-inverting (tight frame)	no	yes	yes
overcompleteness	4/3	1	4k/3
aliasing in subbands	perhaps	yes	no
rotated orientation bands	no	only on hex lattice [9]	yes

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.



But we need to get rid of the corner regions before starting the recursive circular filtering

Figure 1. Idealized illustration of the spectral decomposition performed by a steerable pyramid with k=4. Frequency axes range from $-\pi$ to π . The basis functions are related by translations, dilations and *rotations* (except for the initial highpass subband and the final lowpass subband). For example, the shaded region corresponds to the spectral support of a single (vertically-oriented) subband.



Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

• Summary of pyramid representations

Image pyramids

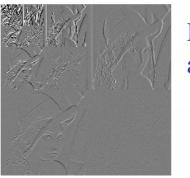
• Gaussian

Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

Laplacian

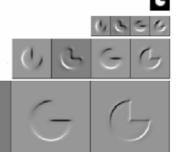
Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.

Wavelet/QMF



Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

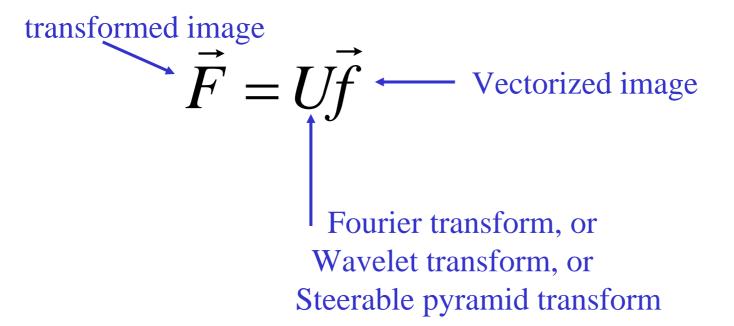
• Steerable pyramid



Shows components at each scale and orientation separately. Non-aliased subbands. Good for texture and feature analysis.

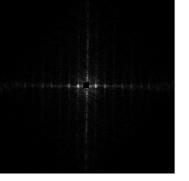
Linear image transformations

• In analyzing images, it's often useful to make a change of basis.

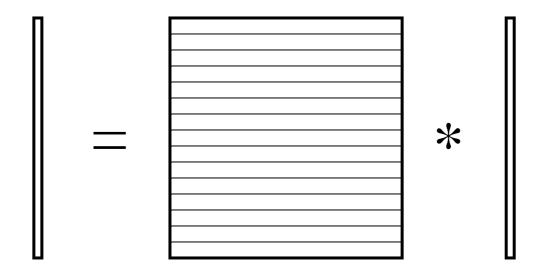


Schematic pictures of each matrix transform

- Shown for 1-d images
- The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.



Fourier transform

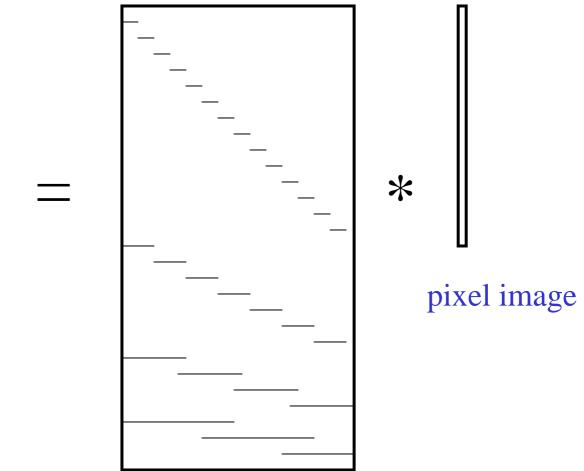


Fourier transform

Fourier bases are global: each transform coefficient depends on all pixel locations.

pixel domain image

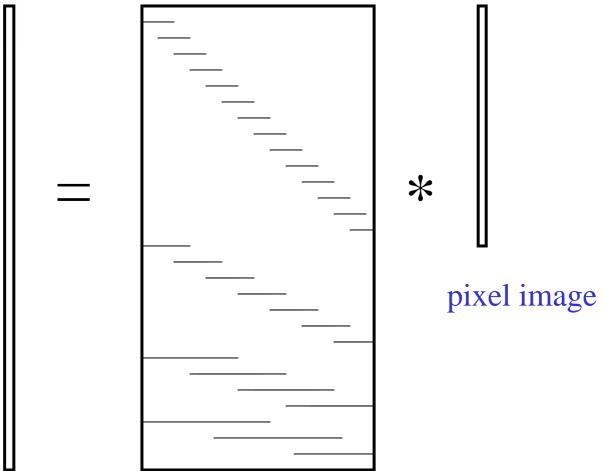
Gaussian pyramid



Gaussian pyramid

Overcomplete representation. Low-pass filters, sampled appropriately for their blur.

Laplacian pyramid



Laplacian

pyramid

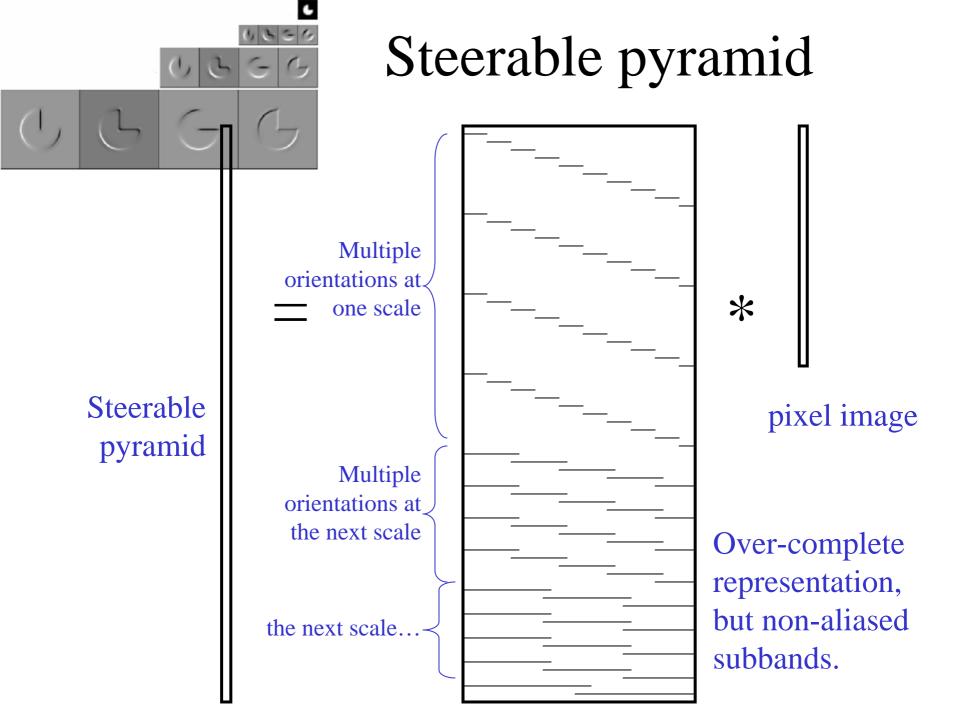
Overcomplete representation.
Transformed pixels represent
bandpassed image information.

Wavelet (QMF) transform

Wavelet pyramid = _____ *

Ortho-normal transform (like Fourier transform), but with localized basis functions.

pixel image



Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html

Publicly Available Software Packages

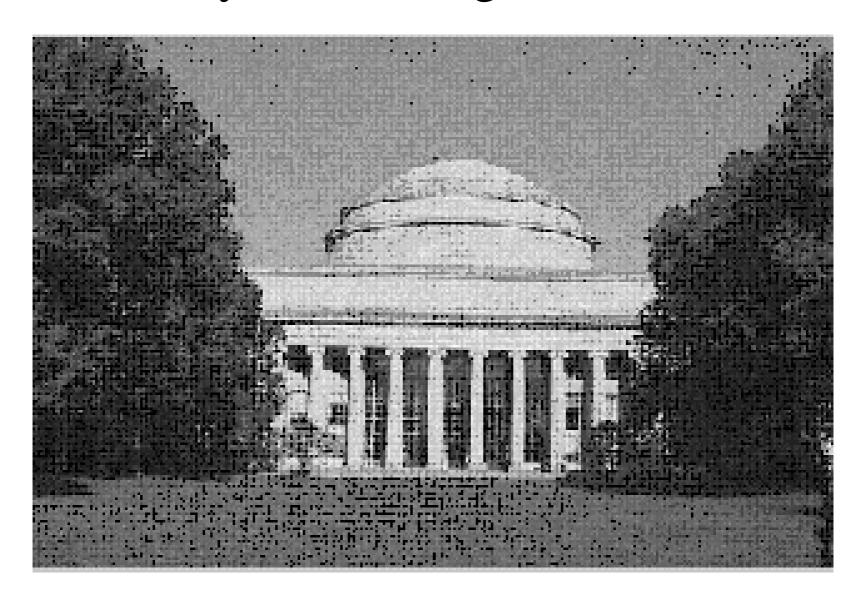
- <u>Texture Analysis/Synthesis</u> Matlab code is available for analyzing and synthesizing visual textures. <u>README</u> | <u>Contents</u> | <u>ChangeLog</u> | <u>Source</u> <u>code</u> (UNIX/PC, gzip'ed tar file)
- <u>EPWIC</u> Embedded Progressive Wavelet Image Coder. C source code available.
- matlabPyrTools Matlab source code for multi-scale image processing.
 Includes tools for building and manipulating Laplacian pyramids,
 QMF/Wavelets, and steerable pyramids. Data structures are compatible with
 the Matlab wavelet toolbox, but the convolution code (in C) is faster and has
 many boundary-handling options. README, Contents, Modification list,
 UNIX/PC source or Macintosh source.
- The Steerable Pyramid, an (approximately) translation- and rotation-invariant multi-scale image decomposition. MatLab (see above) and C implementations are available.
- Computational Models of cortical neurons. Macintosh program available.
- EPIC Efficient Pyramid (Wavelet) Image Coder. C source code available.
- OBVIUS [Object-Based Vision & Image Understanding System]:
 README / ChangeLog / Doc (225k) / Source Code (2.25M).
- CL-SHELL [Gnu Emacs <-> Common Lisp Interface]:
 README / Change Log / Source Code (119k).

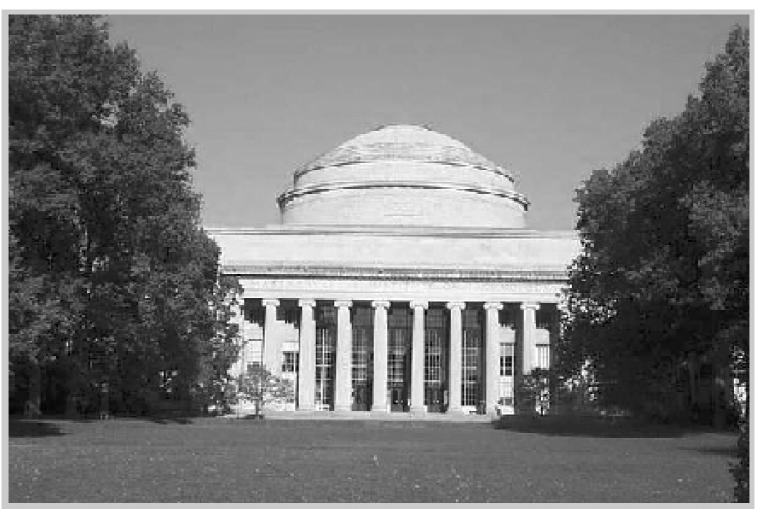
Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features

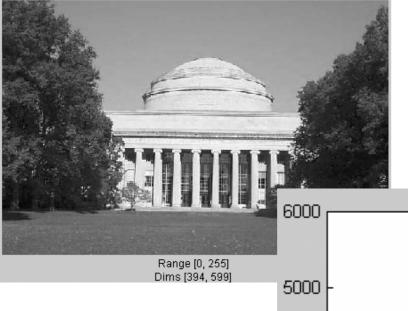
An application of image pyramids: noise removal

Image statistics (or, mathematically, how can you tell image from noise?)

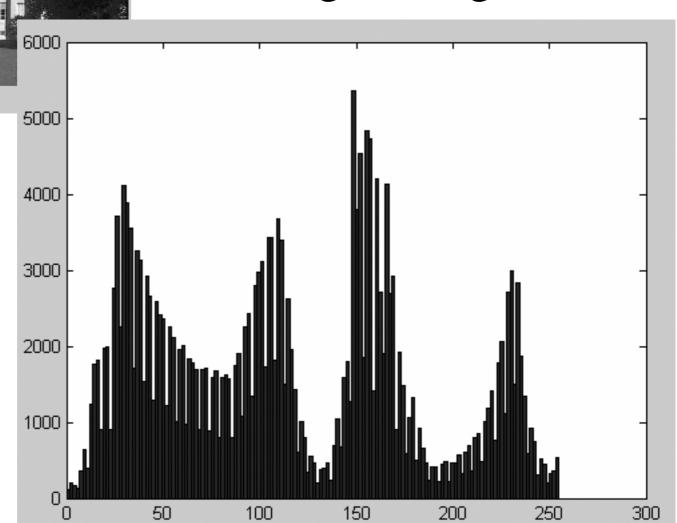




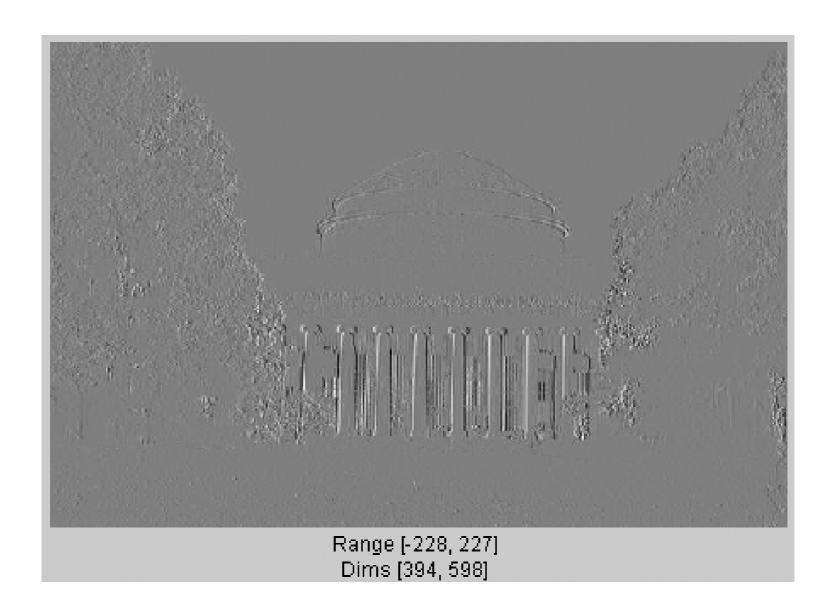
Range [0, 255] Dims [394, 599]



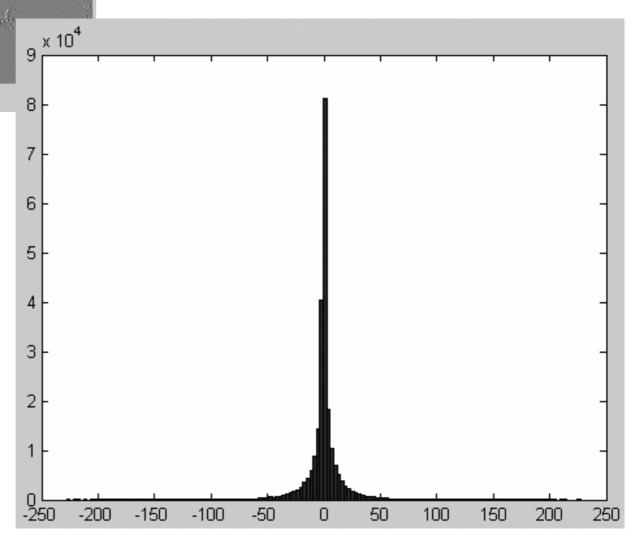
Pixel representation image histogram



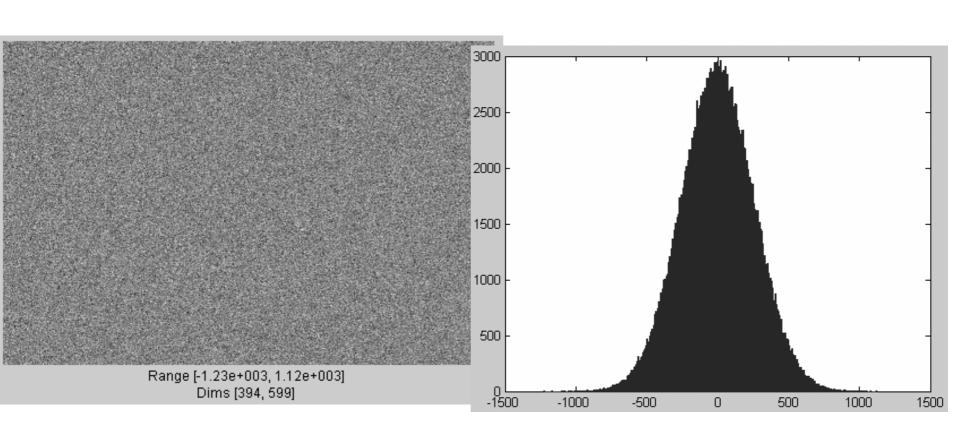
bandpass filtered image



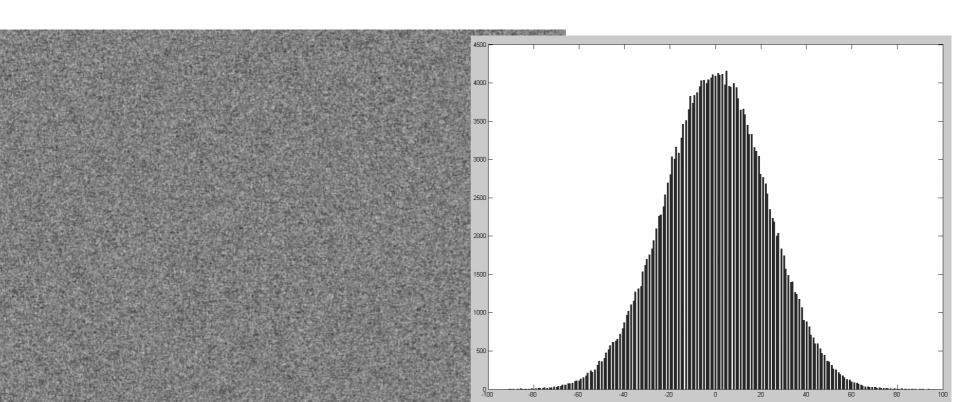
bandpassed representation image histogram



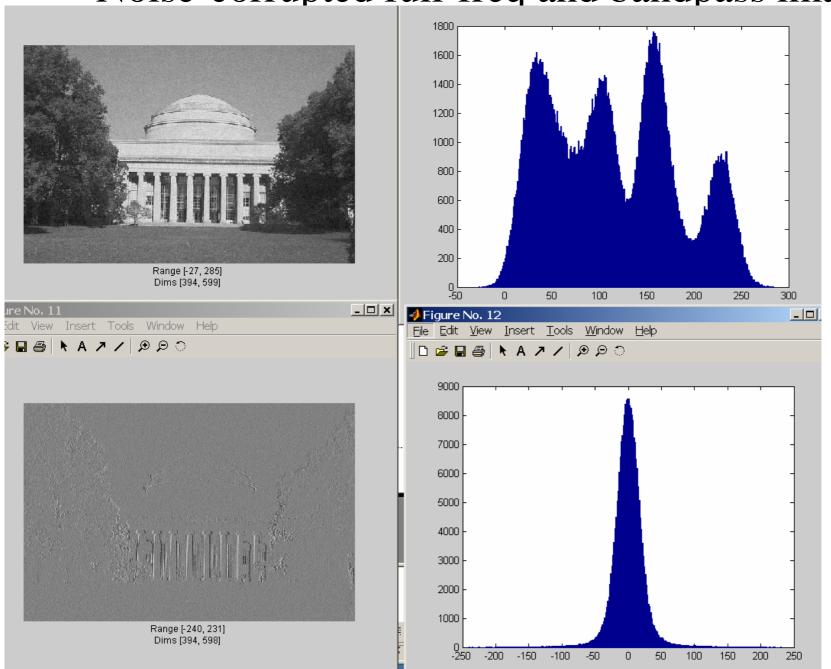
Pixel domain noise image and histogram



Bandpass domain noise image and histogram



Noise-corrupted full-freq and bandpass images



Bayes theorem

$$P(x, y) = P(x|y) \ P(y)$$
so
$$P(x|y) \ P(y) = P(y|x) \ P(x)$$
and
$$P(x|y) = P(y|x) \ P(x) \ / \ P(y)$$
The parameters you the parameters you want to estimate to estimate the parameters x.

What you observe Prior probability

Bayesian MAP estimator for clean bandpass coefficient values

Let x = bandpassed image value before adding noise.

Let y = noise-corrupted observation.

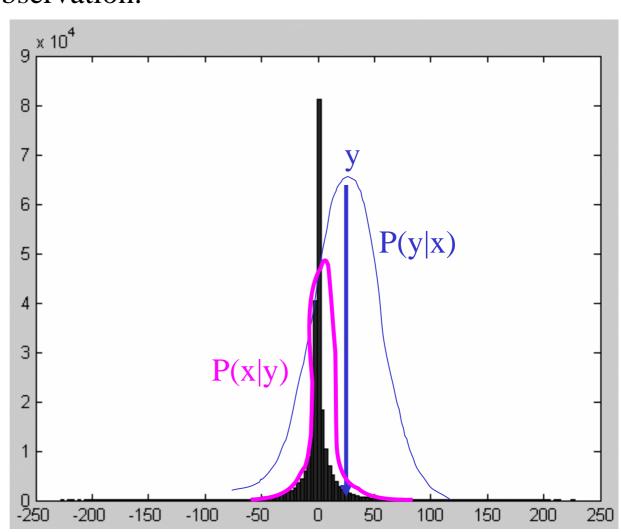
By Bayes theorem

$$P(x|y) = k P(y|x) P(x)$$

P(x)

P(y|x)

P(x|y)



Bayesian MAP estimator

Let x = bandpassed image value before adding noise.

Let y = noise-corrupted observation.

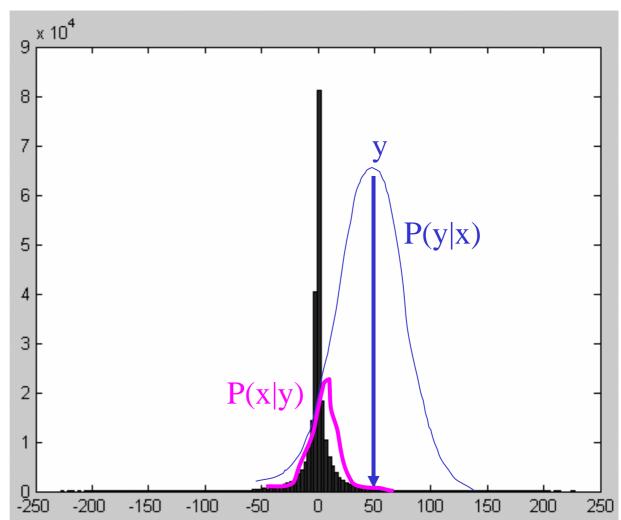
By Bayes theorem

$$P(x|y) = k P(y|x) P(x)$$

P(x)

P(y|x)

P(x|y)



Bayesian MAP estimator

Let x = bandpassed image value before adding noise.

Let y = noise-corrupted observation.

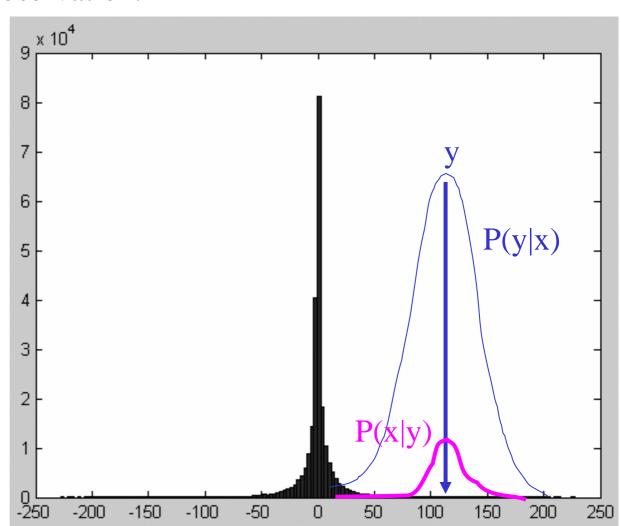
By Bayes theorem

$$P(x|y) = k P(y|x) P(x)$$

P(x)

P(y|x)

P(x|y)



MAP estimate, \hat{x} , as function of observed coefficient value, y

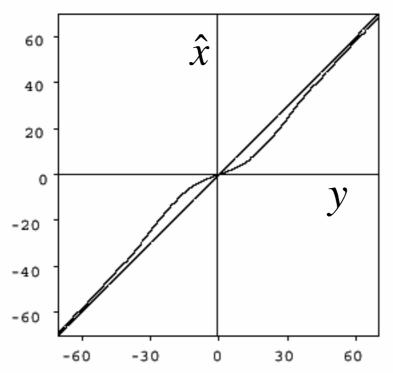


Figure 2: Bayesian estimator (symmetrized) for the signal and noise histograms shown in figure 1. Superimposed on the plot is a straight line indicating the identity function.

Noise removal results

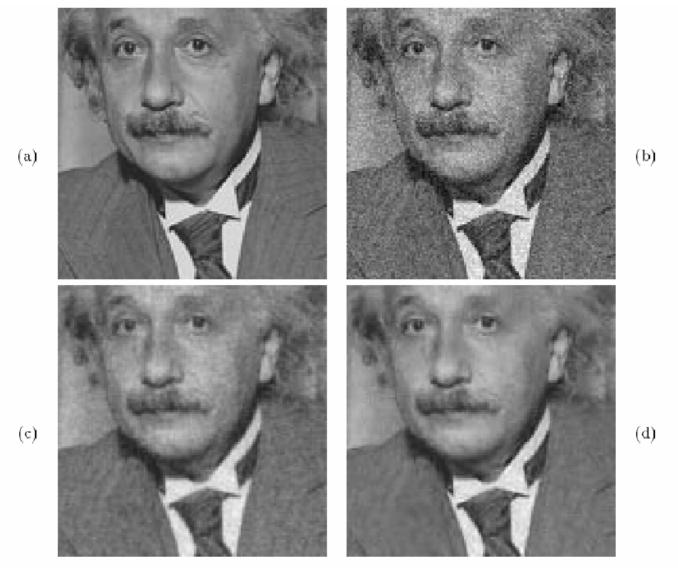


Figure 4: Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored using (semi-blind) Bayesian estimator (SNR = 13.82dB). Simoncelli and Adelson, Noise Removal via becs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf

Bayesian Wavelet Coring

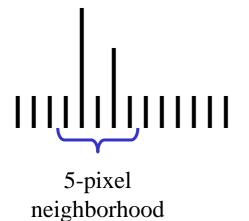
Insert hany farid slides

Non-linear filtering example

Median filter

Replace each pixel by the median over N pixels (5 pixels, for these examples). Generalizes to "rank order" filters.

In:



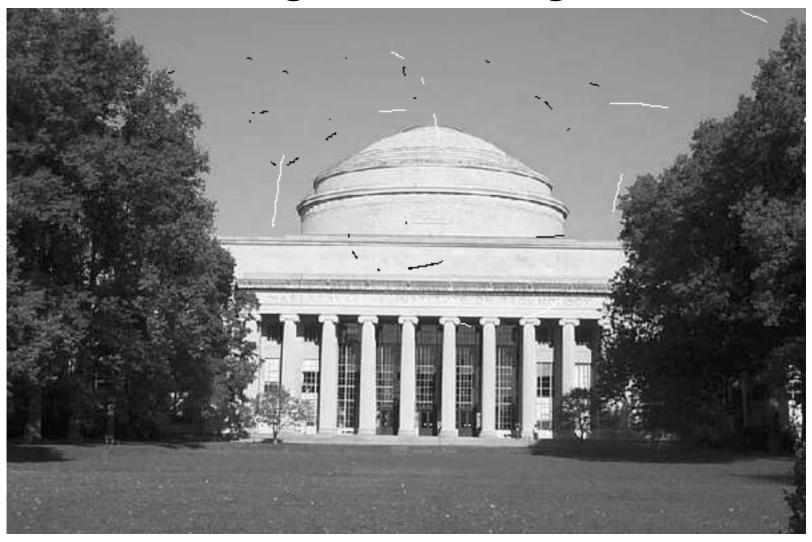
Out:

Spike noise is removed

In:

Monotonic edges remain unchanged

Degraded image



Radius 1 median filter

Radius 2 median filter

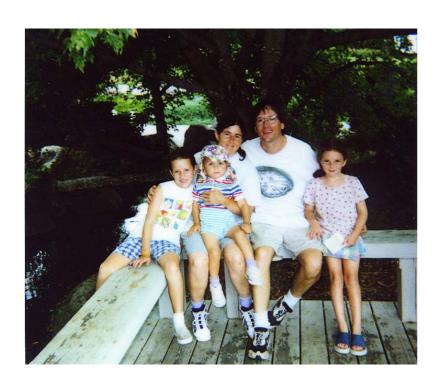
CCD color sampling

Color sensing, 3 approaches

- Scan 3 times (temporal multiplexing)
- Use 3 detectors (3-ccd camera, and color film)
- Use offset color samples (spatial multiplexing)

Typical errors in temporal multiplexing approach

Color offset fringes

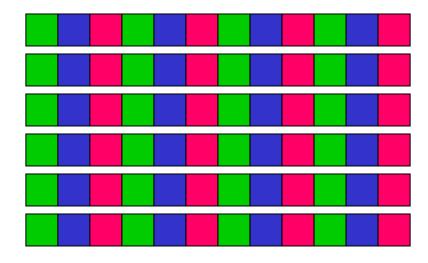


Typical errors in spatial multiplexing approach.

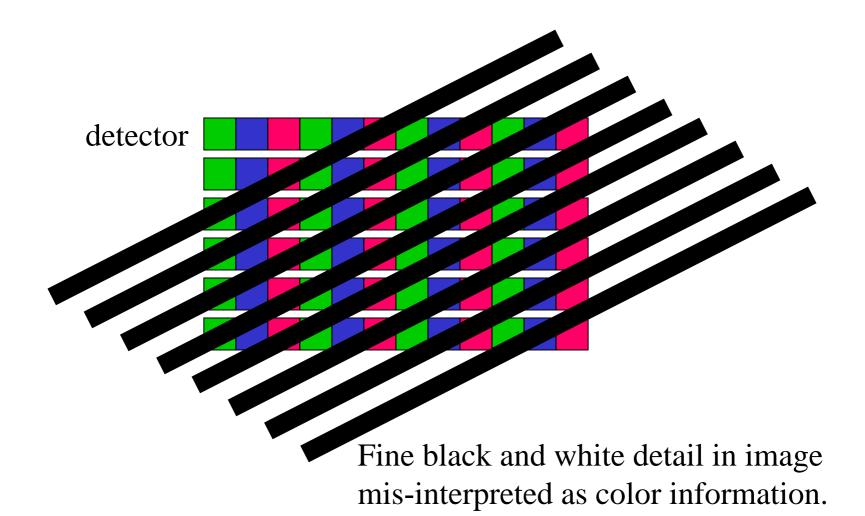
• Color fringes.

CCD color filter pattern

detector



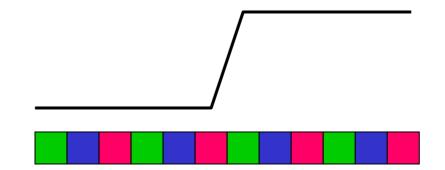
The cause of color moire



Black and white edge falling on color CCD detector

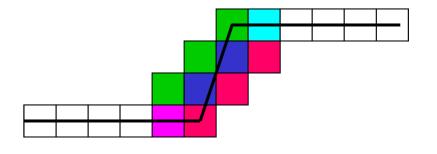
Black and white image (edge)

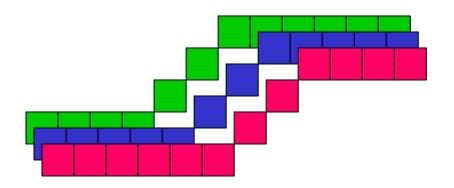
Detector pixel colors



Color sampling artifact

Interpolated pixel colors, for grey edge falling on colored detectors (linear interpolation).



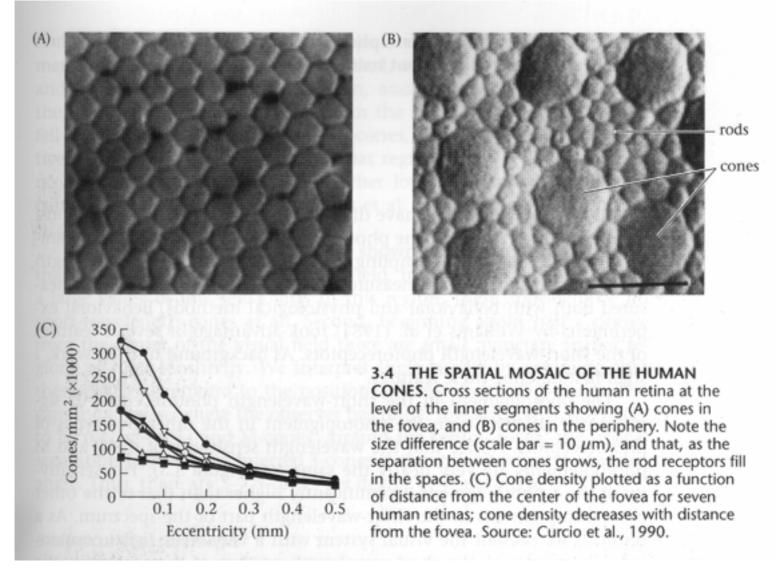


Typical color moire patterns

Blow-up of electronic camera image. Notice spurious colors in the regions of fine detail in the plants.

Color sampling artifacts

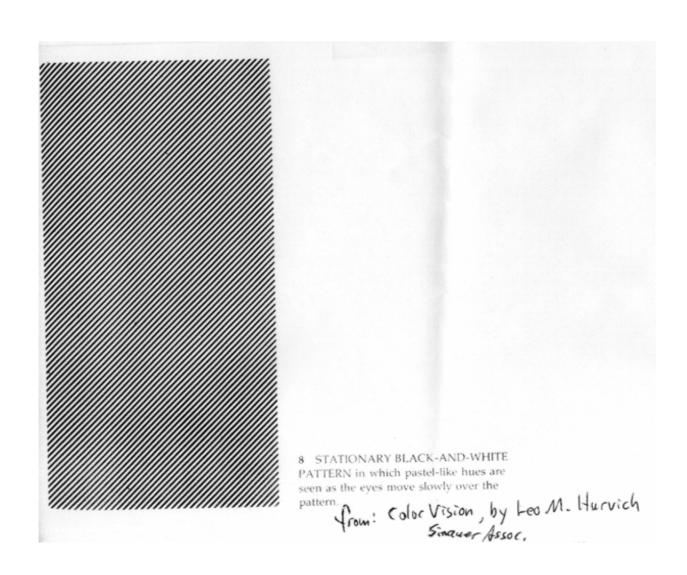
Human Photoreceptors



(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)

Brewster's colors example (subtle).

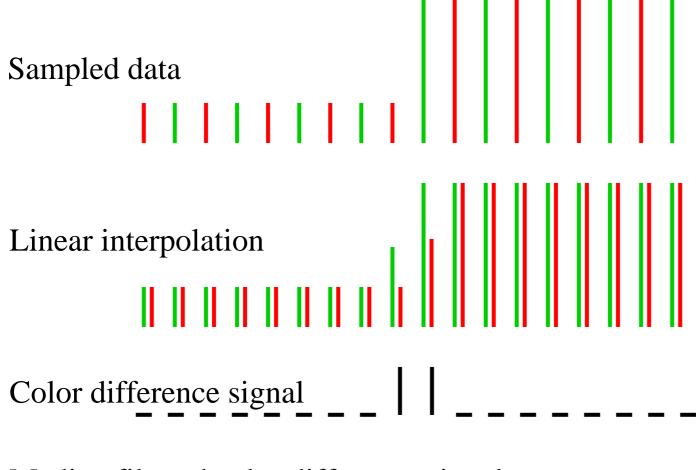
Scale relative to human photoreceptor size: each line covers about 7 photoreceptors.



Median Filter Interpolation

- Perform first interpolation on isolated color channels.
- Compute color difference signals.
- Median filter the color difference signal.
- Reconstruct the 3-color image.

Two-color sampling of BW edge



Median filtered color difference signal

R-G, after linear interpolation

R - G, median filtered (5x5)

Recombining the median filtered colors

Linear interpolation

Median filter interpolation

