Ntp://courses.csal.mit.edu/6.00	69/syllabus.html					M 🔁 📾
			Cours	e Calendar		
	Lecture	Date	Description	Readings	Assignments	Materials
	x	2/1	Course Introduction Cameras and Lenses	Req: FP 1.1, 2.1, 2.2, 2.3, 3.1, 3.2	PSo out	
	2	2/3	Image Filtering	Req: FP 7.1 - 7.6		
	3	2/8	Image Representations: Pyramids	Req: FP 7.7, 9.2		
	4	2/10	Image Statistics		PSo due	
	5	2/15	Texture	Req: FP 9.1, 9.3, 9.4	PS1 out	
	6	2/17	Color	Req: FP 6.1-6.4		
	7	2/22	Guest Lecture: Context in vision			
	8	2/24	Guest Lecture: Medical Imaging		PS1 due	
	9	3/1	Multiview Geometry	Req: Mikolajczyk and Schmid; FP 10	PS2 out	
	10	3/3	Local Features	Req: Shi and Tomasi: Lowe		1

Lecture D				
	ate Descripti	on Readings	Assignments	Material
3 2	Image /8 Representation Pyramids	ns: Req: FP 7.7, 9.2	i.	
4 2	10 Image Statistic	cs	PSo due	
	3 2	Image 3 2/8 Representation Pyramids 4 2/10 Image Statistic	Image 3 2/8 Representations: Pyramids 4 2/10 Image Statistics	Image 3 2.8 Representations: Pyramids 4 2/10 Image Statistics PSo due

Reading

- Related to today's lecture:
 - Adelson article on pyramid representations, posted on web site.
 - Farid paper posted on web site.

Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid

Steerable pyramids

- Good:
 - Oriented subbands
 - Non-aliased subbands
 - Steerable filters
- Bad:
 - Overcomplete
 - Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.

Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - by clever filter design, we can simplify synthesis
 - this represents image information at a particular scale and orientation

	Laplacian Pyramid	Dyadic QMF/Wavelet	Steerable Pyramid
self-inverting (tight frame)	no	yes	yes
overcompleteness	4/3	1	4k/3
aliasing in subbands	perhaps	yes	no
rotated orientation bands	no	only on hex lattice [9]	yes
Table 1: Properties of the Ste	verable Pyramid relative	to two other well-known m	ulti-scale representatio

separately. Non-aliased subbands. Good for texture and feature analysis.

Schematic pictures of each matrix transform

- Shown for 1-d images
- The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.

Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features

An application of image pyramids: noise removal

Image statistics (or, mathematically, how can you tell image from noise?)

Non-linear filtering example

Color sensing, 3 approaches

- Scan 3 times (temporal multiplexing)
- Use 3 detectors (3-ccd camera, and color film)
- Use offset color samples (spatial multiplexing)

Typical errors in temporal multiplexing approach

• Color offset fringes

Typical errors in spatial multiplexing approach.

• Color fringes.

Color sampling artifacts

- Perform first interpolation on isolated color channels.
- Compute color difference signals.
- Median filter the color difference signal.
- Reconstruct the 3-color image.

