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Blurring the R component
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Blurring the B component

original processed
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Figure 6.1

\Contrast sensitivity threshold functions for static luminance gratings
) and isoluminance cheomaticity gratings (R/Y,B/Y) averaged over

seven chservers.

A rotation of the
color
coordinates into
directions that
are more
perceptually
meaningful:

L: luminance,

a: red-green,

b: blue-yellow

Blurring the L Lab component

original processed

Blurring the a Lab component

original processed




Blurring the b Lab component

original processed

Application to image
compression

* (compression is about hiding differences
from the true image where you can’t see
them).

Bandwidth (transmission resources) for the
components of the television signal
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Understanding image perception allowed
NTSC to add color to the black and white
television signal (with some, but limited,
incompatibility artifacts).

Sampling and aliasing

Sampling example
Analyze crossed
gratings...
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Sampling example
Analyze crossed
gratings...
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Scaled representations

* Big bars (resp. spots, ¢ Alternative:
hands, etc.) and little bars — Apply filters of fixed
are both interesting size to images of
— Stripes and hairs, say different sizes
- Inefficient to detect big — Typically, a collection

bars with big filters of images whose edge
— And there is superfluous length changes by a
detail in the filter kernel factor of 2 (or root 2)
— This is a pyramid (or
Gaussian pyramid) by
visual analogy
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Example application: CMU face detector
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From:  http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

Aliasing

 Can’t shrink an image by taking every second
pixel
« If we do, characteristic errors appear
— In the next few slides
— Typically, small phenomena look bigger; fast
phenomena can look slower
— Common phenomenon
« Wagon wheels rolling the wrong way in movies
» Checkerboards misrepresented in ray tracing
« Striped shirts look funny on colour television
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Smoothing as low-pass filtering

* The message of the FT is o A filter whose FT is a
that high frequencies lead box is bad, because the
to trouble with sampling. filter kernel has

* Solution: suppress high infinite support
frequencies before i
sampling » Common solution: use

- multiply the FT of the a Gaussian
signal with something — multiplying FT by
that suppresses high Gaussian is equivalent
frequencies to convolving image
— or convolve with a low-pass with Gaussian.
filter

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

= ]

Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128 64x64 32x32 16x16

Sampling with smoothing. Top row shows the images. We

get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row

shows the magnitude spectrum of these images.

256x256  128x128 6464 32x32 16x16

Matlab

Subsample image in matlab.

The Gaussian pyramid

Smooth with gaussians, because

— a gaussian*gaussian=another gaussian
Synthesis

— smooth and sample

Analysis

— take the top image

Gaussians are low pass filters, so repn is
redundant




Convolution and subsampling as a matrix

multiply (1-d case)
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The computational advantage of pyramids

GAUSSIAN PYRAMID
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g, = IMAGE
g = REDUCE [g, ]

Fig I. A one-di ional graphic repr ion of the process which

generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels

T g
SPATIAL POSITION (x)

GAUSSIAN PYRAMID

0

f the Ganssian pyram

Fig. 4. Fira six
higher bevel




Image pyramids

* Gaussian

* Laplacian
Wavelet/QMF

* Steerable pyramid

Image pyramids

* Laplacian

The Laplacian Pyramid

* Synthesis
— preserve difference between upsampled
Gaussian pyramid level and Gaussian pyramid
level
— band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels
* Analysis
— reconstruct Gaussian pyramid, take top layer

Laplacian pyramid algorithm




Application to image compression

Gwanian Laplacian
planes planes

Deeipbaad daepn reremtrusied imape

Fig. 10, A summary of the steps in Laplacian pyramid coding and decoding. Firs, the original image g, (lower lelt) is used to generate
Chamistan pyramad kvels g,. ;. ... Weough repeated bocal sveraging. Levels of the Laplician pyramid L. L,. ... ar¢ then compuled as
the deflerences between adscest Gaussian levels. Laplacian pyramid elemsents are quantized W yield the Laplician pymassad code .
€. C;. ... Finally, a reconstructed image r, is generated by summing levels of the code pyramid.

I TIAMSATRGNS 0% VI A ATHNS, VU, CEALRL, % & AVERL bk

Image pyramids

» Gaussian
 Laplacian

* Wavelet/QMF
Steerable pyramid

512 256 128 64 32 16 8

Matlab manipulations with gaussian
and laplacian pyramids

What is a good representation for
image analysis?
(Goldilocks and the three representations)

¢ Fourier transform domain tells you “what”
(textural properties), but not “where”. In space,
this representation is too spread out.

« Pixel domain representation tells you “where”
(pixel location), but not “what”. In space, this
representation is too localized

« Want an image representation that gives you a
local description of image events—what is
happening where. That representation might be
“just right”.




Wavelets/QMF’s

transformed image
—

F = U'F «<—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

>> inv(U)

ans =

0.5000 0.5000
0.5000 -0.5000
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>> inv(U)
ans =

0.5000 0.5000 0 0 0
0.5000 -0.5000 0 0 0
0 0 0.5000 0.5000 0
0 0.5000 -0.5000 0
0 0 0 0.5000 0.5000
0 0.5000 -0.5000
0 0 0 0.5000 0.5000
0 0 0 0.5000 -0.5000
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0
0
0

Matlab examples of Haar wavelet
representation

« Frequency characteristics of the high and
low-pass representations
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Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Analysis section Synthesis section

Figure 4.2: An analysis/synthesis filter bank.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

(n) |

Figure 4.3: A won-uniformly cascaded asalyss/synthess filter bank.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Figure 4.4: Octave band splitting produced by a four-level pyramid eas-
cade of a two-band AfS system. The top picture represents the splitting
of the two-band AfS system. Each successive picture shows the effect of
reapplying the system to the lowpass subband (indicated in grey ) of the
previous picture. The bottom picture gives the inal four-level partition of
e Mrequency domain. Al frequency axes cover Ue range from 0 lo 7.

m Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply
the 1-d filters separably in
the two spatial dimensions

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

n| QMF5 | QMF9 | OQMF-13
0.7073931 0.7T37113
041472545 | 042995453
-0.073386621 7
-0.060944 7143
0.02807352

0.021651435

0014556435

Table 4.1: Odd-length QMF kernels. Half of the impulse response sample
values are shown for each of the normalized lowpass QMF filters (All filters
are symmetric about 1 = 0), The appropriate highpass filters are oblained
by delaying by one sample and multiplying with the sequence (=1)",

Wavelet/QMF representation

11



Good and bad features of
wavelet/QMF filters

 Bad:

— Aliased subbands

— Non-oriented diagonal subband
» Good:

— Not overcomplete (so same number of
coefficients as image pixels).

— Good for image compression (JPEG 2000)

Image pyramids

* Steerable pyramid

Steerable pyramids

« Good:
— Oriented subbands
— Non-aliased subbands
— Steerable filters
* Bad:
— Overcomplete

— Have one high frequency residual subband, required in
order to form a circular region of analysis in frequency
from a square region of support in frequency.

Oriented pyramids

« Laplacian pyramid is orientation
independent

» Apply an oriented filter to determine
orientations at each layer

— by clever filter design, we can simplify
synthesis

— this represents image information at a particular
scale and orientation

X
Laplacian Pyramd Onented Pyramid

Laplacian Pyramid | Dyvadic OMF/Wavelet | Steerable Pyramid

selt-inverting (tight frame) || no yes
overcompleteness
aliasing in subbands
rotated orientation bands

yes
/3 1 153
rhaps yes no

only on hex lattice [9] | ves

Table 1: Properties of the &

Simoncelli and Freeman, ICIP 1995

able Pyramid relative to two other well-known multi-scale representations.

12



But we need to get rid
of the corner regions
before starting the
recursive circular
filtering

Figure 1. [dealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 1. Frequency axes range from
—7 to 7. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

Simoncelli and Freeman, ICIP 1995

Filter Kermels

Coarsest M.‘:Ilﬂ

.,

Image

Finest scale

Reprinted from “Shiftable Multi T " by Si ietal, IEEET ion:
on Information Theory, 1992, copyright 1992, IEEE

Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

Associate Investigator,
Heward Hughes Medical Institute

Associate Professor,

Mew York Universty

Matlab resources for pyramids (with tutorial)

http://www.cns.nyu.edu/~eero/software.html
cv:

@ Laboratory for Computational Vision
| bome | Poeph | Ressman| ke tiors] Sats |
Publicly Available Software Packages

JLEADME | Gortents | e
1]

Faste (UNUUEC, gogrod tar
« EPVAC . Embedded Prograssive Wislet imags Coder. € scurce code
meniatin

b« matlabPyrTools - Maih sousca code for mub-scal image processing
Inchucdes toois for budding and mangadating Laplacian ryramids,
[S——— Deta st

nCin and hae
My boundary handing README Comterts Modficason it
LBEAPE source o Maciniash source
» The Steemsle Pyramid
Mai-wc e image decompostion. MaiLat (ves sbave) and C
implemantatom sre avalabls.

- B ¥ <

- System]
README ! Chargakog ! Dos. (225K) / Source Code (2.25M)

o CL-SHELL [Geu Emacs <-x Comeman Ling Interfuse]
README f Charge Log | Seurce Gode 11158}

An application of image pyramids:
noise removal

Image statistics (or, mathematically,
how can you tell image from noise?)
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Range [0, 258]
Dims [394, 5949]

Pixel representation
image histogram

bandpass filtered image

Range [-228, 227]
Dims [394, 508]

bandpassed representation
image histogram

<20 150 100 50 0 5 100 150 200 250

Pixel domain noise image and
histogram

Fange 1 736+003, 1.1 2e-00%
Dims 1394, 599

Bandpass domain noise image
and histogram

14



Noise-corrupted full-freq and bandpass images

e

o W m m am =™ W
sl

e B Yew fmwt ok foie ten
P VA BET DS v Arr BFT

e B HEEEERE

€T3 0 om & 6 % W W o W

Bayes theorem

P(x, y) = P(xly) P(y)

SO

P(Xly) P(Y) = P(y}x) P(X)

and

POdy) = PY) PGO 1 P(Y)
o] | s | e

What you observe Prior probability

Bayesian MAP estimator for clean bandpass

coefficient values
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

9,10' .

By Bayes theorem
P(xly) = k P(y[x) P(x)
P(x)
Py)

P(xly)

Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

9,10' .

By Bayes theorem
P(xly) = k P(ylx) P(x)
P(X)
Pyk)

P(xly)

Bayesian MAP estimator

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

9,10' .

By Bayes theorem
P(xly) = k P(y[x) P(x)
P(x)
P(ylx)

P(xly)

MAP estimate, X , as function of
observed coefficient value, y

&0 )’Z

R a 1 P
Figure 2: DBayesian estimator (symmetrzed) for
the signal and noise histograms shown in figure 1.
Superimpused on the plot is a straight lne indicat
ing the identity function.
Simoncelli and Adelson, Noise Removal via
Bayesian Wavelet Coring

15



Noise removal results

Bayesian Wavelet Corini

Non-linear filtering example

Median filter

Replace each pixel by the median over N
pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

In: ‘ | out: Spike
noise is
FHLLEEELETTTT R removed
5-pixel
neighborhood
Monotonic
remain
|||||| ””II unchanged

Degraded image

Radius 1 median filter

Radius 2 median filter

16



CCD color sampling

Color sensing, 3 approaches

* Scan 3 times (temporal multiplexing)

* Use 3 detectors (3-ccd camera, and color
film)

* Use offset color samples (spatial
multiplexing)

Typical errors in temporal
multiplexing approach

« Color offset fringes

Typical errors in spatial
multiplexing approach.

« Color fringes.

CCD color filter pattern

detector

The cause of color moire

detector

Fine black and white detail in image

mis-interpreted as color information.

17



Black and white edge falling on
color CCD detector

—

Black and white image (edge)

Detector pixel colors

Color sampling artifact

Interpolated pixel colors,
for grey edge falling on colored
detectors (linear interpolation).

Typical color moire patterns

Blow-up of

electronic camera
image. Notice spurious
colors in the regions

of fine detail in the
plants.

Color sampling artifacts

Human Photoreceptors

w

34 THE SPATIAL MOSAKC OF THE HUMAN
'COMES. Crons sections of the human reting at the
beveel of the inner segrments showirg (A) cones in

the fovea, and (B) cones in the periphery. Note the
sire difference (scale bar = 10 ppm), and that, a3 the
separation bebwen cormes grows, the od seoeplon Bl
in the spaces. (C) Cone dendity plotted as a function

Cones/mm?® (x100

—i—— L7 of distance from the center of the fovea for seven
01 02 03 04 05 e eetine; cone density decreases with ditance
Eecenaricity (men) from the fovea. Source: Curcio et al, 1990,

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)

Brewster’s colors example (subtle).

Scale relative
to human
photoreceptor
size: each line
covers about 7
photoreceptors.

18



Median Filter Interpolation

Perform first interpolation on isolated color
channels.

Compute color difference signals.
Median filter the color difference signal.
Reconstruct the 3-color image.

Two-color sampling of BW edge

Sampled data

Linear interpolation ‘
0000 || ‘

Color difference signal | |

R-G, after linear interpolation

Recombining the median filtered colors

Linear interpolation Median filter interpolation

R — G, median filtered (5x5)

Didn’t get a chance to show:

Local gain control.
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» Summary of pyramid representations

Image pyramids
/7. =\ | Progressively blurred and

ﬁ \ 5" subsampled versions of the
image. Adds scale invariance

» Gaussian to fixed-size algorithms.
Shows the information added in
R *Gaussian pyramid at each
° LapIaC|an | spatial scale. Useful for noise

reduction & coding.

Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

¢ Wavelet/QMF

Shows components at each
scale and orientation
separately. Non-aliased
subbands. Good for texture

Linear image transformations

« In analyzing images, it’s often useful to
make a change of basis.

transformed image
F = Uf <—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

« Steerable pyrami

and feature analysis.

Schematic pictures of each
matrix transform

» Shown for 1-d images

» The matrices for 2-d images are the same
idea, but more complicated, to account for
vertical, as well as horizontal, neighbor
relationships.

Fourier transform

= *
Fourier Fourier bases pixel domain
transform are global: image
each transform
coefficient

depends on all
pixel locations.

_ | Gaussian pyramid

“""%ﬁ;@

C;)e;l::?:]&llg - pixel image

Overcomplete representation.
Low-pass filters, sampled
appropriately for their blur.

20



Laplacian pyramid avelet (QMF) transform

- — | % Wavelet _
—| pyramid = | *
Laplacian T pixel image
pyramid — | Ortho-normal pixel image
R transform (like
— Fourier transform),
but with localized
Overcomplete representation. basis functions.
Transformed pixels represent
bandpassed image information.
:_E
@~ Steerable pyram|d Matlab resources for pyramids (with tutorial)
. http://www.cns.nyu.edu/~eero/software.html
LES = — lev
| Laboratory for Computational Vision
—_ [ ome | Paisi TRosaminiPunicsonal i.nar
Multiple T
orientations at. - Publicly Available Software Packages
— onescale| [ — *
T i g ‘EADME xc«;‘:r d Soutce
-/ e (UNUUPC. goip'ed tar e}
7777 -m-mW\wwlm Coder C sourme code
Steerable T pixel image >« matiahPyrTools - Mafab source cods for mukk-ucsle image procetsing
pyramid ) I - ietan ok oIkl el ot 0'3'“’“:(: mc
orient’;?iutjrtlls!u\el T :m:"mw‘mmnm&?WE Cortarts Mosdfiwson e
thenextscale | | ———=—— | Over-complete _— L"LS&':.”MFW WaiLab (1es above) and C
|~ representation, ez oo, C v
the next scale... —————— | butnon-aliased " README /CrangeLog / Doe (225K Souace Code G :\?:JW]
— - subbands. « CL-SHELL [Geu Eiscs <= Comvamsn Lisg Inbeetica]
README / Chiarge Leg | Seutes Code 1115
Why use these representations? end

Handle real-world size variations with a
constant-size vision algorithm.

* Remove noise

» Analyze texture
Recognize objects

« Label image features




