
1

http://courses.csail.mit.edu/6.869

Today

Reading

• Related to today’s lecture: 
– Chapters 7.7, 9.2, Forsyth&Ponce..
– Adelson article on pyramid representations, 

posted on web site.

Spatial resolution and color
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Blurring the R component

original processed

R
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B

Blurring the B component

original

R

G

B
processed

From W. E. 
Glenn, in 
Digital 
Images and 
Human 
Vision, MIT 
Press, edited 
by Watson, 
1993

Lab color components

L

a

b

A rotation of the 
color 
coordinates into 
directions that 
are more 
perceptually 
meaningful:  
L: luminance, 
a: red-green, 
b: blue-yellow

Blurring the L Lab component
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original processed original

Blurring the a Lab component

L
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processed
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Blurring the b Lab component

original

L

a

b
processed

Application to image 
compression

• (compression is about hiding differences 
from the true image where you can’t see 
them).

Bandwidth (transmission resources) for the 
components of the television signal

Understanding image perception allowed 
NTSC to add color to the black and white 
television signal (with some, but limited, 
incompatibility artifacts).
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Luminance Chrominance

Sampling and aliasing

Sampling example
Analyze crossed 

gratings…

Sampling example
Analyze crossed 

gratings…
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Sampling example
Analyze crossed 

gratings…

Sampling example
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 

A F(A) B F(B)

A*B F(A)**F(B) A*B F(A)**F(B)
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A*B Lowpass(F(A)**F(B))
~=F(C)

C

Scaled representations

• Big bars (resp. spots, 
hands, etc.) and little bars 
are both interesting
– Stripes and hairs, say

• Inefficient to detect big 
bars with big filters
– And there is superfluous 

detail in the filter kernel

• Alternative:
– Apply filters of fixed 

size to images of 
different sizes

– Typically, a collection 
of images whose edge 
length changes by a 
factor of 2 (or root 2)

– This is a pyramid (or 
Gaussian pyramid) by 
visual analogy

From:  http://www.ius.cs.cmu.edu/IUS/har2/har/www/CMU-CS-95-158R/

Example application:  CMU face detector Aliasing

• Can’t shrink an image by taking every second 
pixel

• If we do, characteristic errors appear 
– In the next few slides
– Typically, small phenomena look bigger; fast 

phenomena can look slower
– Common phenomenon

• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television
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Smoothing as low-pass filtering
• The message of the FT is 

that high frequencies lead 
to trouble with sampling.

• Solution: suppress high 
frequencies before 
sampling
– multiply the FT of the 

signal with something 
that suppresses high 
frequencies

– or convolve with a low-pass 
filter

• A filter whose FT is a 
box is bad, because the 
filter kernel has 
infinite support

• Common solution: use 
a Gaussian
– multiplying FT by 

Gaussian is equivalent 
to convolving image 
with Gaussian.

Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.

Matlab

Subsample image in matlab.

The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant
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Convolution and subsampling as a matrix 
multiply (1-d case)

U1 =

1     4     6     4     1     0     0     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     1     4     6     4     1     0     0     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     4     6     4     1     0    0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1     4     6     4    1     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     4    6     4     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    1     4     6     4     1     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4     6     4     1     0     0     0

0     0     0     0     0     0     0     0     0     0    0     0     0     0     1     4     6     4     1     0

Next pyramid level
U2 =

1     4     6     4     1     0     0     0

0     0     1     4     6     4     1     0

0     0     0     0     1     4     6     4

0     0     0     0     0     0     1     4

b * a, the combined effect of the 
two pyramid levels

>> U2 * U1

ans =

1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0     0     0     0     0

0     0     0     0     1     4    10    20    31    40    44    40    31    20    10     4     1     0     0     0

0     0     0     0     0     0     0     0     1     4    10    20    31    40    44    40    30    16     4     0

0     0     0     0     0     0     0     0     0     0    0     0     1     4    10    20    25    16     4     0

The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian pyramid 
level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer

Laplacian pyramid algorithm

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Application to image compression

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Matlab manipulations with gaussian
and laplacian pyramids

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

What is a good representation for 
image analysis? 

(Goldilocks and the three representations)

• Fourier transform domain tells you “what”
(textural properties), but not “where”.  In space, 
this representation is too spread out.

• Pixel domain representation tells you “where”
(pixel location), but not “what”.  In space, this 
representation is too localized

• Want an image representation that gives you a 
local description of image events—what is 
happening where.  That representation might be 
“just right”.
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Wavelets/QMF’s

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

U =

1     1

1    -1

>> inv(U)

ans =

0.5000    0.5000

0.5000   -0.5000

U =

1     1     0     0     0     0     0     0

1    -1     0     0     0     0     0     0

0     0     1     1     0     0     0     0

0     0     1    -1     0     0     0     0

0     0     0     0     1     1     0     0

0     0     0     0     1    -1     0     0

0     0     0     0     0     0     1     1

0     0     0     0     0     0     1    -1

>> inv(U)

ans =

0.5000    0.5000         0         0         0         0    0         0

0.5000   -0.5000         0         0         0         0         0        0

0         0    0.5000    0.5000         0         0    0         0

0         0    0.5000   -0.5000         0         0         0         0

0         0         0         0    0.5000    0.5000    0         0

0         0         0         0    0.5000   -0.5000         0         0

0         0         0         0         0         0    0.5000    0.5000

0         0         0         0         0         0    0.5000   -0.5000

Matlab examples of Haar wavelet 
representation

• Frequency characteristics of the high and 
low-pass representations
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Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990. Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990. Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply 
the 1-d filters separably in 
the two spatial dimensions

Wavelet/QMF representation
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Good and bad features of 
wavelet/QMF filters

• Bad: 
– Aliased subbands
– Non-oriented diagonal subband

• Good:
– Not overcomplete (so same number of 

coefficients as image pixels).
– Good for image compression (JPEG 2000)

Image pyramids

• Gaussian
• Laplacian
• Wavelet/QMF
• Steerable pyramid

Steerable pyramids

• Good:
– Oriented subbands
– Non-aliased subbands
– Steerable filters

• Bad:
– Overcomplete
– Have one high frequency residual subband, required in 

order to form a circular region of analysis in frequency 
from a square region of support in frequency.

Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a particular 

scale and orientation

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get rid 
of the corner regions 
before starting the 
recursive circular 
filtering

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

An application of image pyramids:
noise removal

Image statistics (or, mathematically, 
how can you tell image from noise?)
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Pixel representation 
image histogram

bandpass filtered image bandpassed representation 
image histogram

Pixel domain noise image and 
histogram

Bandpass domain noise image 
and histogram
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Noise-corrupted full-freq and bandpass images

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)

P(x, y) = P(x|y) P(y)
so
P(x|y) P(y) = P(y|x) P(x)
and
P(x|y) = P(y|x) P(x) / P(y)

Bayes theorem

P(x, y) = P(x|y) P(y)

The parameters you 
want to estimate

What you observe Prior probability

Likelihood 
function

Constant w.r.t. 
parameters x.

P(x)

Bayesian MAP estimator for clean bandpass
coefficient values

Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)P(x|y)

P(x)

Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)
P(x|y)

P(x)

Bayesian MAP estimator
Let x = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

By Bayes theorem

P(x|y) = k P(y|x) P(x)

P(y|x)

y

P(y|x)

P(x|y)

P(x|y)

MAP estimate,     , as function of 
observed coefficient value, y

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring
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Noise removal results

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring

Non-linear filtering example

Median filter
Replace each pixel by the median over N 
pixels (5 pixels, for these examples).  
Generalizes to “rank order” filters.

5-pixel 
neighborhood

In: Out:

In: Out:

Spike 
noise is 
removed

Monotonic 
edges 
remain 
unchanged

Degraded image

Radius 1 median filter Radius 2 median filter
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CCD color sampling Color sensing, 3 approaches

• Scan 3 times (temporal multiplexing)
• Use 3 detectors (3-ccd camera, and color 

film)
• Use offset color samples (spatial 

multiplexing) 

Typical errors in temporal 
multiplexing approach

• Color offset fringes

Typical errors in spatial 
multiplexing approach.

• Color fringes.

CCD color filter pattern

detector

The cause of color moire

detector

Fine black and white detail in image
mis-interpreted as color information.
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Black and white edge falling on 
color CCD detector

Black and white image (edge)

Detector pixel colors

Color sampling artifact

Interpolated pixel colors, 
for grey edge falling on colored
detectors (linear interpolation).

Typical color moire patterns

Blow-up of 
electronic camera
image.  Notice spurious
colors in the regions
of fine detail in the 
plants.

Color sampling artifacts

Human Photoreceptors

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)

Brewster’s colors example (subtle).

Scale relative
to human
photoreceptor
size:  each line
covers about 7
photoreceptors.
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Median Filter Interpolation

• Perform first interpolation on isolated color 
channels.

• Compute color difference signals.
• Median filter the color difference signal.
• Reconstruct the 3-color image.

Two-color sampling of BW edge

Sampled data

Linear interpolation

Color difference signal

Median filtered color difference signal

R-G, after linear interpolation R – G, median filtered (5x5)

Recombining the median filtered colors

Linear interpolation Median filter interpolation Didn’t get a chance to show:

Local gain control.
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• Summary of pyramid representations

Image pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable pyramid

Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

Schematic pictures of each 
matrix transform

• Shown for 1-d images
• The matrices for 2-d images are the same 

idea, but more complicated, to account for 
vertical, as well as horizontal, neighbor 
relationships.

Fourier transform

= *

pixel domain 
image

Fourier bases 
are global:  
each transform 
coefficient 
depends on all 
pixel locations.

Fourier 
transform

Gaussian pyramid

= *
pixel image

Overcomplete representation.  
Low-pass filters, sampled 
appropriately for their blur.

Gaussian 
pyramid
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Laplacian pyramid

= *
pixel image

Overcomplete representation.  
Transformed pixels represent 
bandpassed image information.

Laplacian
pyramid

Wavelet (QMF) transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid

= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable
pyramid

Multiple 
orientations at 

one scale  

Multiple 
orientations at 
the next scale  

the next scale…

Steerable pyramid Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Why use these representations?

• Handle real-world size variations with a 
constant-size vision algorithm.

• Remove noise
• Analyze texture
• Recognize objects
• Label image features

end


