Learning to separate shading from paint

Marshall F. Tappen ${ }^{1}$ William T. Freeman ${ }^{1}$ Edward H. Adelson ${ }^{1,2}$
${ }^{1}$ MIT Computer Science and Ar Intelligence Laboratory (CSA ${ }^{2}$ MIT Dept. of Brain and Cognitive Scieneesall

We can also include a reflectance pattern or a "paint" image. Now shading and reflectance effects combine to create the observed image.

Gioal: decompose the image into shading and reflectance components.

Image

Shading Image

Reflectance Image

- These types of images are known as intrinsic images (Barrow and Tenenbaum).
- Note: while the images multiply, we work in a gamma-corrected domain and assume the images add.

Problem

How can we access shape or reflectance information from the observed image? For example:

Why you might want to compute these intrinsic images

- Ability to reason about shading and reflectance independently is necessary for most image understanding tasks.
- Material recognition
- Image segmentation
- Want to understand how humans might do the task.
- An engineering application: for image editing, want access and modify the intrinsic images separately
- Intrinsic images are a convenient representation.
- More informative than just the image
- Less complex than fully reconstructing the scene

Treat the separation as a labeling problem

- We want to identify what parts of the image were caused by shape changes and what parts were caused by paint changes.
- But how represent that? Can't label pixels of the image as "shading" or "paint".
- Solution: we'll label gradients in the image as being caused by shading or paint.
- Assume that image gradients have only one cause.

Recovering Intrinsic Images

- Classify each x and y image derivative as being caused by either shading or a reflectance change
- Recover the intrinsic images by finding the leastsquares reconstruction from each set of labeled derivatives. (Fast Matlab code for that available from Yair Weiss's web page.)

Original x derivative image

Classify each derivative (White is reflectance)

Outline of our algorithm

 (and the rest of the talk)- Gather local evidence for shading or reflectance
- Color (chromaticity changes)
- Form (local image patterns)
- Integrate the local evidence across space.
- Assume a probabilistic model and use belief propagation.
- Show results on example images
- Can classify derivatives by the magnitude of the derivative

Probabilistic graphical model
Probabilistic graphical model

- Local evidence

Probabilistic graphical model

- Local evidence

Notice that the chromaticity of each face is the same
Any change in chromaticity must be a reflectance change

Result using only color information

Figure 1: Example. Computed using Color Detector. To facilitate printing, the intrinsic images have been computed from a gray-scale version of the image. The color information is used solely for classifying derivatives in the gray-scale copy of the image.

From Weak to Strong Classifiers: Boosting

- Individually these weak classifiers aren't very good.
- Can be combined into a single strong classifier.
- Call the classification from a weak classifier $h_{i}(x)$.
- Each $h_{i}(x)$ votes for the classification of $x(-1$ or 1$)$.
- Those votes are weighted and combined to produce a final classification.

$$
H(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} h_{i}(x)\right)
$$

- Learned rules for all (but classifier 9) are: if rectified filter response is above a threshold, vote for reflectance.
- Yes, contrast and scale are all folded into that. We perform an overall contrast normalization on all images.
- Classifier 1 (the best performing single filter to apply) is an empirical justification for Retinex algorithm: treat small derivative values as shading.
- The other classifiers look for image structure oriented perpendicular to lighting direction as evidence for reflectance change.

Some Areas of the Image Are Locally Ambiguous

Propagating Information

- Can disambiguate areas by propagating information from reliable areas of the image into ambiguous areas of the image

Markov Random Fields

- Allows rich probabilistic models for images.
- But built in a local, modular way. Learn local relationships, get global effects out.

Inference in MRF's

- Inference in MRF's. (given observations, how infer the hidden states?)
- Gibbs sampling, simulated annealing
- Iterated condtional modes (ICM)
- Variational methods
- Belief propagation
- Graph cuts

See www.ai.mit.edu/people/wtf/learningvision for a tutorial on learning and vision.

Derivation of belief propagation

$x_{1 M M S E}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$

Propagation rules

$$
\begin{array}{r}
x_{1 M M S E}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right) \\
x_{1 M M S E}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} \Phi\left(x_{1}, y_{1}\right) \\
\\
\Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right) \\
\\
\Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)
\end{array}
$$

$x_{1 M M S E}=$ mean $\Phi\left(x_{1}, y_{1}\right)$
$\operatorname{sum}_{x_{2}}^{x_{1}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)$ $\operatorname{sum} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)$

Belief, and message updates

$$
\begin{aligned}
& \mathrm{j} \cdot b_{j}\left(x_{j}\right)=\prod_{k \in N(j)} M_{j}^{k}\left(x_{j}\right) \\
& M_{i}^{j}\left(x_{i}\right)=\sum_{x_{j}} \psi_{\mathrm{ij}}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) i} M_{j}^{k}\left(x_{j}\right) \\
& \mathrm{i}
\end{aligned}
$$

The posterior factorizes

$x_{1 M M S E}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$
$=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} \Phi\left(x_{1}, y_{1}\right)$

$$
\Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)
$$

$$
\Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)
$$

Optimal solution in a chain or tree: Belief Propagation

- "Do the right thing" Bayesian algorithm.
- For Gaussian random variables over time: Kalman filter.
- For hidden Markov models: forward/backward algorithm (and MAP variant is Viterbi).

No factorization with loops!
$x_{1 \text { MMSE }}=\operatorname{mean}_{x_{1}} \Phi\left(x_{1}, y_{1}\right)$
$\operatorname{sum}_{x_{2}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)$
$\operatorname{sum}_{x_{3}} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right) \Psi\left(x_{1}, x_{3}\right)$

Justification for running belief propagation
in networks with loops

- Experimental results:
- Error-correcting codes
- Vision applications
- Theoretical results:
- For Gaussian processes, means are correct

Large neighborhood local maximum for MAP.

- Equivalent to Bethe approx. in statistical physics.
- Tree-weighted reparameterization

Region marginal probabilities

- Fixed point of belief propagation equations iff. Bethe approximation stationary point.
- Belief propagation always has a fixed point.
- Connection with variational methods for inference: both minimize approximations to Free Energy,
- variational: usually use primal variables.
belief propagation: fixed pt. equs. for dual variables.
- Kikuchi approximations lead to more accurate belief propagation algorithms.
- Other Bethe free energy minimization algorithmsYuille, Welling, etc.

Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.

Belief propagation equations

Belief propagation equations come from the marginalization constraints.

Generalized belief propagation

Propagating Information

- Extend probability model to consider relationship between neighboring derivatives

- β controls how necessary it is for two nodes to have the same label
- Use Generalized Belief Propagation to infer labels. (Yedidia et al. 2000)

Setting Compatibilities

- All compatibilities have form

$$
\psi\left(x_{i}, x_{j}\right)=\left[\begin{array}{cc}
\beta & 1-\beta \\
1-\beta & \beta
\end{array}\right]
$$

- Assume derivatives along image contours should have the same label
- Set β close to 1 when the derivatives are along a contour
- Set β to 0.5 if no contour is present
- β is computed from a linear function of the image gradient's magnitude and orientation

References on BP and GBP

- J. Pearl, 1985
classic
- Y. Weiss, NIPS 1998

Inspires application of BP to vision

- W. Freeman et al learning low-level vision, IJCV 1999 Applications in super-resolution, motion, shading/paint discrimination
- H. Shum et al, ECCV 2002

Application to stereo

- M. Wainwright, T. Jaakkola, A. Willsky Reparameterization version
- J. Yedidia, AAAI 2000

The clearest place to read about BP and GBP.

Propagating Information

- Extend probability model to consider relationship between neighboring derivatives

Classification
 $\psi\left(x_{i}, x_{j}\right)=\left[\begin{array}{cc}\beta & 1-\beta \\ 1-\beta & \beta\end{array}\right]$

- β controls how necessary it is for two nodes to have the same label
- Use Generalized Belief Propagation to infer labels. (Yedidia et al. 2000)

Improvements Using Propagation

Input Image

Reflectance Image Without Propagation

Reflectance Image With Propagation

Sign at train crossing

Finally, returning to our explanatory example...

Summary

- Sought an algorithm to separate shading and reflectance image components.
- Achieved good results on real images.
- Classify local derivatives
- Learn classifiers for derivatives based on local evidence, both color and form.
- Propagate local evidence to improve classifications.

For manuscripts, see www.ai.mit.edu/people/wtf/

