

Presentation of the thesis work of: Hedvig Sidenbladh, KTH

Thesis opponent: Prof. Bill Freeman, MIT

Thesis supervisors

- Prof. Jan-Olof Eklundh, KTH
- Prof. Michael Black, Brown University

Collaborators

- Dr. David Fleet, Xerox PARC
- Prof. Dirk Ormoneit, Stanford University

2D vs. 3D tracking

• Artist's models...

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Very general model
 - Very specific model
 - Example-based model

System components

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Very general model
 - Very specific model
 - Example-based model

Multiple Hypotheses • Posterior distribution over

- Posterior distribution over model parameters often multimodal (due to ambiguities)
- Represent whole distribution:
 - sampled representation
 - each sample is a pose
 - predict over time using a particle filtering approach

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Very general model
 - Very specific model
 - Example-based model

Key Idea #1 (Likelihood)

- 1. Use the 3D model to predict the location of limb boundaries (not necessarily features) in the scene.
- 2. Compute various filter responses *steered* to the predicted orientation of the limb.
- **3**. Compute likelihood of filter responses using a statistical model *learned from examples*.

Very general model

- Constant velocity motions
- Not constrained by how people tend to move.

Constant velocity model

- All DOF in the model parameter space, ϕ , independent
- Angles are assumed to change with constant speed
- Speed and position changes are randomly sampled from normal distribution

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Very general model
 - Very specific model
 - Example-based model

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Very general model
 - Very specific model
 - Example-based model

Example-based model

- Take lots of training data.
- Use "snippets" of the data as models for how people are likely to move.

in samples from the prior, drawn using approximate probabilistic tree search.

Tracking with only 300 particles.

Smooth motion prior.

Example-based motion prior.

Lessons Learned

- Representation for probabilistic analysis.
 - Probabilistic (Bayesian) framework allows
 - Integration of information in a principled way
 - Modeling of priors
 - Particle filtering allows
 - · Multi-modal distributions
 - Tracking with ambiguities and non-linear models
- Models for human appearance (likelihood term).
- Models for human motion (prior term).

Lessons Learned

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
 - Generic, learned, model of appearance
 - Combines multiple cues
 - · Exploits work on image statistics
 - Use the 3D model to predict features
 - Model of foreground and background
 - Exploits the ratio between foreground and background likelihood

Improves tracking

• Models for human motion (prior term).

Lessons Learned

- Representation for probabilistic analysis.
- Models for human appearance (likelihood term).
- Models for human motion (prior term).
 - Explored 3 different models; analyzed the tradeoffs between each.

Bayesian Inference

Exploit cues in the images. Learn *likelihood* models:

p(image cue / model)

Build models of human form and motion. Learn *priors* over model parameters: p(model)

Represent the *posterior* distribution: $p(\text{model} \mid \text{cue}) \propto p(\text{cue} \mid \text{model}) p(\text{model})$