

Kalman filter for computing an on-line average

• What Kalman filter parameters and initial conditions should we pick so that the optimal estimate for x at each iteration is just the average of all the observations seen so far?

Kalman filter model							
$d_i = 1, \ m_i = 1, \ \sigma_{d_i} = 0, \ \sigma_{m_i} = 1$							
$y_i \sim N(m_i x_i, \sigma_{m_i})$ $\overline{c_0}$ and σ_0^- are known rediction	Initial conditions $\overline{x}_0^- = 0 \sigma_0^- = \infty$						
$\overline{x}_i^- = d_i \overline{x}_{i-1}^+$	Iteration	0	1	2			
$\sigma_i^- = \sqrt{\sigma_{d_i}^2 + (d_i\sigma_{i-1}^+)^2}$	\overline{x}_i^-	0	y_0	$\frac{y_0 + y_1}{2}$			
orrection	\overline{x}_i^+	y_0	$\frac{y_0 + y_1}{2}$	$\frac{y_0 + y_1 + y_2}{3}$			
$x_i^+ = \left(\frac{\overline{x}_i^- \sigma_{m_i}^2 + m_i y_i (\sigma_i^-)^2}{\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2}\right)$				1			
$\sigma_i^+ = \sqrt{\left(\frac{\sigma_{m_i}^2(\sigma_i^-)^2}{(\sigma_{m_i}^2+m_i^2(\sigma_i^-)^2)}\right)}$	$\sigma_i \ \sigma_i^+$	∞ 1	$\frac{1}{\sqrt{2}}$	$\frac{\overline{\sqrt{2}}}{\frac{1}{\sqrt{3}}}$			

Kalman filter model								
$d_i = 1, \ m_i = 1, \ \sigma_{d_i} = 1, \ \sigma_{m_i} = 1$								
$y_i \sim N(m_i x_i, \sigma_{m_i})$ $\overline{t_0}$ and σ_0^- are known rediction	Initial conditions $\bar{x}_0^- = 0 \sigma_0^- = \infty$							
$\overline{x}_{i}^{-} = d_{i}\overline{x}_{i}^{+}$,	Iteration	0	1	2				
$\sigma_i^- = \sqrt{\sigma_{d_i}^2 + (d_i\sigma_{i-1}^+)^2}$	\overline{x}_i^-	0	y_0	$\frac{y_0 + 2y_1}{3}$				
orrection	\overline{x}_i^+	y_0	$\frac{y_0 + 2y_1}{3}$	$\frac{y_0 + 2y_1 + 5y_2}{8}$				
$x_i^+ = \left(rac{\overline{x_i}^- \sigma_{m_i}^2 + m_i y_i (\sigma_i^-)^2}{\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2} ight)$ $\sigma_i^+ = \sqrt{\left(rac{\sigma_{m_i}^2 (\sigma_i^-)^2}{(\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2)} ight)}$	$\sigma_i^- \ \sigma_i^+$	∞ 1	$\sqrt{2}$	$\sqrt{\frac{5}{3}}$				
γ ((om; + m ₁ (o ₁)))	U i	_	¥ 3	¥8 7				

<section-header><section-header><section-header><text><text><text><page-footer>