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6.869

Computer Vision

Prof. Bill Freeman

Particle Filter Tracking 
– Particle filtering

Readings: F&P Extra Chapter: “Particle Filtering”
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Schedule

• Tuesday, May 3:  
– Particle filters, tracking humans, Exam 2 out

• Thursday, May 5:  
– Tracking humans, and how to write conference papers 

& give talks, Exam 2 due

• Tuesday, May 10:
– Motion microscopy, separating shading and paint (“fun 

things my group is doing”)

• Thursday, May 12: 
– 5-10 min. student project presentations, projects due.
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1D Kalman filter
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Kalman filter for computing an on-line average

• What Kalman filter parameters and initial 
conditions should we pick so that the optimal 
estimate for x at each iteration is just the average 
of all the observations seen so far?
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What happens if the x dynamics are given a 
non-zero variance?
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(KF) Distribution propagation

[Isard 1998]

prediction from previous time frame

Noise 
added to 

that 
prediction

Make new measurement at next time frame
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Distribution propagation

[Isard 1998]
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Representing non-linear Distributions
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Representing non-linear Distributions

Unimodal parametric models fail to capture real-
world densities…
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Representing non-linear Distributions

Mixture models are appealing, but very hard to 
propagate analytically!
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:
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[Isard 1998]

Representing distributions using 
weighted samples, another picture
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Sampled representation of a 
probability distribution

You can also think of this as a sum of dirac delta 
functions, each of weight w:
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Marginalizing a sampled density

If we have a sampled representation of a joint density

and we wish to marginalize over one variable:

we can simply ignore the corresponding components of the 
samples (!):
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Marginalizing a sampled density
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Sampled Bayes Rule

Transforming a Sampled Representation of a 
Prior into a Sampled Representation of a 
Posterior:

posterior likelihood,  prior
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Sampled Bayes rule
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Sampled Prediction
=  ?

~=
Drop elements to marginalize to get
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Sampled Correction (Bayes rule)

Prior posterior
Reweight every sample with the likelihood of the 

observations, given that sample: 

yielding a set of samples describing the probability 
distribution after the correction (update) step:
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Naïve PF Tracking

• Start with samples from something simple 
(Gaussian)

• Repeat

But doesn’t work that well because of sample 
impoverishment…

– Predict

– Correct
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Test with linear case:

Sample impoverishment

kf: x
pf: o
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10 of the 100 particles, along with the true Kalman
filter track, with variance:

Sample impoverishment

time 26

In a sampled density representation, the frequency of 
samples can be traded off against weight:

These new samples are a representation of the same 
density.

I.e., make N draws with replacement from the 
original set of samples, using the weights as the 
probability of drawing a sample.

Resample the prior

s.t.

…
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Resampling concentrates samples
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A practical particle filter with resampling
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A variant (predict, then resample, then correct)

[Isard 1998]
30
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A variant (animation)

[Isard 1998]
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Tracking
– hands
– bodies
– leaves

Applications

33

Contour tracking

[Isard 1998]
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Head tracking

[Isard 1998]
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Leaf tracking

[Isard 1998]
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Hand tracking

[Isard 1998]
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Mixed state tracking

[Isard 1998]
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• Sampling densities
• Particle filtering

[Figures from F&P except as noted]

Outline


