6.869

Computer Vision and Applications

Prof. Bill Freeman

Tracking
— Density propagation
— Linear Dynamic models / Kalman filter
— Data association
— Multiple models

Readings: F&P Ch 17
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Figure 1. Some k-fans on 6 nodes. The reference nodes are shown
in black while the regular nodes arc shown in gray.
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Figare 4. Sample bocalization resulte. In each of these cases all pans were localied comectly

Schedule

e Thursday, April 28:
— Kalman filter, PS4 due.
¢ Tuesday, May 3:
— Tracking articulated objects, Exam 2 out
¢ Thursday, May 5:
— How to write papers & give talks, Exam 2 due
¢ Tuesday, May 10:

— Motion microscopy, separating shading and paint (“fun
things my group is doing™)

¢ Thursday, May 12:

— 5-10 min. student project presentations, projects due.

Tracking Applications

Motion capture
Recognition from motion
Surveillance

Targeting




Things to consider in tracking

What are the

* Real world dynamics

« Approximate / assumed model

¢ Observation / measurement process

Density propogation

* Tracking == Inference over time

» Much simplification is possible with linear
dynamics and Gaussian probability models

Outline

Recursive filters

State abstraction

Density propagation

Linear Dynamic models / Kalman filter
Data association

Multiple models

Tracking and Recursive estimation

» Real-time / interactive imperative.

 Task: At each time point, re-compute estimate of
position or pose.
— At time n, fit model to data using time 0...n
— Attime n+1, fit model to data using time 0...n+1

* Repeat batch fit every time?

Recursive estimation

« Decompose estimation problem
— part that depends on new observation
— part that can be computed from previous history

« E.g., running average:
& = oay t(1-0) Y,

¢ Linear Gaussian models: Kalman Filter
« First, general framework...

Tracking

« Very general model:

— We assume there are moving objects, which have an underlying
state X

— There are measurements Y, some of which are functions of this
state

— There is a clock
« at each tick, the state changes
« at each tick, we get a new observation
* Examples

— object is ball, state is 3D position+velocity, measurements are
stereo pairs

— object is person, state is body configuration, measurements are
frames, clock is in camera (30 fps)




Three main issues in tracking

Prediction: we have seen y,. ..., Ui what state does this set of mea-
surements predict for the i'th frame? to solve this problem, we need to obtain

a representation of P(X;|Yo = yq...., Yioi=w)

Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X,|¥ s = ... ., Yia=
Y;_,) to identify these measurements.

Correction: now that we have y, the relevant measurements — we need

to compute a representation of P(X|Y g =y, ..., Y=y

Simplifying Assumptions

e Only the immediate past matters: formally, we require

P(X| Xy, ... X ) = PIXi|X)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn't terribly restrictive if we're clever about interpreting X,
as we shall show in the next section.

Measurements depend only on the current state: we asswme that ¥,
is conditionally independent of all other measurements given X;. This means
that

P(Y.Y; .. . Yi|Xi) = P(Y:| X:)P(Y;,..., Y| X:)

Again, this isn't a particularly restrictive or controversial assumption, but it

yields important simplifications.

Kalman filter graphical model
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Tracking as induction

» Assume data association is done
— we’ll talk about this later; a dangerous assumption

Do correction for the 0’th frame

» Assume we have corrected estimate for i’th frame
— show we can do prediction for i+1, correction for i+1

Base case

Firstly, we assume that we have P(Xq)

Py Xo)P(X,)

P(XolYo=1wyy) = Plyg)

x Plyo|Xo)P(Xo)

Induction step

Prediction
Prediction involves representing
P(Xi|trgs - -1 Wiz1)
given
P(Xialye - Y1)
Our independence assumptions make it possible to write
P(X|lva:---. Yi—1) [f‘l_X..X. 1t - -2 Yy )d X,
[ PRIt W s Ui )Pl - Ui JK

[mx, X P(X oy )X




Update step

Correction

Correction involves obtaining a representation of
given

Our independence assumptions make it possible to write

P(Xilyg, .- m)

v ) P(Xilwg, o 01 )P (o - - - Wiy)
Plyg. ..

Ply | X )P X wge - Vo)

Ply, | X P Xilygs-- - Y1)
| Ply,| XOP( Xl - y,_ )dX,

Linear dynamic models
¢ A linear dynamic model has the form

X; = N(lelxi—l;zd J

XiZn,)

¢ This is much, much more general than it looks, and extremely
powerful

=N(M

Examples % =NOx.=
ifti ; yi=NMx;:Z, )
« Drifting points

— assume that the new position of the point is the old one,
plus noise

D=1Id
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Constant velocity

* We have
U =U_, +Atv,_, + &
VI = Vlfl + gl

— (the Greek letters denote noise terms)
 Stack (u, v) into a single state vector

412 2 oo

— which is the form we had above

+ velocity £ ! % L position
position T A time
melasurlemeht,po-silioln
Constant
Velocity
Model
time

. _ . Al
Constant acceleration % =N@-xiZ,)

« We have V=N, )
U =U_, + Aty + &
Vv, =V +Ata +g;
=3 ,+¢
— (the Greek letters denote noise terms)
« Stack (u, v) into a single state vector

() (1 At 0)(u)

IR

— which is the form we had above o




velocity . - position
position e s time
Constant
Acceleration
Model

X; = N(DHXH;Z )

Periodic motion o)

yi=N (MiXi;zm,]

du 0 1 _ e
5 —( 10 Ju—._u

Take discrete approximation....(e.g., forward
Euler integration with At stepsize.)

Aa‘d"
U; = Ui—q +
; dt

ti_y + AbSu;_

B 1 ArY,
_(--Af e

X = N(Di—lxi—l; Z, }

Yi= N(Mixi;zm,]
Assume we have a point, moving on a line with
a periodic movement defined with a
differential eq:

Periodic motion

d*p
dt?

can be defined as

du o 1 _ s
= —( S5 )u—;u

with state defined as stacked position and
velocity u=(p, v) %

Higher order models

* Independence assumption
Pxol®@y; 0,8 £i1) = Plzi|zi-1)

 Velocity and/or acceleration augmented position
« Constant velocity model equivalent to

Piplpy,.. s Pic )= Npi_, +(Picy — Pi2)s Za.)

— velocity == Pi—1 — Pi-2
— acceleration == (P;—; — Pi-2) — (Pics — Pios)
— could also use p;_, etc.

The Kalman Filter

« Key ideas:

— Linear models interact uniquely well with Gaussian
noise - make the prior Gaussian, everything else
Gaussian and the calculations are easy

— Gaussians are really easy to represent --- once you
know the mean and covariance, you’re done

Recall the three main issues in tracking

* Prediction: we have seen ¥y, ..., what state does this set of mea-
surements predict for the i'th frame? to solve this problem, we need to obtain
a representation of P(X| Yo =y, ..., Yici=9_1)-

« Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X|Y o = ¥, ..., Yia
Y;_,) to identify these measurements.

» Correction: now that we have y, the relevant measurements — we need
to compute a representation of P(X|Y o=y, ..., Yi=w;).

(Ignore data association for now)




The Kalman Filter The Kalman Filter in 1D

» Dynamic Model

- x; ~ N(dz; :-”f;'
¢ Notation

Time Update Measurement Update W ~ Nimzi,ob,)
{“Predict™) {“Correct™)
mean of P(X;|yo. ..., ¥i-1) as T{ «— Predicted mean
mean of P(X;|yo, . . -, ) asX, < Corrected mean
the standard deviation of P(X;|yo. ..., 1) asa;
of P(Xilwo, ..., %) as o}
31 2
[figure from http:/fwww.cs.un htmi]
The Kalman Filter Prediction for 1D Kalman filter

* The new state is obtained by
— multiplying old state by known constant

— adding zero-mean noise
(/\1

Time Update Measurement Update . ThETEfOTE, predicted mean for new state is

{“Predact”) {“Correct™)

— constant times mean for old state
A . . .
 Old variance is normal random variable
— variance is multiplied by square of constant
— and variance of noise is added.

X; =d:X,_, (o7 Y = o}, + (digi" )?
33 34
Divnamic MModel: H
The Kalman Filter
;i ~ Nidizio1. 04 )
W~ N{mei, Om,)
Start Assumptions: T, and ag are known
Update Equations: Prediction
- 4T, /_\‘
[rm— Time Update Measurement Update
oy = el +(del P {“Predict”) (“Correct”)
v}
35 36




Correction for 1D Kalman filter

( ai, oy )
. \ '”iu. L H A
Notice:

— if measurement noise is small,
we rely mainly on the measurement,
— if it’s large, mainly on the

Diyvnamic MModel:
i~ Nidizic1. 04}
i~ Nimz, om, )

Start Assumptions: T, and o5 are known
Update Equations: Prediction

T =43,

N

L5 oj +idie! )2 )
i LA -1 Mewurezent Update
*Carrect”}

Tirac Update
{“Predict™}

R

Upilate Equations: Correction

prediction
— o does not depend on 'y 37
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39
25 I 1 4
201
2 BlirUs it Tt
Q- 4ot 4 A
TIHHA ke $
- i 3] A b
o
5
5 AR
[ =]
H TR
o
ol
.5(.1 5 |.D 1;5 Z;D 2‘5
I time
The *-5 give T, +-s give :r:‘I vertical bars are 3 standard deviation bars

38
2 T T T T T T T T T
2 £
”
a . ®
o *
[ + & * o
S . oLt .
= v 8 ]
2 ’ .
*
- * o
<l
*
)
o
time ' ) a0
]
10F y
®
% *
c
2
.§ 5 A |4
2 o P
#£ %
O L
) i time
The o-s give state, X-s measurement. @

The *-5 give T, +-s give :r:‘I . vertical bars are 3 standard deviation bars




-
o s
=
| 3]
o)
s
ks
@
¥
N *| sk
* e
Ll o pA * 4
* Ll
| & " *
*
= X
i time
The o-s give state, x-S measurement. -
The *-5 give T, +-s give T, vertical bars are 3 standard deviation bars

Smoothing

* ldea

— We don’t have the best estimate of state - what about
the future?

— Run two filters, one moving forward, the other
backward in time.

— Now combine state estimates

« The crucial point here is that we can obtain a smoothed
estimate by viewing the backward filter’s prediction as yet
another measurement for the forward filter

Forward estimates.
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Combined forward-backward estimates.
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n-D

Generalization to n-D is straightforward but more complex.




n-D

Generalization to n-D is straightforward but more complex.

\‘

Time Update Mewureexn Lpdate
{“Prediet ™} O ¥

orect”}

n-D Prediction

Generalization to n-D is straightforward but more complex.

\‘

Time Update Mewureexn Lpdate

omect”}

Prediction: J

« Multiply estimate at prior time with forward model:

& =Dt

« Propagate covariance through model and add new noise:

n-D Correction

Generalization to n-D is straightforward but more complex.

Tirac Update

Correction: ‘\

« Update a priori estimate with measurement to form a
posteriori

n-D correction

Find linear filter on innovations

Ef = + Ki [y — M|

i

which minimizes a posteriori error covariance:

T

K is the Kalman Gain matrix. A solution is

. 3 — TTlag v T, .
Ki =57 MT (M7 MT + B,

Kalman Gain Matrix

Ef = + Ki [y — M|

i

Ki= ;7 M; [MiE;M; + B,

As measurement becomes more reliable, K weights residual
more heavily,

. -1
lim K, =M
Xn,—0

As prior covariance approaches 0, measurements are ignored:

lim Ki =0

X -0 53

Diynamic Model:

@~ N[Diayo1, ¥t}
W, = N(Mizi, ¥

Start Assumptions Ty and ¥y are kiown
Updato Equations: Prediction

Update Equations: Correction

Ki = E7 MT [MET MT + En,

T =T+ K [y - MT;




2-D constant velocity example from Kevin Murphy’s Matlab toolbox
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox

« MSE of filtered estimate is 4.9; of smoothed estimate. 3.2.

« Not only is the smoothed estimate better, but we know that it is better,
as illustrated by the smaller uncertainty ellipses

« Note how the smoothed ellipses are larger at the ends, because these
points have seen less data.

« Also, note how rapidly the filtered ellipses reach their steady-state
(“Ricatti”) values.

[figure from htt
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Data Association

In real world y; have clutter as well as data...

E.g., match radar returns to set of aircraft
trajectories.

Data Association

Approaches:

 Nearest neighbours

— choose the measurement with highest probability given
predicted state

— popular, but can lead to catastrophe
* Probabilistic Data Association

— combine measurements, weighting by probability given
predicted state

— gate using predicted state

, Red: tracks of 10 drifting points. Blue, black: point being tracked

position

position

, Red: tracks of 10 drifting points. Blue, black: point being tracked
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position

Red: tracks of 10 drifting points. Blue, black: point being tracked

position

REd:tracks of 10 drifting points. Blue, black? point being tracked
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Abrupt changes

What if environment is sometimes unpredictable?
Do people move with constant velocity?

Test several models of assumed dynamics, use the
best.

Multiple model filters

Test several models of assumed dynamics

[figure from Welsh and Bishop 2601]

MM estimate

Two models: Position (P), Position+Velocity (PV)

v [meters]

'Il;illlL' [ ‘I\'\"'"lt-‘-i.

[figure from Welsh and Bishop 2601]
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P likelihood

Time [scconds]

[figure from Welsh and Bishop 2601]

Time [seconds]

[figure from Welsh and Bishop 2601]

Smooth when still
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[figure from Welsh and Bishop 2601]

Resources

» Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/

 Kevin Murphy’s Matlab toolbox:

http://www.ai.mit.edu/~murphyk/Software/Kalman/k
alman.html

Jepson, Fleet, and El-Maraghi tracker

IEEE Conference on Computer Vision and and Partemn Recognition, Kavai, 2001, Vol. I, pp. 415-422

Robust Online Appearance Models for Visual Tracking

Allan D, Jepson® David ). Fleet' Thomas F. El-Maraghi®
* Department of Computer Science, University of Toronto, Toronto, M55 144
! Xerox Palo Alto Research Center, 3333 Coyote Hill Rd, Palo Alto, CA 94304
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Jepson,.Fleet, and EI-Maraghi.tracker
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Show videos
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