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Today



Motivation for camera calibration:
relating image measurements to positions out in the world

Frames from video data Tracked feature points

Inferred 3-d shape of building



Video



Translation and rotation

Let’s write

as a single matrix equation:
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Homogenous coordinates

• Add an extra 
coordinate and use an 
equivalence relation

• for 3D
– equivalence relation

k*(X,Y,Z,T) is the 
same as                    
(X,Y,Z,T)

• Motivation
– Possible to write the 

action of a perspective 
camera as a matrix



Homogenous/non-homogenous 
transformations for a 3-d point

• From non-homogenous to homogenous 
coordinates:  add 1 as the 4th coordinate, ie

• From homogenous to non-homogenous 
coordinates:  divide 1st 3 coordinates by the 
4th, ie
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Homogenous/non-homogenous 
transformations for a 2-d point

• From non-homogenous to homogenous 
coordinates:  add 1 as the 3rd coordinate, ie

• From homogenous to non-homogenous 
coordinates:  divide 1st 2 coordinates by the 
3rd, ie
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Translation and rotation, written in 
each set of coordinates

Non-homogeneous coordinates

A
BAB

A
B OPRP +=  
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Perspective projection, in 
homogenous coordinates

• Turn previous 
expression into HC’s
– HC’s for 3D point are 

(X,Y,Z,T)
– HC’s for point in 

image are (U,V,W)
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The  projection matrix for orthographic 
projection, in homogenous coordinates
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Camera calibration

Use the camera to tell you things about the 
world:
– Relationship between coordinates in the world 

and coordinates in the image:  geometric 
camera calibration.

– (Relationship between intensities in the world 
and intensities in the image: photometric 
camera calibration, not covered in this course, 
see 6.801 or text)



Intrinsic parameters:  from idealized 
world coordinates to pixel values

Forsyth&Ponce
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Intrinsic parameters
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Intrinsic parameters
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Intrinsic parameters
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Intrinsic parameters
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Intrinsic parameters
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Using homogenous coordinates,
we can write this as:

or:



Extrinsic parameters:  translation 
and rotation of camera frame

W
CWC

W
C OPRP +=  Non-homogeneous 

coordinates

Homogeneous 
coordinates
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Combining extrinsic and intrinsic 
calibration parameters

Forsyth&Ponce
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Other ways to write the same equation
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Calibration target

http://www.kinetic.bc.ca/CompVision/opti-CAL.html



Camera calibration
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Camera calibration
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into a big matrix:
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Showing all the elements:

In vector form: Camera calibration



We want to solve for the unit vector m (the stacked one)
that minimizes 2Qm
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Q                                  m = 0

The minimum eigenvector of the matrix QTQ gives us that
(see Forsyth&Ponce, 3.1)

Camera calibration



Once you have the M matrix, can recover the 
intrinsic and extrinsic parameters as in 
Forsyth&Ponce, sect. 3.2.2.

Camera calibration



Image filtering 

• Reading:  
– Chapter 7, F&P



Take 6.341, discrete-time signal 
processing

• If you want to process pixels, you need to 
understand signal processing well, so 
– Take 6.341

• Fantastic set of teachers:
– Al Oppenheim
– Greg Wornell
– Jae Lim

• Web page:  http://web.mit.edu/6.341/www/



What is image filtering?

• Modify the pixels in an image based on 
some function of a local neighborhood of 
the pixels.
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Linear functions
• Simplest:  linear filtering.

– Replace each pixel by a linear combination of 
its neighbors.

• The prescription for the linear combination 
is called the “convolution kernel”.
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Convolution
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Linear filtering
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shift
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Linear filtering
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Blurring
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Blur examples
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Blur examples
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Linear filtering (warm-up slide)
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Linear filtering (no change)
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(remember blurring)
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Sharpening 
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Sharpening example
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Sharpening

before after



Oriented filters



Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric 
(or odd) filters, bottom row the
symmetric (or even) filters.



Linear image transformations

• In analyzing images, it’s often useful to 
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image



Self-inverting transforms
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Same basis functions are used for the inverse transform

U transpose and complex conjugate



An example of such a transform:  
the Fourier transform

discrete domain
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Forward transform



To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 

u
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Here u and v 
are larger than 
in the previous 
slide.
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And larger still...
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Phase and Magnitude
• Fourier transform of a real 

function is complex
– difficult to plot, visualize
– instead, we can think of the 

phase and magnitude of the 
transform

• Phase is the phase of the 
complex transform

• Magnitude is the 
magnitude of the complex 
transform

• Curious fact
– all natural images have 

about the same magnitude 
transform

– hence, phase seems to 
matter, but magnitude 
largely doesn’t

• Demonstration
– Take two pictures, swap the 

phase transforms, compute 
the inverse - what does the 
result look like?





This is the 
magnitude 
transform 
of the 
cheetah pic



This is the 
phase 
transform 
of the 
cheetah pic





This is the 
magnitude 
transform 
of the zebra 
pic



This is the 
phase 
transform 
of the zebra 
pic



Reconstruction 
with zebra 
phase, cheetah 
magnitude



Reconstruction 
with cheetah 
phase, zebra 
magnitude



Example image synthesis with 
fourier basis.

• 16 images
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Fourier transform magnitude



Masking out the fundamental and 
harmonics from periodic pillars



Name as many functions as you 
can that retain that same 

functional form in the transform 
domain



Forsyth&Ponce



Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999

Discrete-time, continuous frequency Fourier transform



Discrete-time, continuous frequency Fourier transform pairs

Oppenheim, 
Schafer and 
Buck,
Discrete-time 
signal processing,
Prentice Hall, 
1999



Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978 

Bracewell’s pictorial dictionary of Fourier 
transform pairs



Why is the Fourier domain 
particularly useful?

• It tells us the effect of linear convolutions.



hgf ⊗=

Fourier transform of convolution

Consider a (circular) convolution of g and h



hgf ⊗=

( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Take DFT of both sides
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Fourier transform of convolution

Write the DFT and convolution explicitly
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Move the exponent in
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Change variables in the sum
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the DFT (circular boundary conditions)
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hgf ⊗=
( )hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)

[ ] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[

M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

( ) ( )

∑ ∑ ∑
−−

−=

−−

−=

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

[ ]∑
⎟
⎠
⎞

⎜
⎝
⎛ +−

=
lk

NM
kmi

lkhenmG
,

ln

],[,
π

[ ] [ ]nmHnmG ,,=



Analysis of our simple filters



Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Sampling and aliasing



Sampling in 1D takes a continuous function and replaces it with a 
vector of values, consisting of the function’s values at a set of 
sample points.  We’ll assume that these sample points are on a 
regular grid, and can place one at each integer for convenience.



Sampling in 2D does the same thing, only in 2D.  We’ll assume that 
these sample points are on a regular grid, and can place one at each 
integer point for convenience.



A continuous model for a 
sampled function

• We want to be able to 
approximate integrals 
sensibly

• Leads to
– the delta function
– model on right

Sample2D f (x,y)( )= f (x, y)δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑

= f (x,y) δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑



The Fourier transform of a 
sampled signal

F Sample2D f (x, y)( )( )= F f (x, y) δ(x − i,y − j)
i=−∞

∞
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∞

∑
i=−∞
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⎝ ⎜ 

⎞ 
⎠ ⎟ 

= F u − i,v − j( )
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∞

∑
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Aliasing

• Can’t shrink an image by taking every second 
pixel

• If we do, characteristic errors appear 
– In the next few slides
– Typically, small phenomena look bigger; fast 

phenomena can look slower
– Common phenomenon

• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television



Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.



Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer



Smoothing as low-pass filtering
• The message of the FT is 

that high frequencies lead 
to trouble with sampling.

• Solution: suppress high 
frequencies before 
sampling
– multiply the FT of the 

signal with something 
that suppresses high 
frequencies

– or convolve with a low-pass 
filter

• A filter whose FT is a 
box is bad, because the 
filter kernel has 
infinite support

• Common solution: use 
a Gaussian
– multiplying FT by 

Gaussian is equivalent 
to convolving image 
with Gaussian.



Sampling without smoothing.  Top row shows the images,
sampled at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Sampling with smoothing.  Top row shows the images.  We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row 
shows the magnitude spectrum of these images.



Thought problem
Analyze crossed 

gratings…



Thought problem
Analyze crossed 

gratings…



Thought problem
Analyze crossed 

gratings…



Thought problem
Analyze crossed 

gratings…

Where does 
perceived near 
horizontal 
grating come 
from? 



A F(A)



B F(B)



A*B F(A)**F(B)



A*B F(A)**F(B)



A*B Lowpass(F(A)**F(B))
~=F(C)

C



What is a good representation for 
image analysis?

• Fourier transform domain tells you “what”
(textural properties), but not “where”.

• Pixel domain representation tells you 
“where” (pixel location), but not “what”.

• Want an image representation that gives 
you a local description of image events—
what is happening where.



Image pyramids



The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Synthesis 
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is 
redundant





The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian pyramid 
level

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other 
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer









Oriented pyramids

• Laplacian pyramid is orientation 
independent

• Apply an oriented filter to determine 
orientations at each layer
– by clever filter design, we can simplify 

synthesis
– this represents image information at a particular 

scale and orientation



Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE
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