
http://courses.csail.mit.edu/6.869

Today

Motivation for camera calibration:
relating image measurements to positions out in the world

Frames from video data Tracked feature points

Inferred 3-d shape of building

Video

Translation and rotation

Let’s write

as a single matrix equation:

A
BAB

A
B OPRP +=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−
−−−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11000
|

|

1
Z

Y

X

A
BB

A

Z

Y

X

A
A
A

OR
B
B
B

Aî

Ak̂

Aĵ

PxA

YA
ZA

A
BO

Homogenous coordinates

• Add an extra
coordinate and use an
equivalence relation

• for 3D
– equivalence relation

k*(X,Y,Z,T) is the
same as
(X,Y,Z,T)

• Motivation
– Possible to write the

action of a perspective
camera as a matrix

Homogenous/non-homogenous
transformations for a 3-d point

• From non-homogenous to homogenous
coordinates: add 1 as the 4th coordinate, ie

• From homogenous to non-homogenous
coordinates: divide 1st 3 coordinates by the
4th, ie

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

→
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
z
y
x

z
y
x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

z
y
x

T
T
z
y
x

1

Homogenous/non-homogenous
transformations for a 2-d point

• From non-homogenous to homogenous
coordinates: add 1 as the 3rd coordinate, ie

• From homogenous to non-homogenous
coordinates: divide 1st 2 coordinates by the
3rd, ie

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

1
y
x

y
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

y
x

z
z
y
x

1

Translation and rotation, written in
each set of coordinates

Non-homogeneous coordinates

A
BAB

A
B OPRP +=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−
−−−

=

1000
|

|

A
BB

A ORC

PCP AB
A

B =
Homogeneous coordinates

where

Perspective projection, in
homogenous coordinates

• Turn previous
expression into HC’s
– HC’s for 3D point are

(X,Y,Z,T)
– HC’s for point in

image are (U,V,W)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

1
0100
0010
0001

Z
Y
X

f

Y
X

f
Z

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

Y
X

Y
X

Z
f

f
Z

HC Non-HC

The projection matrix for orthographic
projection, in homogenous coordinates

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
1000
0010
0001

1
Z
Y
X

V
U

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Y
X

Y
X

1

HC Non-HC

Camera calibration

Use the camera to tell you things about the
world:
– Relationship between coordinates in the world

and coordinates in the image: geometric
camera calibration.

– (Relationship between intensities in the world
and intensities in the image: photometric
camera calibration, not covered in this course,
see 6.801 or text)

Intrinsic parameters: from idealized
world coordinates to pixel values

Forsyth&Ponce

z
yfv
z
xfu

=

=Perspective projection

Intrinsic parameters

z
yv
z
xu

α

α

=

=But “pixels” are in
some arbitrary spatial
units

Intrinsic parameters

z
yv
z
xu

β

α

=

=Maybe pixels are not
square

Intrinsic parameters

0

0

v
z
yv

u
z
xu

+=

+=

β

αWe don’t know the
origin of our camera
pixel coordinates

Intrinsic parameters

0

0

)sin(

)cot(

v
z
yv

u
z
y

z
xu

+=

+−=

θ
β

θαα
May be skew between
camera pixel axes

() PK
z

p
rrr 0 1 =

Intrinsic parameters

0

0

)sin(

)cot(

v
z
yv

u
z
y

z
xu

+=

+−=

θ
β

θαα

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0
0
0

100
)sin(

0

)cot(
1

1
0

0

z
y
x

v

u

z
v
u

θ
β

θαα
Using homogenous coordinates,
we can write this as:

or:

Extrinsic parameters: translation
and rotation of camera frame

W
CWC

W
C OPRP += Non-homogeneous

coordinates

Homogeneous
coordinates

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−
−−−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
PORP W

W
CC

W
C

rr

1000
|

|

Combining extrinsic and intrinsic
calibration parameters

Forsyth&Ponce

() PORK
z

p W
CC

W

rr 1 =

() PK
z

p C
rrr 0 1 =

PΜ
z

p
rr 1 =

Intrinsic

Extrinsic

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−
−−
−−−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
PORP

W
CC

W
C

rr

1000
|

|

Other ways to write the same equation

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
...
...
...

1

1 3

2

1

z

y

x

T

T

T

W
W
W

m
m
m

z
v
u

PM
z

p
rr 1

=

Pm
Pmv

Pm
Pmu

r

r

r

r

⋅
⋅

=

⋅
⋅

=

3

2

3

1

pixel coordinates
world coordinates

z is in the camera coordinate system, but we can
solve for that, since , leading to:

z
Pm
r

⋅
= 31

Calibration target

http://www.kinetic.bc.ca/CompVision/opti-CAL.html

Camera calibration

0)(
0)(

32

31

=⋅−
=⋅−

ii

ii

Pmvm
Pmum
r

r
So for each feature point, i, we have:

Pm
Pmv

Pm
Pmu

r

r

r

r

⋅
⋅

=

⋅
⋅

=

3

2

3

1From before, we had these equations
relating image positions,
u,v, to points at 3-d positions P (in
homogeneous coordinates):

Camera calibration

0)(
0)(

32

31

=⋅−
=⋅−

ii

ii

Pmvm
Pmum
r

r
Stack all these measurements of i=1…n points

into a big matrix:

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

0
0

0
0

0
0

0
0

3

2

1111

111

MLLL

m
m
m

PvP
PuP

PvP
PuP

T
nn

T
n

T

T
nn

TT
n

TTT

TTT

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

0
0

0
0

0
0

0
0

3

2

1111

111

MLLL

m
m
m

PvP
PuP

PvP
PuP

T
nn

T
n

T

T
nn

TT
n

TTT

TTT

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

0
0

0
0

10000
00001

10000
00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111

MLLL

m
m
m
m
m
m
m
m
m
m
m
m

vPvPvPvPPP
uPuPuPuPPP

vPvPvPvPPP
uPuPuPuPPP

nnznnynnxnnznynx

nnznnynnxnnznynx

zyxzyx

zyxzyx

Showing all the elements:

In vector form: Camera calibration

We want to solve for the unit vector m (the stacked one)
that minimizes 2Qm

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

0
0

0
0

10000
00001

10000
00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111

MLLL

m
m
m
m
m
m
m
m
m
m
m
m

vPvPvPvPPP
uPuPuPuPPP

vPvPvPvPPP
uPuPuPuPPP

nnznnynnxnnznynx

nnznnynnxnnznynx

zyxzyx

zyxzyx

Q m = 0

The minimum eigenvector of the matrix QTQ gives us that
(see Forsyth&Ponce, 3.1)

Camera calibration

Once you have the M matrix, can recover the
intrinsic and extrinsic parameters as in
Forsyth&Ponce, sect. 3.2.2.

Camera calibration

Image filtering

• Reading:
– Chapter 7, F&P

Take 6.341, discrete-time signal
processing

• If you want to process pixels, you need to
understand signal processing well, so
– Take 6.341

• Fantastic set of teachers:
– Al Oppenheim
– Greg Wornell
– Jae Lim

• Web page: http://web.mit.edu/6.341/www/

What is image filtering?

• Modify the pixels in an image based on
some function of a local neighborhood of
the pixels.

5 14
1 71

5 310

Local image data

7

Modified image data

Some function

Linear functions
• Simplest: linear filtering.

– Replace each pixel by a linear combination of
its neighbors.

• The prescription for the linear combination
is called the “convolution kernel”.

5 14
1 71

5 310

0.5
0.5 00
10

0 00

Local image data kernel

7

Modified image data

Convolution

∑ −−=⊗=
lk

lkglnkmIgInmf
,

],[],[],[

Linear filtering (warm-up slide)

original
0

Pixel offset

co
ef

fic
ie

nt
1.0 ?

Linear filtering (warm-up slide)

original
0

Pixel offset

co
ef

fic
ie

nt
1.0

Filtered
(no change)

Linear filtering

0
Pixel offset

co
ef

fic
ie

nt

original

1.0

?

shift

0
Pixel offset

co
ef

fic
ie

nt

original

1.0

shifted

Linear filtering

0
Pixel offset

co
ef

fic
ie

nt

original

0.3 ?

Blurring

0
Pixel offset

co
ef

fic
ie

nt

original

0.3

Blurred (filter
applied in both
dimensions).

Blur examples

0
Pixel offset

co
ef

fic
ie

nt

0.3

original

8

filtered

2.4

impulse

Blur examples

0
Pixel offset

co
ef

fic
ie

nt

0.3

original

8

filtered

4
8

4

impulse

edge

0
Pixel offset

co
ef

fic
ie

nt

0.3

original

8

filtered

2.4

Linear filtering (warm-up slide)

original

0

2.0

?
0

1.0

Linear filtering (no change)

original

0

2.0

0

1.0

Filtered
(no change)

Linear filtering

original

0

2.0

0

0.33 ?

(remember blurring)

0
Pixel offset

co
ef

fic
ie

nt

original

0.3

Blurred (filter
applied in both
dimensions).

Sharpening

original

0

2.0

0

0.33

Sharpened
original

Sharpening example

co
ef

fic
ie

nt

-0.3
original

8

Sharpened
(differences are

accentuated; constant
areas are left untouched).

11.2
1.7

-0.25

8

Sharpening

before after

Oriented filters

Gabor filters at different
scales and spatial frequencies

top row shows anti-symmetric
(or odd) filters, bottom row the
symmetric (or even) filters.

Linear image transformations

• In analyzing images, it’s often useful to
make a change of basis.

Fourier transform, or
Wavelet transform, or

Steerable pyramid transform

fUF
rr

= Vectorized image

transformed image

Self-inverting transforms

FU

FUf
r

rr

+

−

=

=

1

Same basis functions are used for the inverse transform

U transpose and complex conjugate

An example of such a transform:
the Fourier transform

discrete domain

∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ ++

=
1

0

1

0

ln

],[1],[
M

k

N

l

NM
kmi

enmF
MN

lkf
π

Inverse transform

∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

=
1

0

1

0

ln

],[],[
M

k

N

l

NM
kmi

elkfnmF
π

Forward transform

To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---
as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.

u

v
()vyuxie +−π

()vyuxie +π

Here u and v
are larger than
in the previous
slide.

u

v
()vyuxie +−π

()vyuxie +π

And larger still...

u

v
()vyuxie +−π

()vyuxie +π

Phase and Magnitude
• Fourier transform of a real

function is complex
– difficult to plot, visualize
– instead, we can think of the

phase and magnitude of the
transform

• Phase is the phase of the
complex transform

• Magnitude is the
magnitude of the complex
transform

• Curious fact
– all natural images have

about the same magnitude
transform

– hence, phase seems to
matter, but magnitude
largely doesn’t

• Demonstration
– Take two pictures, swap the

phase transforms, compute
the inverse - what does the
result look like?

This is the
magnitude
transform
of the
cheetah pic

This is the
phase
transform
of the
cheetah pic

This is the
magnitude
transform
of the zebra
pic

This is the
phase
transform
of the zebra
pic

Reconstruction
with zebra
phase, cheetah
magnitude

Reconstruction
with cheetah
phase, zebra
magnitude

Example image synthesis with
fourier basis.

• 16 images

2

6

18

50

82

136

282

538

1088

2094

4052.
4052

8056.

15366

28743

49190.

65536.

Fourier transform magnitude

Masking out the fundamental and
harmonics from periodic pillars

Name as many functions as you
can that retain that same

functional form in the transform
domain

Forsyth&Ponce

Oppenheim,
Schafer and
Buck,
Discrete-time
signal processing,
Prentice Hall,
1999

Discrete-time, continuous frequency Fourier transform

Discrete-time, continuous frequency Fourier transform pairs

Oppenheim,
Schafer and
Buck,
Discrete-time
signal processing,
Prentice Hall,
1999

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978

Bracewell’s pictorial dictionary of Fourier
transform pairs

Why is the Fourier domain
particularly useful?

• It tells us the effect of linear convolutions.

hgf ⊗=

Fourier transform of convolution

Consider a (circular) convolution of g and h

hgf ⊗=

()hgDFTnmF ⊗=],[

Fourier transform of convolution

Take DFT of both sides

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Write the DFT and convolution explicitly

[] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,

],[],[,
M

u

N

v

N
vn

M
umi

lk

elkhlvkugnmF
π

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Move the exponent in

[] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,

],[],[
M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Change variables in the sum

[] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[

M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

−
=

1 1

,

],[],[
kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the DFT (circular boundary conditions)

[] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[

M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

[]∑
⎟
⎠
⎞

⎜
⎝
⎛ +−

=
lk

NM
kmi

lkhenmG
,

ln

],[,
π

hgf ⊗=
()hgDFTnmF ⊗=],[

Fourier transform of convolution

Perform the other DFT (circular boundary conditions)

[] ∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[,

M

u

N

v

N
vn

M
umi

lk
elkhlvkugnmF

π

∑∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

−−=
1

0

1

0 ,
],[],[

M

u

N

v lk

N
vn

M
umi

lkhelvkug
π

() ()

∑ ∑ ∑
−−

−=

−−

−=

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

−
=

1 1

,
],[],[

kM

k

lN

l lk

N
nl

M
mki

lkheg
µ υ

υµπ
υµ

[]∑
⎟
⎠
⎞

⎜
⎝
⎛ +−

=
lk

NM
kmi

lkhenmG
,

ln

],[,
π

[] []nmHnmG ,,=

Analysis of our simple filters

Analysis of our simple filters

original
0Pixel offset

co
ef

fic
ie

nt

1.0

Filtered
(no change)

1

],[],[
1

0

1

0

ln

=

= ∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−M

k

N

l

NM
kmi

elkfnmF
π

0

1.0 constant

Analysis of our simple filters

0Pixel offset
co

ef
fic

ie
nt

original

1.0

shifted

M
mi

M

k

N

l

NM
kmi

e

elkfnmF

δπ

π
δ

−

−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

=

−= ∑∑

],[],[
1

0

1

0

ln

0

1.0

Constant
magnitude,
linearly shifted
phase

Analysis of our simple filters

0Pixel offset
co

ef
fic

ie
nt

original

0.3

blurred

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

= ∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

M
m

elkfnmF
M

k

N

l

NM
kmi

π

π

cos21
3
1

],[],[
1

0

1

0

ln

Low-pass
filter

0

1.0

Analysis of our simple filters

original
0

2.0

0

0.33

sharpened

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−=

= ∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛ +−

M
m

elkfnmF
M

k

N

l

NM
kmi

π

π

cos21
3
12

],[],[
1

0

1

0

ln

high-pass filter

0

1.0

2.3

Sampling and aliasing

Sampling in 1D takes a continuous function and replaces it with a
vector of values, consisting of the function’s values at a set of
sample points. We’ll assume that these sample points are on a
regular grid, and can place one at each integer for convenience.

Sampling in 2D does the same thing, only in 2D. We’ll assume that
these sample points are on a regular grid, and can place one at each
integer point for convenience.

A continuous model for a
sampled function

• We want to be able to
approximate integrals
sensibly

• Leads to
– the delta function
– model on right

Sample2D f (x,y)()= f (x, y)δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑

= f (x,y) δ (x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑

The Fourier transform of a
sampled signal

F Sample2D f (x, y)()()= F f (x, y) δ(x − i,y − j)
i=−∞

∞

∑
i=−∞

∞

∑⎛
⎝ ⎜

⎞
⎠ ⎟

= F f (x,y)()**F δ(x − i, y − j)
i=−∞

∞

∑
i=−∞

∞

∑⎛
⎝ ⎜

⎞
⎠ ⎟

= F u − i,v − j()
j=−∞

∞

∑
i=−∞

∞

∑

Aliasing

• Can’t shrink an image by taking every second
pixel

• If we do, characteristic errors appear
– In the next few slides
– Typically, small phenomena look bigger; fast

phenomena can look slower
– Common phenomenon

• Wagon wheels rolling the wrong way in movies
• Checkerboards misrepresented in ray tracing
• Striped shirts look funny on colour television

Resample the
checkerboard by taking
one sample at each circle.
In the case of the top left
board, new representation
is reasonable.
Top right also yields a
reasonable representation.
Bottom left is all black
(dubious) and bottom
right has checks that are
too big.

Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer

Smoothing as low-pass filtering
• The message of the FT is

that high frequencies lead
to trouble with sampling.

• Solution: suppress high
frequencies before
sampling
– multiply the FT of the

signal with something
that suppresses high
frequencies

– or convolve with a low-pass
filter

• A filter whose FT is a
box is bad, because the
filter kernel has
infinite support

• Common solution: use
a Gaussian
– multiplying FT by

Gaussian is equivalent
to convolving image
with Gaussian.

Sampling without smoothing. Top row shows the images,
sampled at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

Sampling with smoothing. Top row shows the images. We
get the next image by smoothing the image with a Gaussian with sigma 1 pixel,
then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

Sampling with smoothing. Top row shows the images. We
get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels,
then sampling at every second pixel to get the next; bottom row
shows the magnitude spectrum of these images.

Thought problem
Analyze crossed

gratings…

Thought problem
Analyze crossed

gratings…

Thought problem
Analyze crossed

gratings…

Thought problem
Analyze crossed

gratings…

Where does
perceived near
horizontal
grating come
from?

A F(A)

B F(B)

A*B F(A)**F(B)

A*B F(A)**F(B)

A*B Lowpass(F(A)**F(B))
~=F(C)

C

What is a good representation for
image analysis?

• Fourier transform domain tells you “what”
(textural properties), but not “where”.

• Pixel domain representation tells you
“where” (pixel location), but not “what”.

• Want an image representation that gives
you a local description of image events—
what is happening where.

Image pyramids

The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian

• Synthesis
– smooth and sample

• Analysis
– take the top image

• Gaussians are low pass filters, so repn is
redundant

The Laplacian Pyramid

• Synthesis
– preserve difference between upsampled

Gaussian pyramid level and Gaussian pyramid
level

– band pass filter - each level represents spatial
frequencies (largely) unrepresented at other
levels

• Analysis
– reconstruct Gaussian pyramid, take top layer

Oriented pyramids

• Laplacian pyramid is orientation
independent

• Apply an oriented filter to determine
orientations at each layer
– by clever filter design, we can simplify

synthesis
– this represents image information at a particular

scale and orientation

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

	
	
	
	Motivation for camera calibration:relating image measurements to positions out in the world
	Video
	Translation and rotation
	Homogenous coordinates
	Homogenous/non-homogenous transformations for a 3-d point
	Homogenous/non-homogenous transformations for a 2-d point
	Translation and rotation, written in each set of coordinates
	Perspective projection, in homogenous coordinates
	The projection matrix for orthographic projection, in homogenous coordinates
	Camera calibration
	Intrinsic parameters: from idealized world coordinates to pixel values
	Intrinsic parameters
	Intrinsic parameters
	Intrinsic parameters
	Intrinsic parameters
	Intrinsic parameters
	Extrinsic parameters: translation and rotation of camera frame
	Combining extrinsic and intrinsic calibration parameters
	Other ways to write the same equation
	Calibration target
	Camera calibration
	Camera calibration
	Camera calibration
	Camera calibration
	Image filtering
	Take 6.341, discrete-time signal processing
	What is image filtering?
	Linear functions
	Convolution
	Linear filtering (warm-up slide)
	Linear filtering (warm-up slide)
	Linear filtering
	shift
	Linear filtering
	Blurring
	Blur examples
	Blur examples
	Linear filtering (warm-up slide)
	Linear filtering (no change)
	Linear filtering
	(remember blurring)
	Sharpening
	Sharpening example
	Sharpening
	Oriented filters
	Linear image transformations
	Self-inverting transforms
	An example of such a transform: the Fourier transform
	Phase and Magnitude
	Example image synthesis with fourier basis.
	2
	6
	18
	50
	82
	136
	282
	538
	1088
	2094
	4052.
	8056.
	15366
	28743
	49190.
	65536.
	Fourier transform magnitude
	Masking out the fundamental and harmonics from periodic pillars
	Name as many functions as you can that retain that same functional form in the transform domain
	
	
	
	Bracewell’s pictorial dictionary of Fourier transform pairs
	Why is the Fourier domain particularly useful?
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Fourier transform of convolution
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Analysis of our simple filters
	Sampling and aliasing
	A continuous model for a sampled function
	The Fourier transform of a sampled signal
	Aliasing
	Smoothing as low-pass filtering
	Thought problem
	Thought problem
	Thought problem
	Thought problem
	What is a good representation for image analysis?
	Image pyramids
	The Gaussian pyramid
	The Laplacian Pyramid
	Oriented pyramids

