6.869 Advances in Computer Vision: Learning and Interfaces

Spring 2005
Tuesday and Thursday; 2:30 to 4:oopm in 36-153
Announcements

Course Information

- Syllabus
- Problem Sets and Exams
- Grading and Requirements
- Internet Resources

Contacts
http://courses.csail.mit.edu/6.869

Course Calendar

Lecture	Date	Description	Readings	Assignments	Materials
1	2/1	Course Introduction Cameras and Lenses	Req: FP 1.1, 2.1, $2.2,2.3,3.1,3.2$	PSo out	
2	2/3	Image Filtering	Req: FP 7.1-7.6		
3	2/8	Image Representations: Pyramids	Req: FP 7.7, 9.2		
4	2/10	Image Statistics		PSo due	
5	2/15	Texture	$\begin{aligned} & \text { Req: FP 9.1, } 9.3, \\ & 9.4 \end{aligned}$	PS1 out	
6	2/17	Color	Req: FP 6.1-6.4		
7	2/22	Guest Lecture: Context in vision			
8	2/24	Guest Lecture: Medical Imaging		PS1 due	
9	3/1	Multiview Geometry	Req: Mikolajczyk and Schmid; FP 10	PS2 out	
10	3/3	Local Features	Req: Shi and Tomasi; Lowe		

\square

Course Calendar

Lecture	Date	Description	Readings	Assignments	Materials
1	$2 / 1$	Course Introduction Cameras and Lenses	Req: FP 1.1, 2.1, $2.2,2.3,3.1,3.2$	PSo out	
2	$2 / 3$	Image Filtering	Req: FP 7.1-7.6		

Motivation for camera calibration:

 relating image measurements to positions out in the worldFrames from video data

Tracked feature points

Inferred 3-d shape of building

Translation and rotation

Let's write ${ }^{B} P={ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A}$
as a single matrix equation:

$$
\left(\begin{array}{c}
B_{X} \\
B_{Y} \\
B_{Z} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
- & - & - \\
- & { }_{A}^{B} R & - \\
- & - & - \\
0 & 0 & 0
\end{array} \begin{array}{|c}
\mid \\
{ }^{B} O_{A} \\
1 \\
\hline
\end{array}\right)\left(\begin{array}{c}
A_{X} \\
A_{Y} \\
A_{Z} \\
1
\end{array}\right)
$$

Homogenous coordinates

- Add an extra coordinate and use an equivalence relation
- for 3D
- equivalence relation $\mathrm{k}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$ is the same as (X,Y,Z,T)
- Motivation
- Possible to write the action of a perspective camera as a matrix

Homogenous/non-homogenous transformations for a 3-d point

- From non-homogenous to homogenous coordinates: add 1 as the $4^{\text {th }}$ coordinate, ie

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

- From homogenous to non-homogenous coordinates: divide $1^{\text {st }} 3$ coordinates by the $4^{\text {th }}$, ie

$$
\left(\begin{array}{l}
x \\
y \\
z \\
T
\end{array}\right) \rightarrow \frac{1}{T}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Homogenous/non-homogenous transformations for a 2-d point

- From non-homogenous to homogenous coordinates: add 1 as the $3^{\text {rd }}$ coordinate, ie

$$
\binom{x}{y} \rightarrow\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

- From homogenous to non-homogenous coordinates: divide $1^{\text {st }} 2$ coordinates by the $3^{\text {rd }}$, ie

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow \frac{1}{z}\binom{x}{y}
$$

Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates

$$
{ }^{B} P={ }_{A}^{B} R{ }^{A} P_{+}{ }^{B} O_{A}
$$

Homogeneous coordinates

$$
{ }^{B} P={ }_{A}^{B} C{ }^{A} P
$$

where

$$
C=\left(\begin{array}{ccc}
{\left[\begin{array}{ccc}
- & - & - \\
- & { }_{A}^{B} R & - \\
- & - & - \\
0 & 0 & 0
\end{array}\right.} & \begin{array}{|c}
\mid \\
{ }^{B} O_{A} \\
1
\end{array}
\end{array}\right)
$$

Perspective projection, in

homogenous coordinates

- Turn previous expression into HC’s
- HC’s for 3D point are (X,Y,Z,T)
- HC's for point in image are (U,V,W)

$$
\left(\begin{array}{c}
X \\
Y \\
\frac{Z}{f}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{c}
X \\
Y \\
\frac{Z}{f}
\end{array}\right) \rightarrow \frac{f}{Z}\binom{X}{Y}
$$

HC
Non-HC

The projection matrix for orthographic projection, in homogenous coordinates

$$
\left(\begin{array}{c}
U \\
V \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$$
=\left(\begin{array}{l}
X \\
Y \\
1
\end{array}\right) \rightarrow\binom{X}{Y}
$$

HC Non-HC

Camera calibration

Use the camera to tell you things about the world:

- Relationship between coordinates in the world and coordinates in the image: geometric camera calibration.
- (Relationship between intensities in the world and intensities in the image: photometric camera calibration, not covered in this course, see 6.801 or text)

Intrinsic parameters: from idealized world coordinates to pixel values

Perspective projection

$$
\begin{aligned}
& u=f \frac{x}{z} \\
& v=f \frac{y}{z}
\end{aligned}
$$

Intrinsic parameters

But "pixels" are in
some arbitrary spatial

$$
\begin{aligned}
& u=\alpha \frac{x}{z} \\
& v=\alpha \frac{y}{z}
\end{aligned}
$$ units

Intrinsic parameters

Maybe pixels are not square

$$
\begin{aligned}
& u=\alpha \frac{x}{z} \\
& v=\beta \frac{y}{z}
\end{aligned}
$$

Intrinsic parameters

We don't know the origin of our camera

$$
\begin{aligned}
& u=\alpha \frac{x}{z}+u_{0} \\
& v=\beta \frac{y}{z}+v_{0}
\end{aligned}
$$ pixel coordinates

Intrinsic parameters

May be skew between camera pixel axes

$$
\begin{aligned}
& u=\alpha \frac{x}{z}-\alpha \cot (\theta) \frac{y}{z}+u_{0} \\
& v=\frac{\beta}{\sin (\theta)} \frac{y}{z}+v_{0}
\end{aligned}
$$

Intrinsic parameters

Using homogenous coordinates,
or:

$$
\begin{aligned}
& \left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\frac{1}{z}\left(\begin{array}{cccc}
\alpha & -\alpha \cot (\theta) & u_{0} & 0 \\
0 & \frac{\beta}{\sin (\theta)} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) \\
& \vec{p}=\frac{1}{z} \quad\left(\begin{array}{ll}
K & \overrightarrow{0}
\end{array}\right)
\end{aligned}
$$

Extrinsic parameters: translation and rotation of camera frame

$$
{ }^{C} P={ }_{W}^{C} R{ }^{W} P+{ }^{C} O_{W}
$$

Non-homogeneous coordinates

$$
\left(\begin{array}{c}
{ }^{C} \vec{P} \\
\end{array}\right)=\left(\begin{array}{ccc}
\boxed{-} & - & - \\
- & { }_{W}^{C} R & - \\
- & - & - \\
0 & 0 & 0
\end{array} \begin{array}{|c}
{ }^{C} O_{W} \\
1 \\
\hline
\end{array}\right)\left({ }^{W} \vec{P}\right)
$$

Homogeneous coordinates

Combining extrinsic and intrinsic calibration parameters

$$
\begin{aligned}
& \left.\vec{p}=\frac{1}{(} \begin{array}{ll}
K & \overrightarrow{0}
\end{array}\right) C \vec{P} \quad \text { Intrinsic } \\
& \left({ }^{c} \vec{P}\right)=\left(\begin{array}{ccc|c}
- & - & - & \begin{array}{c}
1 \\
- \\
- \\
W
\end{array} \\
\hline & - & { }^{c} O_{W} \\
\hline
\end{array}\right)(\vec{P} \quad \text { Extrinsic } \\
& \vec{p}=\frac{1}{z} K\left(\begin{array}{c}
{ }_{W}^{C} R \\
{ }^{C} \\
O_{W}
\end{array}\right) \vec{P} \\
& \vec{p}=\frac{1}{2} \vec{P}
\end{aligned}
$$

Other ways to write the same equation

 pixel coordinates
z is in the camera coordinate system, but we qan solve for that, since $1=\frac{m_{3} \cdot \vec{P}}{}$, leading to:

Calibration target

The Opti-CAL Calibration Target Image

Camera calibration

From before, we had these equations relating image positions, u, v, to points at 3-d positions P (in homogeneous coordinates):

$$
\begin{aligned}
u & =\frac{m_{1} \cdot \vec{P}}{m_{3} \cdot \vec{P}} \\
v & =\frac{m_{2} \cdot \vec{P}}{m_{3} \cdot \vec{P}}
\end{aligned}
$$

So for each feature point, i, we have:

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

Camera calibration

Stack all these measurements of $\mathrm{i}=1 \ldots$ n points

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

into a big matrix:

$$
\left(\begin{array}{ccc}
P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\
0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\
& \cdots & \cdots \\
P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\
0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

In vector form: $\left(\begin{array}{ccc}P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\ \ldots & \cdots & \ldots \\ P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}\end{array}\right)\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)$

Camera calibration

Showing all the elements:
$\left(\begin{array}{cccccccccccc}P_{1 x} & P_{1 y} & P_{1 z} & 1 & 0 & 0 & 0 & 0 & -u_{1} P_{1 x} & -u_{1} P_{1 y} & -u_{1} P_{1 z} & -u_{1}\end{array}\right) \begin{aligned} & m_{14} \\ & m_{21}\end{aligned}$ $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & P_{1 x} & P_{1 y} & P_{1 z} & 1 & -v_{1} P_{1 x} & -v_{1} P_{1 y} & -v_{1} P_{1 z} & -v_{1}\end{array}$
$\begin{array}{llllllllllll}P_{n x} & P_{n y} & P_{n z} & 1 & 0 & 0 & 0 & 0 & -u_{n} P_{n x} & -u_{n} P_{n y} & -u_{n} P_{n z} & -u_{n}\end{array}$ $\left.\begin{array}{llllllllllll}0 & 0 & 0 & 0 & P_{n x} & P_{n y} & P_{n z} & 1 & -v_{n} P_{n x} & -v_{n} P_{n y} & -v_{n} P_{n z} & -v_{n}\end{array}\right)$
$\left(\begin{array}{l}m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ \vdots \\ 0\end{array}\right)$

$$
\begin{aligned}
& \text { Q } \\
& \mathrm{m}=0
\end{aligned}
$$

We want to solve for the unit vector m (the stacked one) that minimizes $|Q m|^{2}$

The minimum eigenvector of the matrix $Q^{T} Q$ gives us that (see Forsyth\&Ponce, 3.1)

Camera calibration

Once you have the M matrix, can recover the intrinsic and extrinsic parameters as in Forsyth\&Ponce, sect. 3.2.2.

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

Image filtering

- Reading:
- Chapter 7, F\&P

Take 6.341, discrete-time signal processing

- If you want to process pixels, you need to understand signal processing well, so - Take 6.341
- Fantastic set of teachers:
- Al Oppenheim
- Greg Wornell
- Jae Lim
- Web page: http://web.mit.edu/6.341/www/

What is image filtering?

- Modify the pixels in an image based on some function of a local neighborhood of the pixels.

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Linear functions

- Simplest: linear filtering.
- Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

10	5	3
4	5	1
1	1	7

Local image data

$$
\begin{array}{|c|c|c|}
\hline 0 & 0 & 0 \\
\hline 0 & 0.5 & 0 \\
\hline 0 & 1 & 0.5 \\
\hline
\end{array}
$$

kernel

Modified image data

Convolution

$$
f[m, n]=I \otimes g=\sum_{k, l} I[m-k, n-l] g[k, l]
$$

Linear filtering (warm-up slide)

original

Pixel offset

Linear filtering (warm-up slide)

original

Pixel offset

Filtered (no change)

Linear filtering

original

shift

original

Pixel offset
shifted

Linear filtering

original

Blurring

original

Pixel offset

Blurred (filter applied in both dimensions).

Blur examples

original

Pixel offset
2.4

filtered

Blur examples

Linear filtering (warm-up slide)

original

Linear filtering (no change)

Linear filtering

original

(remember blurring)

original

Pixel offset
Blurred (filter applied in both dimensions).

Sharpening

original

\square

Sharpened original

Sharpening example

Sharpening

before

after

Oriented filters

Gabor filters at different scales and spatial frequencies

top row shows anti-symmetric (or odd) filters, bottom row the symmetric (or even) filters.

Linear image transformations

- In analyzing images, it's often useful to make a change of basis.
transformed image
$\vec{F}=\bigcup_{\uparrow} \overrightarrow{J f} \longleftarrow$ Vectorized image Steerable pyramid transform

Self-inverting transforms

Same basis functions are used for the inverse transform

$$
\begin{aligned}
& \vec{f}=U^{-1} \vec{F} \\
&=U^{+} \vec{F} \\
&
\end{aligned}
$$

U transpose and complex conjugate

An example of such a transform: the Fourier transform

discrete domain
Forward transform

$$
F[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)}
$$

Inverse transform

$$
f[k, l]=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[m, n] e^{+\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)}
$$

To get some sense of what basis elements look like, we plot a basis element --- or rather, its real part --as a function of x, y for some fixed u, v. We get a function that is constant when (ux+vy) is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a sinusoid with this frequency along the direction, and constant perpendicular to the | direction. | v | |
| :--- | :--- | :--- |
| | | $e^{-\pi i(u x x+v y)}$ |
| | $e^{x i(u x+v y)}$ | |
| | | |

Here u and v are larger than in the previous slide.

And larger still.

Phase and Magnitude

- Fourier transform of a real function is complex
- difficult to plot, visualize
- instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform
- Curious fact
- all natural images have about the same magnitude transform
- hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
- Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

This is the magnitude transform of the cheetah pic

This is the phase transform of the cheetah pic

This is the magnitude transform of the zebra pic

This is the phase transform of the zebra pic

Reconstruction with zebra phase, cheetah magnitude

Reconstruction with cheetah phase, zebra magnitude

Example image synthesis with fourier basis.

- 16 images

2

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range $[0.000109,0.0267]$
Dims [256, 256]

6

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range [1.89e-007, 0.226]
Dims [256, 256]

18

\#1: Range $[0,1]$ Dims [256, 256]

\#2: Range [4.79e-007, 0.503]
Dims [256, 256]

50

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range $[8.5 \mathrm{e}-006,1.7]$
Dims [256, 256]

82

82

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range [3.85e-007, 2.21]
Dims [256, 256]

136

136

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range [8.25e-006, 3.48] Dims [256, 256]

282

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range [1.39e-005, 5.88]
Dims [256, 256]

538

538

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range [6.17e-006, 8.4]
Dims [256, 256]

1088

1088

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range [9.99e-005, 15]
Dims $[256,256]$

2094

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range $[8.7 \mathrm{e}-005,19]$ Dims [256, 256]

4052.

8056.

8056

\#1: Range [0, 1]
Dims [256, 256]

\#2: Range $[0.00032,64.5]$ Dims [256, 256]

15366

15366

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range [0.000231, 91.1]
Dims [256, 256]

28743

28743

\#1: Range $[0,1]$
Dims [256, 256]

\#2: Range [0.00109, 146]
Dims $[256,256]$

49190.

65536.

65536.

\#2: Range [4.43e-015, 255]
Dims [256, 256]

Fourier transform magnitude

Masking out the fundamental and harmonics from periodic pillars

Range $[0.000551,297]$
Range $[0,3.29 \mathrm{e}+005]$
Dims [256, 256]

Name as many functions as you can that retain that same functional form in the transform domain

TABLE 7.1 A variety of functions of two dimensions and their Fourier transforms. This table can be used in two directions (with appropriate substitutions for u, v and x, y) because the Fourier transform of the Fourier transform of a function is the function. Observant readers may suspect that the results on infinite sums of δ functions contradict the linearity of Fourier transforms. By careful inspection of limits, it is possible to show that they do not (see, e.g., Bracewell, 1995). Observant readers may also have noted that an expression for $\mathcal{F}\left(\frac{\partial f}{\partial y}\right)$ can be obtained by combining two lines of this table.

Function	Fourier transform
$g(x, y)$	$\iint_{-\infty}^{\infty} g(x, y) e^{-i 2 \pi(u x+v y)} d x d y$
$\iint_{-\infty}^{\infty} \mathcal{F}(g(x, y))(u, v) e^{i 2 \pi(u x+v y)} d u d v$	$\mathcal{F}(g(x, y))(u, v)$
$\delta(x, y)$	1
$\frac{\partial f}{\partial x}(x, y)$	$u \mathcal{F}(f)(u, v)$
$0.5 \delta(x+a, y)+0.5 \delta(x-a, y)$	$\cos 2 \pi a u$
$e^{-\pi\left(x^{2}+y^{2}\right)}$	$e^{-\pi\left(u^{2}+v^{2}\right)}$
box $_{1}(x, y)$	- $\frac{\sin u}{u} \frac{\sin v}{v}$
$f(a x, b y)$	$\frac{\mathcal{F}(f)(u / a, v / b)}{a b}$
$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(x-i, y-j)$	$\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \delta(u-i, v-j)$
$(f * * g)(x, y)$	$\mathcal{F}(f) \mathcal{F}(g)(u, v)$
$f(x-a, y-b)$	$e^{-i 2 \pi(a u+b v)} \mathcal{F}(f)$
$f(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$	$\mathcal{F}(f)(u \cos \theta-\dot{v} \sin \theta, u \sin \theta+v \cos \theta)$

Discrete-time, continuous frequency Fourier transform

Many sequences can be represented by a Fourier integral of the form

$$
\begin{equation*}
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{2.133}
\end{equation*}
$$

where

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{2.134}
\end{equation*}
$$

Ōppenheim, Schafer and
Buck,
Discrete-time signal processing, Prentice Hall, 1999

Discrete-time, continuous frequency Fourier transform pairs

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. $\delta[n]$	1
2. $\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
3. $1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
4. $a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
5. $u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
6. $(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
7. $\frac{r^{n} \sin \omega_{p}(n+1)}{\sin \omega_{p}} u[n] \quad(\|r\|<1)$	$\frac{1}{1-2 r \cos \omega_{p} e^{-j \omega}+r^{2} e^{-j 2 \omega}}$
8. $\frac{\sin \omega_{c} n}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1, & \|\omega\|<\omega_{c} \\ 0, & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
9. $x[n]= \begin{cases}1, & 0 \leq n \leq M \\ 0, & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
10. $e^{j \omega_{0} n}$	$\sum^{\omega} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$
11. $\cos \left(\omega_{0} n+\phi\right)$	$\sum_{k=-\infty}^{\substack{k=-\infty}}\left[\pi e^{j \phi} \delta\left(\omega-\omega_{0}+2 \pi k\right)+\pi e^{-j \phi} \delta\left(\omega+\omega_{0}+2 \pi k\right)\right]$

Bracewell’s pictorial dictionary of Fourier

 transform pairs

388
the fourier trangform and its applications

Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978

Why is the Fourier domain particularly useful?

- It tells us the effect of linear convolutions.

Fourier transform of convolution

Consider a (circular) convolution of g and h

$$
f=g \otimes h
$$

Fourier transform of convolution $f=g \otimes h$

Take DFT of both sides

$$
F[m, n]=D F T(g \otimes h)
$$

Fourier transform of convolution

$f=g \otimes h$
$F[m, n]=\operatorname{DFT}(g \otimes h)$

Write the DFT and convolution explicitly

$$
F[m, n]=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k, l} g[u-k, v-l] h[k, l] e^{-\pi i\left(\frac{u m}{M}+\frac{v n}{N}\right)}
$$

Fourier transform of convolution

$$
\begin{aligned}
& f=g \otimes h \\
& F[m, n]=D F T(g \otimes h) \\
& F[m, n]=\sum_{u=0}^{M-1 N-1} \sum_{v=0} \sum_{k, l} g[u-k, v-l] h[k, l] e^{-\pi\left(\frac{u m}{M}+\frac{v n}{N}\right)}
\end{aligned}
$$

Move the exponent in

$$
=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \sum_{k, l} g[u-k, v-l] e^{-\pi i\left(\frac{u m}{M}+\frac{v n}{N}\right)} h[k, l]
$$

Fourier transform of convolution

$$
\begin{aligned}
f=g & \otimes h \\
F[m, n] & =D F T(g \otimes h) \\
F[m, n] & \left.=\sum_{u=0}^{M-1 N-1} \sum_{n=0} \sum_{k, l} g[u-k, v-l] h[k, l]\right]^{-\pi\left(\frac{u m}{M}+\frac{v n}{N}\right)} \\
& =\sum_{u=0}^{M-1-1} \sum_{v=0} \sum_{k, l} g[u-k, v-l] e^{-\pi\left(\frac{u m}{M}+\frac{w n}{N}\right)} h[k, l]
\end{aligned}
$$

Change variables in the sum

$$
=\sum_{\mu=-k}^{M-k-1} \sum_{v=-l}^{N-l-1} \sum_{k, l} g[\mu, v] e^{-\pi i\left(\frac{(k+\mu) m}{M}+\frac{(l+v) n}{N}\right)} h[k, l]
$$

Fourier transform of convolution

$$
\begin{aligned}
& f=g \otimes h \\
& F[m, n]=D F T(g \otimes h) \\
& F[m, n]=\sum_{u=0}^{M-N=1} \sum_{v=0} \sum_{k, l} g[u-k, v-l] h[k, l] e^{-\pi\left(\frac{u m}{M}+\frac{v p}{N}\right)} \\
& =\sum_{u=0}^{M-1 N-1} \sum_{v=0}^{M, l} \sum_{k, l} g[u-k, v-l] e^{-\pi\left(\frac{u m}{M}+\frac{w m}{N}\right)} h[k, l] \\
& =\sum_{\mu=-k=}^{M-k=1} \sum_{v=l}^{N-l-1} \sum_{k, l} g[\mu, \nu] e^{-n\left(\frac{(l+\mu) m^{\prime}}{M}+\frac{(l+v) n}{N}\right)} h[k, l]
\end{aligned}
$$

Perform the DFT (circular boundary conditions)

$$
=\sum_{k, l} G[m, n] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)} h[k, l]
$$

Fourier transform of convolution

$$
\begin{aligned}
& f=g \otimes h \\
& F[m, n]=D F T(g \otimes h) \\
& F[m, n]=\sum_{u=0}^{M-1 N-1} \sum_{v=0} \sum_{k, l} g[u-k, v-l] h[k, l] e^{-\pi\left(\frac{u m}{M}+\frac{v n}{N}\right)} \\
& =\sum_{u=0}^{M-1 N-1} \sum_{v=0}^{M, 1} \sum_{k, l} g[u-k, v-l] e^{-\pi\left(\frac{u m}{M}+\frac{v m}{N}\right)} h[k, l] \\
& =\sum_{\mu=-k=k=l}^{M-k-1} \sum_{v=-l}^{N-1} \sum_{k, l} g[\mu, \nu] e^{-\pi\left(\frac{(k+\mu) m}{M}+\frac{(l+v) n}{N}\right)} h[k, l] \\
& =\sum_{k, l} G[m, n] e^{-\pi n\left(\frac{l m}{\mu}+\frac{l n}{N}\right)} h[k, l]
\end{aligned}
$$

Perform the other DFT (circular boundary conditions)

$$
=G[m, n] H[m, n]
$$

Analysis of our simple filters

Analysis of our simple filters

original

Pixel offset
Filtered
(no change)

$$
\begin{aligned}
F[m, n] & =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)} \\
& =1 \underset{\underbrace{1.0^{\text {constant }}}}{ }
\end{aligned}
$$

Analysis of our simple filters

$$
\begin{aligned}
& F[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k-\delta, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)} \\
&=e^{-\pi i \frac{\delta m}{M}} \quad \begin{array}{l}
\text { Constant } \\
\text { magnitude, } \\
1.0
\end{array} \\
& \text { linearly shifted }
\end{aligned}
$$

Analysis of our simple filters Pixel offset blurred

$$
\begin{aligned}
F[m, n] & =\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)} \\
& =\frac{1}{3}\left(1+2 \cos \left(\frac{\pi m}{M}\right)\right)
\end{aligned}
$$

Analysis of our simple filters

$F[m, n]=\sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k, l] e^{-\pi i\left(\frac{k m}{M}+\frac{\ln }{N}\right)}$
high-pass filter

$$
=2-\frac{1}{3}\left(1+2 \cos \left(\frac{\pi m}{M}\right)\right) \underset{\substack{10}}{2.3}
$$

Sampling and aliasing

Sampling in 1D takes a continuous function and replaces it with a vector of values, consisting of the function's values at a set of sample points. We'll assume that these sample points are on a regular grid, and can place one at each integer for convenience.

Sampling in 2D does the same thing, only in 2D. We'll assume that these sample points are on a regular grid, and can place one at each integer point for convenience.

A continuous model for a sampled function

- We want to be able to approximate integrals sensibly
- Leads to
- the delta function Sample $_{2 \mathrm{D}}(f(x, y))=\sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} f(x, y) \delta(x-i, y-j)$
- model on right

$$
=f(x, y) \sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} \delta(x-i, y-j)
$$

The Fourier transform of a sampled signal

$F\left(\operatorname{Sample}_{2 \mathrm{D}}(f(x, y))\right)=F\left(f(x, y) \sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} \delta(x-i, y-j)\right)$

$$
=F(f(x, y)) * * F\left(\sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} \delta(x-i, y-j)\right)
$$

$$
=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} F(u-i, v-j)
$$

Aliasing

- Can’t shrink an image by taking every second pixel
- If we do, characteristic errors appear
- In the next few slides
- Typically, small phenomena look bigger; fast phenomena can look slower
- Common phenomenon
- Wagon wheels rolling the wrong way in movies
- Checkerboards misrepresented in ray tracing
- Striped shirts look funny on colour television

Resample the checkerboard by taking one sample at each circle. In the case of the top left board, new representation is reasonable.
Top right also yields a
 reasonable representation. Bottom left is all black (dubious) and bottom right has checks that are too big.

Smoothing as low-pass filtering

- The message of the FT is that high frequencies lead to trouble with sampling.
- Solution: suppress high frequencies before sampling
- multiply the FT of the signal with something that suppresses high frequencies
- or convolve with a low-pass filter
- A filter whose FT is a box is bad, because the filter kernel has infinite support
- Common solution: use a Gaussian
- multiplying FT by

Gaussian is equivalent to convolving image with Gaussian.

Sampling without smoothing. Top row shows the images, sampled at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.

Sampling with smoothing. Top row shows the images. We get the next image by smoothing the image with a Gaussian with sigma 1 pixel, then sampling at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.

Sampling with smoothing. Top row shows the images. We get the next image by smoothing the image with a Gaussian with sigma 1.4 pixels, then sampling at every second pixel to get the next; bottom row shows the magnitude spectrum of these images.
256×256
128x128
64×64
32×32
16×16

Thought problem
 I M

Analyze crossed
|||

> Tuluilumans

Where does

perceived near

 horizontal grating come from?

What is a good representation for

 image analysis?- Fourier transform domain tells you "what" (textural properties), but not "where".
- Pixel domain representation tells you "where" (pixel location), but not "what".
- Want an image representation that gives you a local description of image eventswhat is happening where.

Image pyramids

The Gaussian pyramid

- Smooth with gaussians, because
- a gaussian*gaussian=another gaussian
- Synthesis
- smooth and sample
- Analysis
- take the top image
- Gaussians are low pass filters, so repn is redundant

The Laplacian Pyramid

- Synthesis
- preserve difference between upsampled Gaussian pyramid level and Gaussian pyramid level
- band pass filter - each level represents spatial frequencies (largely) unrepresented at other levels
- Analysis
- reconstruct Gaussian pyramid, take top layer

Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
- by clever filter design, we can simplify synthesis
- this represents image information at a particular scale and orientation

Filter Kernels

Finest scale

Reprinted from "Shiftable MultiScale Transforms," by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE

