Segmentation and low-level grouping.

Bill Freeman, MIT

6.869 April 14, 2005

Readings: Mean shift paper and background segmentation paper.

- Mean shift IEEE PAMI paper by Comanici and Meer,

- Forsyth\&Ponce, Ch. 14, 15.1, 15.2.
- Wallflower: Principles and Practice of Background Maintenance, by Kentaro Toyama, John Krumm, Barry Brumitt, Brian Meyers. http://research.microsoft.com/users/jckrumm/Publications\ 2000/Wall\ Flower.pdf

The generic, unavoidable problem with low-level segmentation and grouping

- It makes a hard decision too soon. We want to think that simple low-level processing can identify high-level object boundaries, but any implementation reveals special cases where the low-level information is ambiguous.
- So we should learn the low-level grouping algorithms, but maintain ambiguity and pass along a selection of candidate groupings to higher processing levels.

Segmentation methods

- Segment foreground from background
- K-means clustering
- Mean-shift segmentation
- Normalized cuts

A simple segmentation technique: Background Subtraction

- If we know what the background looks like, it is easy to identify "interesting bits"
- Applications
- Person in an office
- Tracking cars on a road
- surveillance
- Approach:
- use a moving average to estimate background image
- subtract from current frame
- large absolute values are interesting pixels
- trick: use morphological operations to clean up pixels

Movie frames from which we want to extract the foreground subject (the textbook author's child)

2 different background removal models

Background estimate

Average over frames

EM background estimate

Foreground estimate
Foreground estimate

high thresh

Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]

Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]

Static Background Modeling Examples

[MIT Media Lab Pfinder / ALIVE System]

Dynamic Background

BG Pixel distribution is non-stationary:

[MIT AI Lab VSAM]

Mixture of Gaussian BG model

Staufer and Grimson tracker:
Fit per-pixel mixture model to observed distrubution.

[MIT AI Lab VSAM]

Wallflower: Principles and Practice of Background Maintenance

Kentaro Toyama, John Krumm, Barry Brumitt, Brian Meyers
Microsoft Research
Redmond, WA 98052
\{kentoy|jckrumm|barry|brianme\}@microsoft.com

Abstract

Background maintenance is a frequent element of video surveillance systems. We develop Wallflower, a threecomponent system for background maintenance: the pixellevel component performs Wiener filtering to make probabilistic predictions of the expected background; the region-level component fills in homogeneous regions of foreground objects; and the frame-level component detects sudden, global changes in the image and swaps in better approximations of the background.

We compare our system with 8 other background subtraction algorithms. Walfflower is shown to outperform previous algorithms by handling a greater set of the difficult situations that can occur.

Finally, we analyze the experimental results and propose normative principles for background maintenance.

1. Introduction

Video surveillance systems seek to automatically

Bootstrapping: A training period absent of foreground objects is not available in some environments.
Foreground aperture: When a homogeneously colored object moves, change in the interior pixels cannot be detected. Thus, the entire object may not appear as foreground.
Sleeping person: A foreground object that becomes motionless cannot be distinguished from a background object that moves and then becomes motionless.
Waking person: When an object initially in the background moves, both it and the newly revealed parts of the background appear to change.
Shadows: Foreground objects often cast shadows which appear different from the modeled background.

No perfect system exists. In this paper, we hope to further understanding of background maintenance through a threefold contribution: In the next section, we describe Walffower, a background maintenance algorithm that attempts to address many of the problems enumerated.

Background removal issues

modeling process background maintenance. An ideal background maintenance system would be able to avoid the following problems:
Moved objects: A background object can be moved. These objects should not be considered part of the foreground forever after.
Time of day: Gradual illumination changes alter the appearance of the background.
Light switch: Sudden changes in illumination and other scene parameters alter the appearance of the background.
Waving trees: Backgrounds can vacillate, requiring models which can represent disjoint sets of pixel values.
Camouflage: A foreground object's pixel characteristics may be subsumed by the modeled background.

Bootstrapping: A training period absent of foreground objects is not available in some environments.
Foreground aperture: When a homogeneously colored object moves, change in the interior pixels cannot be detected. Thus, the entire object may not appear as foreground.
Sleeping person: A foreground object that becomes motionless cannot be distinguished from a background object that moves and then becomes motionless.
Waking person: When an object initially in the background moves, both it and the newly revealed parts of the background appear to change.
Shadows: Foreground objects often cast shadows which appear different from the modeled background.

No perfect system exists. In this paper, we hope to further understanding of background maintenance through a threefold contribution: In the next section, we describe Walfflower, a background maintenance algorithm that attempts to address many of the problems enumerated.

Background Subtraction Principles

Wallflower: Principles and Practice of Background Maintenance, by Kentaro Toyama, John Krumm, Barry Brumitt, Brian Meyers.

> Semantic differentiation of objects should not be handled by the background maintenance module.
> P1:

> Background subtraction should segment objects
> P2: of interest when they first appear (or reappear) in a scene.

P3: An appropriate pixel-level stationarity criterion should be defined. Pixels that satisfy this criterion are declared background and ignored.

P4: The background model must adapt to both sudden and gradual changes in the background.

P5: Background models should take into account changes at differing spatial scales.

Background Techniques Compared

Test Image

Chair moved

Light
gradually
brightened
Light
just
Wavi
Foreground No clean
rightened
switched
covers background motion monitor training undectable

\square
 I

Adjacent Frame Difference

Mean \&
Covariance [10]

Mixture of
Gaussians [3]

Eigen-
background [9]
Linear
Prediction [this paper]

Wallflower
[this paper]

Segmentation as clustering

- Cluster together (pixels, tokens, etc.) that belong together...
- Agglomerative clustering
- attach closest to cluster it is closest to
- repeat
- Divisive clustering
- split cluster along best boundary
- repeat
- Dendrograms
- yield a picture of output as clustering process continues

Greedy Clustering Algorithms

Algorithm 15.3: Aggomerative clustering, or clustering by merging

Make each point a separate cluster Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance
end

Algorithm 15.4: Divisive clustering, or clustering by splitting
Construct a single cluster containing all points
Until the clustering is satisfactory
Split the cluster that yields the two
components with the largest inter-cluster distance
end \quad

Segmentation methods

- Segment foreground from background
- K-means clustering
- Mean-shift segmentation
- Normalized cuts

K-Means

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can't do this by search, because there are too many possible allocations.
- Algorithm
- fix cluster centers; allocate points to closest cluster
- fix allocation; compute best cluster centers
- x could be any set of features for which we can compute a distance (careful about scaling)

K-Means

Algorithm 15.5: Clustering by K-Means

Choose k data points to act as cluster centers
Until the cluster centers are unchanged
Allocate each data point to cluster whose center is nearest
Now ensure that every cluster has at least
one data point; possible techniques for doing this include.
supplying empty clusters with a point chosen at random from
points far from their cluster center.
Replace the cluster centers with the mean of the elements in their clusters.
end

Matlab k-means clustering demo

K-means clustering using intensity alone and color alone

Image

Clusters on color

K-means using color alone, 11 segments

K-means using color alone, 11 segments.

Color alone often will not yeild salient segments!

Ways to include spatial relationships

(a) Define a Markov Random Field (MRF), where the state to be estimated includes the segment index. Solve by graph cuts or BP.
(b) Augment data to be clustered with spatial coordinates.

K-means using colour and position, 20 segments

Still misses goal of perceptually pleasing segmentation!

Hard to pick K...

Segmentation methods

- Segment foreground from background
- K-means clustering
- Mean-shift segmentation
- Normalized cuts

Mean Shift Segmentation

Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean Shift Algorithm

Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the "mode" or point of highest density of a data distribution:

Mean Shift Segmentation

Mean Shift Segmentation Algorithm

1. Convert the image into tokens (via color, gradients, texture measures etc).
2. Choose initial search window locations uniformly in the data.
3. Compute the mean shift window location for each initial position.
4. Merge windows that end up on the same "peak" or mode.
5. The data these merged windows traversed are clustered together.

(a)

(b)

[^0] Data, Pattern Analysis \& Applications (1999)2:22-30

- For your homework, you will do a mean shift algorithm just in the color domain. In the slides that follow, however, both spatial and color information are used in a mean shift segmentation.

Fig. 4. Visualization of mean shift-based filtering and segmentation for gray-level data. (a) Input. (b) Mean shift paths for the pixels on the plateau and on the line. The black dots are the points of convergence. (c) Filtering result $\left(h_{s}, h_{r}\right)=(8,4)$. (d) Segmentation result.

Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002

Window in image domain

Center of mass of pixels within both image and range domain windows

Apply mean shift jointly in the image (left col.) and range (right col.) domains

Center of mass of pixels within both image and range domain windows

Mean Shift color\&spatial Segmentation Results:

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean Shift color\&spatial Segmentation Results:

Segmentation methods

- Segment foreground from background
- K-means clustering
- Mean-shift segmentation
- Normalized cuts

Graph-Theoretic Image Segmentation

Build a weighted graph $G=(V, E)$ from image

V:image pixels
E: connections between pairs of nearby pixels

Graphs Representations

$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0\end{array}\right]$

Adjacency Matrix

Weighted Graphs and Their Representations

$\left[\begin{array}{ccccc}0 & 1 & 3 & \infty & \infty \\ 1 & 0 & 4 & \infty & 2 \\ 3 & 4 & 0 & 6 & 7 \\ \infty & \infty & 6 & 0 & 1 \\ \infty & 2 & 7 & 1 & 0\end{array}\right]$
Weight Matrix

Boundaries of image regions defined by a number of attributes

- Brightness/color
- Texture
- Motion
- Stereoscopic depth
- Familiar configuration

[Malik]

Measuring Affinity

Intensity

$$
\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{i}^{2}\right)\left(\|I(x)-I(y)\|^{2}\right)\right\}
$$

Distance

$$
\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{d}^{2}\right)\left(\|x-y\|^{2}\right)\right\}
$$

Color

$$
\operatorname{aff}(x, y)=\exp \left\{-\left(1 / 2 \sigma_{t}^{2}\right)\left(\|c(x)-c(y)\|^{2}\right)\right\}
$$

Eigenvectors and affinity clusters

- Simplest idea: we want a vector a giving the association between each element and a cluster
- We want elements within this cluster to, on the whole, have strong affinity with one another
- We could maximize

$$
a^{T} A a
$$

- But need the constraint

$$
a^{T} a=1
$$

- This is an eigenvalue problem (p. 321 of Forsyth\&Ponce)
- - choose the eigenvector of A with largest eigenvalue

Example eigenvector

Example eigenvector

Scale affects affinity

Some Terminology for Graph Partitioning

- How do we bipartition a graph:

[Malik]

Minimum Cut

A cut of a graph G is the set of edges S such that removal of S from G disconnects G.

Minimum cut is the cut of minimum weight, where weight of cut $<\mathrm{A}, \mathrm{B}>$ is given as

$$
w(\langle A, B\rangle)=\sum_{x \in A, y \in B} w(x, y)
$$

Minimum Cut and Clustering

Drawbacks of Minimum Cut

- Weight of cut is directly proportional to the number of edges in the cut.

Normalized cuts

- First eigenvector of affinity matrix captures within cluster similarity, but not across cluster difference
- Min-cut can find degenerate clusters
- Instead, we’d like to maximize the within cluster similarity compared to the across cluster difference
- Write graph as V , one cluster as A and the other as B
- Minimize

$$
\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{A}, \mathrm{~V})}+\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{assoc}(\mathrm{B}, \mathrm{~V})}
$$

where $\operatorname{cut}(\mathrm{A}, \mathrm{B})$ is sum of weights with one end in A and one end in B; $\operatorname{assoc}(A, V)$ is sum of all edges with one end in A .
I.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph

Solving the Normalized Cut problem

- Exact discrete solution to Ncut is NP-complete even on regular grid,
- [Papadimitriou’97]
- Drawing on spectral graph theory, good approximation can be obtained by solving a generalized eigenvalue problem.

Normalized Cut As Generalized Eigenvalue problem

$$
\begin{aligned}
\operatorname{Ncu(A,B)} & =\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{asso}(\mathrm{A}, \mathrm{~V})}+\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{\operatorname{asso}(\mathrm{B}, \mathrm{~V})} \quad D_{i i}=\sum_{j} A_{i j} \\
& =\frac{(1+x)^{T}(D-W)(1+x)}{k 1^{T} D 1}+\frac{(1-x)^{T}(D-W)(1-x)}{(1-k) 1^{T} D 1} ; k=\frac{\sum_{i>0} D(i, i)}{\sum D(i, i)} \\
& =\ldots
\end{aligned}
$$

after simplification, Shi and Malik derive

$$
\operatorname{Ncut}(A, B)=\frac{y^{T}(D-W) y}{y^{T} D y}, \quad \text { with } y_{i} \in\{1,-b\}, y^{T} D 1=0
$$

Normalized cuts

- Instead, solve the generalized eigenvalue problem

$$
\max _{y}\left(y^{T}(D-W) y\right) \text { subject to }\left(y^{T} D y=1\right)
$$

- which gives

$$
(D-W) y=\lambda D y
$$

- They show that the $2^{\text {nd }}$ smallest eigenvector solution y is a good realvalued appox to the original normalized cuts problem. Then you look for a quantization threshold that maximizes the criterion --- i.e all components of y above that threshold go to one, all below go to -b

Brightness Image Segmentation

-

Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Results on color segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Grouping and Ecological Statistics

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees." --Max Wertheimer

Overview:

The phenomenon of visual grouping was first highlighted by the Gestalt school of visual perception led by Max Wertheimer, nearly a century ago. In computational vision, this ability has been studied as "image segmentation", the partitioning of an image (or video stream) into sets of pixels that correspond to "objects" or parts of objects. This process is based on bottom up cues such as similarity of pixel brightness, color, texture and motion as well as top down input derived from familiar object categories such as faces. Our research is aimed at developing a scientific understanding of grouping, both in the context of human perception and for computer vision. Key contributions include:

- A large dataset of natural images that have been segmented by human observers. This dataset, available [here], serves as ground truth for learning grouping cues as well as a benchmark for comparing different segmentation and boundary finding algorithms.
- Computational models of low level cues such as brightness, color, texture and motion, inspired by

Getting Started Q Latest Headines

Berkeley Segmentation Dataset: Test Image \#101085 [color]

5 Color Segmentations

Contains a large dataset of images with human "ground truth" labeling.

Of course, the human labelings differ one from another.

Line Fitting

- Hough transform
- Iterative fitting

Fitting

- Choose a parametric object/some objects to represent a set of tokens
- Most interesting case is when criterion is not local
- can't tell whether a set of points lies on a line by looking only at each point and the next.
- Three main questions:
- what object represents this set of tokens best?
- which of several objects gets which token?
- how many objects are there?
(you could read line for object here, or circle, or ellipse or...)

Fitting and the Hough Transform

- Purports to answer all three questions
- in practice, answer isn't usually all that much help
- We do for lines only
- A line is the set of points (x, y) such that
$(\sin \theta) x+(\cos \theta) y+d=0$
- Different choices of $\theta, \mathrm{d}>0$ give different lines
- For any (x, y) there is a one parameter family of lines through this point, given by

$$
(\sin \theta) x+(\cos \theta) y+d=0
$$

- Each point gets to vote for each line in the family; if there is a line that has lots of votes, that should be the line passing through the points

θ

tokens
Votes for parameter values
satisfying $(\sin \theta) x+(\cos \theta) y+d=0$ at each token

Mechanics of the Hough transform

- Construct an array representing θ, d
- For each point, render the curve (θ, d) into this array, adding one at each cell
- Difficulties
- how big should the cells be? (too big, and we cannot distinguish between quite different lines; too small, and noise causes lines to be missed)
- How many lines?
- count the peaks in the Hough array
- Who belongs to which line?
- tag the votes
- Problems with noise and cell size can defeat it

tokens
votes

Noise level

Rules of thumb for getting Hough transform to work well

- Can work for finding lines in a set of edge points.
- Ensure minimum number of irrelevant tokens by tuning the edge detector.
- Choose the quantization grid carefully by trial and error.

Line fitting

What criteria to optimize when fitting a line to a set of points?

Line fitting can be max. likelihood - but choice of model is important

Who came from which line?

- Assume we know how many lines there are
- but which lines are they?
- easy, if we know who came from which line
- Three strategies
- Incremental line fitting
- K-means (described in book)
- Probabilistic (in book, and in earlier lecture notes)

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve
to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list
end

Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list

Incremental line fitting

Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve
to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list

Incremental line fitting

While fitted line is good enough
Transfer the next point on the curve to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list

Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve to the line point list and refit the line
end
?
Transfer last point(s) back to curve
Refit line
Attach line to line list

Incremental line fitting

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve Empty the line point list

Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve to the line point list and refit the line
end
Transfer last point(s) back to curve
Refit line
Attach line to line list

Fitting contours

- Two common techniques:
- Snakes (Terzopolous, Witkin, and Kass)
- Dynamic programming methods

Structural Saliency: The Detection of Globally Salient Structures Using a Locally Connected Network

Amnon Sha'ashua Shimon Ullman

Department of Applied Mathematics
The Weizmann Institute of Sclence
Rehovot 76100 Israel

Abstract

When we look at images, certaie sslient atruetures often attract our inmediate attention, without requiring a systematic acan of the entire image. In subsequent stages, processing resources can be allocsted preferentialiy to theso salients atructures. In many casea thia saliency is a property of the structure as a whole, i.e., parts of the structure are not salient in isolation.

It this paper we present a saliency measure based on curvature and currsture variation. The structures this measure emphsizes are abso salient in human perception, and they often eprrespond to objecta of intencat in the image.

We present s method for computing the saliency by a simplo iterative seltume, using a eniform networl of locally connected processing elements. The network used an optimizshion approach to produce a "saliency map", which is a representation of the image emphasixing walinat locations. The main properties of the network are: (1) the computations are aimple and local, (ii) globally salient structures emerge with a small number of iterations, (iii) as a by-product of the computation contours are smoothed, and gaps are flled-in.

1. Introduction

Salient atructures can often be perceived in an image at a glance. Thoy sppear to attract our attention without the need to ycab the entire image in a syatematic manber, and without prion expectations regarding their shape. The processes invelved in the perception of aalient atructures sppear to play a useful role in segmentation and recognition, since they aljow us to immediately concentrate on objecta of interest in the image.

Consider the imagea in figures 1,2 sad 3 . Certain object, in each image somebow attract our astention in a manner of ten described as 'proattentive'. For instance, the large blobs in Fig. 1 are promisens, atthough locsily the blobs' cuntoars are indistinguiahable from background contoura on the basis of local orientation, curvatare, contrast, otc. It seems as if one must somehow capture mast of the carve bounding a blob in order to perceive it as a prominent atracture. The circle in Fig. 2 is immodiately peroeived altbough its enstour is fragmented, implying that gape do not hinder tbe immediate perception of such objects. In this ceses one must group together several line segments of the circle to distinguish it from the background. These exsmples also demonstrate that these prominent objects need not be recogrized in order foe them to be diatinguished. The image in Fig. 3 is an odge image of a car in a cluttered background. Our atsention is drawn immediataly to the region of interest in the image. It somms that the car need not be recognized to attract our attention. When the imrage is inverted and presented for short periods, recognition becomes considerably more dificult, yet the same region remains salient.

Figure 2. A circle in a backgrouad of 200 randomb placed and orinsted segments. The eircho is still peo celved lamediatoly although its coateur is fragmentad.

The goal of this paper in to wagenst what makes structures such as those ia Fig. 1-3 salient, and to propone a mechaniam for detecting aslifet locations in an image. A locally connected

6.3.2 Saliency

http://people.csail.mit.edu/people/billf/freemanThesis.pdf

The recursive saliency calculation is as follows:

$$
\begin{align*}
S_{i}^{0} & =\sigma_{i} \tag{6.3}\\
S_{i}^{n+1} & =\sigma_{i}+\max _{j}\left[S_{i}^{n} f_{i, j}\right] \tag{6.4}
\end{align*}
$$

where $S_{i}{ }^{k}$ is the saliency of the i th orientation element after the k th iteration, σ_{i} is the local saliency of the i th element, and $f_{i, j}$ is a coupling constant between the i th and j th orientation elements. The maximization is taken over all neighboring orientation elements, j. The coupling constant penalizes sharp bends of the curve and effectively imposes a prior distribution on the expected shapes of the image contours. Shaashua and Ullman showed that after N iterations, the above algorithm will find the saliency of the most salient curve of length $f v$ originating from each contour.
http://people.csail.mit.edu/people/billf/freemanThesis.pdf

Figure 6-6: Saliency calculation. (a) Original figure, adapted from [95]. (b) Orientation evidence, based on spatial and angular local maxima of oriented filter outputs. (Shaashua and Ullman used Canny edge fragments for this step). Based on the orientation strength evidence in (b), the saliency algorithm was applied for 20 iterations. (c) shows the saliency of most salient contour of the 16 contours leaving each position. Note the "cloud" of salient values surrounding each image contour. (d) Curve traced starting from a position and orientation of high saliency. The curves traced by following the last choice of each orientation element are a reasonable approximation to the maximally

Figure 5. Salinncy map of the image in Fig 2 obtained by the network after 10 iterations. The maliency measure of esch slement of the circle is significant)y kighar than of the bachground clements.

Figure 8. The curve starting from the strongeat element is Egure 5. Vietual elements are displayed as dotied limes.
background elements. In this rugard, the circle virtually 'popsout' from the asliency map.

Figure 7. The same circle as in figure 2 but with 400 background aegmezits.

The seeond point to matice is that \& complete object is separsted from the background although it is initially fragrmented.

Figurb 8. Salsency masp of the image in Fig. 7 obtained by the seefork after 10 It terathoss.
of background elementa increasos cansiderably. To illuatrate, we doubled the number of background elements as shown in Fig. 7. We spplied again ten iterationa to produce the saliency map in Fig. 8. Starting from the most salient element, the curve extzacted by the network is identical with the one in Fig. 6.

The next example is the image in Fig. 2. Fig. 9 abows the aaliency map after 30 iterations. Only the region surrounding the car ia displayed. The saliency measure given to most of the elements of the ear is signifleantly higher than that given to the background elemeata. Pig. 10 displays the five most solient. curves obtained by tracing the most salient elementa.

Note that the traced curves have been smoothed, and that the gape have been filled in. The reaultas suggest that the saliency computation is useful for diatinguishing significant atructures in

Figsre Solvency map of the mage in Fig. 8 obtained by the matwork after 30 iteratioqs. The region of iaterest vistually 'popa-ews' from the diaplay.

[^0]: *Image From: Dorin Comaniciu and Peter Meer, Distribution Free Decomposition of Multivariate

