Class logistics

» Exam results back today.
 This Thursday, your project proposals are
due.
— Feel free to ask Xiaoxu or me for feedback or
ideas regarding the project.
— Auditors are welcome to do a project, and we’ll
read them and give feedback.

6. 869 Midterm
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A medley of project ideas

« Implement photographic vs photorealistic discrimination
function.

» Read and compare 3 papers on a computer vision/machine
learning topic that excites you.

« Evaluate how well the “visual gist” (blurry texture
representation) does at categorizing a large collection of images.

« Implement and evaluate example-based super-resolution.

¢ Implement and evaluate Soatto’s temporal texture model
(conceptually simple; neat results).

« Digitize a bird book, and make SVM classifiers for owls,
pelicans, eagles, etc.

« Make a broken glass detector.

* Ask, and answer, what is the dimensionality of the manifold of
image patches, of various sizes?

» Digitize tree identification books, and develop a texture-based
classifier that will categorize trees from their leaf/needle
textures.

Generative Models

Bill Freeman, MIT
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Making probability distributions modular, and
therefore tractable:

Probabilistic graphical models

Vision is a problem involving the interactions of many variables:
things can seem hopelessly complex. Everything is made
tractable, or at least, simpler, if we modularize the problem.
That’s what probabilistic graphical models do, and let’s examine
that.

Readings: Jordan and Weiss intro article—fantastic!
Kevin Murphy web page—comprehensive and with
pointers to many advanced topics

P(a,b) = P(bla) P(a)
By the chain rule, for any probability distribution, we have:

P(xvxv X3, mes) = P(X1)P(X2v X3 X4y X5 | xl)
= PP | X)P (X5 X4, X5 | Xy, X;)
=POOPOG 1X)POG X0 X )P (X Xs X1 %50 Xs)
= PP 1X)POG 10X )P (X X0 X0 X )P (X [ X4 %50 X3 Xe)
But if we exploit the assumed modularity of the probability distribution over
the 5 variables (in this case, the assumed Markov chain structure), then that

expression simplifies:
=P(x)P (X, [ X)P (X3 [ X,)P(X, | %5)P (X5 | X,)

=)

Now our marginalization summations distribute through those terms:

2P0 X X X Xs) = PO PO %) D P(%s 1) 2P % [ %) DS P (%6 [ X,)

Xg X X Xs




Belief propagation

Performing the marginalization by doing the partial sums is called
“belief propagation”.

2P X X X %)= POX) P0G [X) PO 1 %) 2P (X 1%) 2 P(%s | )

X2 Xa X Xg

In this example, it has saved us a lot of computation. Suppose each
variable has 10 discrete states. Then, not knowing the special structure
of P, we would have to perform 10000 additions (10"4) to marginalize
over the four variables.

But doing the partial sums on the right hand side, we only need 40
additions (10*4) to perform the same marginalization!

Another modular probabilistic structure, more common in vision
problems, is an undirected graph:

The joint probability for this graph is given by:
P(X,) Xz X, Xg0 X5) = DXy, X, )D (X, X3 )P (X5, X, )D(X,, X5)

Where @ X, Xz) is called a “compatibility function”. We can
define compatibility functions we result in the same joint probability as
for the directed graph described in the previous slides; for that example,
we could use either form.

Markov Random Fields

e Allows rich probabilistic models for
images.

 But built in a local, modular way. Learn
local relationships, get global effects out.

S
oYY

MRF nodes as pixels

median filter

Winﬂler, 1995, p. 32

MRF nodes as patches

image patches

scene patches -
image
D, y) D\ﬂ

scene

Network joint probability

P(XY) = TT¥00%) Toe, )

scene Scene-scene Image-scene
image compatibility compatibility
function function
neighboring local
scene nodes observations




In order to use MRFs:

 Given observations y, and the parameters of
the MRF, how infer the hidden variables, x?

» How learn the parameters of the MRF?

Outline of MRF section

* Inference in MRF’s.

— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods

— Belief propagation

— Graph cuts
« Vision applications of inference in MRF’s.
 Learning MRF parameters.

— Iterative proportional fitting (IPF)

Belief propagation messages

A message: can be thought of as a set of weights on
each of your possible states

To send a message: Multiply together all the incoming
messages, except from the node you’re sending to,

then multiply by the compatibility matrix and marginalize
over the sender’s states.

Mij(xi):ZV/ij(Xian) HM?(XJ')

keN (j)Ni

Beliefs

To find a node’s beliefs: Multiply together all the
messages coming in to that node.

ig b;(x;)= [TM}(x)

keN(j)

Belief, and message updates

ig b;(x;)= [IMJ(x))

keN(j)

Mij(xi):ZV/ij(Xian) HM?(XJ')

keN (j)Ni

ie — P j.

Optimal solution in a chain or tree:
Belief Propagation

* “Do the right thing” Bayesian algorithm.

 For Gaussian random variables over time:
Kalman filter.

 For hidden Markov models:

forward/backward algorithm (and MAP
variant is Viterbi).




No factorization with loops!

Ximmse = mean CD(Xi, y1)
UM D (X, y,) ¥ (%, X,)

SUM D (X5, Y3) ¥ (Xz: Xa) W (x,,%;)

®®®
O—®

Justification for running belief propagation

in networks with loops
» Experimental results:

— Error-correcting codes

— Vision applications
 Theoretical results:
— For Gaussian processes, means are correct,
— Large neighborhood local maximum for MAP.
— Equivalent to Bethe approx. in statistical physics.

— Tree-weighted reparameterization

Statistical mechanics interpretation

U - TS = Free energy

U =avg. energy = > p(X, X, )E (X, X,5,...)
T = temperature ~ **

S=entropy=  — 2 P(X %) IN PX, X )

states

Free energy formulation

Defining
_ _ o EIT
IIJij(xivxj)—e Di(x)=¢e
then the probability distribution P (X, X,...)
that minimizes the F.E. is precisely

the true probability of the Markov network,
P(X) Xp,0) = H\Pij (Xilxj)H(Di(Xi)
ij i

—E(x,x;)/T

Approximating the Free Energy

Exact: FLPOG Xp0ees X1
Mean Field Theory:  F[0,(%)]

Bethe Approximation :  F B (%),b; (%, ;)]
Kikuchi Approximations:

FLo: (%), (%, X, by 06 X5 % )

(R |

]

Mean field approximation to free energy

U - TS = Free energy

Fueanried(®) :zzbl(xi)bj (Xj)Eij (Xilx’)+zz b, (% )T Inb, (x)

(i) %% [

The variational free energy is, up to an additive constant, equal to the
Kllback-Leibler divergence between b(x) and the true probability, P(x).
KL divergence: 16

D blIP)= Y TThe)in-

X X

P(x)




Setting deriv w.r.t b;=0

U - TS = Free energy

Corresponds to eq. 18 in Jordan and Weiss ms.

b (%)= anp(_Zzbj (Xj)Eij (% Xj)/T)
(i) x;

In words: “Set the probability of each state x; at node i to be

proportional to e to the minus expected energy corresponding to

each state x;, given the expected values of all the neighboring
states.”

Region marginal probabilities

b, (%) :k(D(Xi)HMik(Xi)

KeN (i)

by (%, %) =k W0, ) [IME(x) TTMf(x))

keN(i)\j keN (j)Ni

i .

Belief propagation equations

Belief propagation equations come from the
marginalization constraints.

Mij(xi):ZWij(xivxj) HM;((X,')

keN(j)\i

Results from Bethe free energy analysis

 Fixed point of belief propagation equations iff. Bethe
approximation stationary point.

« Belief propagation always has a fixed point.

« Connection with variational methods for inference: both
minimize approximations to Free Energy,
— variational: usually use primal variables.
— belief propagation: fixed pt. equs. for dual variables.

« Kikuchi approximations lead to more accurate belief
propagation algorithms.

¢ Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.

References on BP and GBP

e J. Pearl, 1985
— classic
¢ Y. Weiss, NIPS 1998
— Inspires application of BP to vision
¢ W. Freeman et al learning low-level vision, IJCV 1999

— Applications in super-resolution, motion, shading/paint
discrimination

e H. Shum etal, ECCV 2002
— Application to stereo

« M. Wainwright, T. Jaakkola, A. Willsky
— Reparameterization version

« J. Yedidia, AAAI 2000
— The clearest place to read about BP and GBP.

Show program comparing some
methods on a simple MRF

testMRF.m




Graph cuts

Algorithm: uses node label swaps or expansions
as moves in the algorithm to reduce the energy.
Swaps many labels at once, not just one at a time,
as with ICM.

¢ Find which pixel labels to swap using min cut/max
flow algorithms from network theory.
« Can offer bounds on optimality.

¢ See Boykov, Veksler, Zabih, IEEE PAMI 23 (11)
Nov. 2001 (available on web).

Comparison of graph cuts and belief
propagation

Comparison of Graph Cuts with Belief
Propagation for Stereo, using Identical
MRF Parameters, ICCV 2003.
Marshall F. Tappen William T. Freeman

FaFS s

saikuha Image (b} Giraph Cuts ) Synchranous BP () Accelerated BP

Figure 3. Results produced by the three algorithms on the Tsukuba image. The parametars used to
generate this fleld were « 50,7 - 4, 7 2 Agaln, Graph Cuts produces a much smoother solutien.
Balief Propagation does maintain some structures that are lost in the Graph Cuts solution, such as
the camera and the face in the foreground.

Ground truth, graph cuts, and belief
propagation disparity solution energies

Encrgy of MBF Labelling Returned (= 10°)
Symch Ll
Tage | Girvund-Truth | Graph Cute [ Feic
Mar Y ]
Santeoth 6891
Tsikaiba 1552 i
Ve 5T 1442 1501 6%

Figure 2. Field Energies for the MRF labelled using ground-ruth data compared to the energies for
the fields labelled using Graph Cuts and Eelie Propagation. Notice that the solutions returned by
the algorithms consistently have a much lower energy than the from th

truth, showing a mismatch between the MRF formulation and the ground-truth. The final column
contains the percentage of each ground-truth solution’s energy that comes from matching costs of
occludad pixals.

Graph cuts versus belief propagation

* Graph cuts consistently gave slightly lower energy
solutions for that stereo-problem MRF, although
BP ran faster, although there is now a faster graph
cuts implementation than what we used...

* However, here’s why I still use Belief
Propagatlon

— Works for any compatibility functions, not a restricted
set like graph cuts.

— I find it very intuitive.

— Extensions: sum-product algorithm computes MMSE,
and Generalized Belief Propagation gives you very
accurate solutions, at a cost of time.

MAP versus MMSE

fa) MAF listimate ) MMSE istimane

Figure 7. i MAP on The MAP estimate
chooses the most likely discrete disparity level for each point, resuitlng in a depth-map with stair-
stepping effects. Using the MMSE estimate assigns sub-pixel disparities, resulting in a smooth depth
map.

Outline of MRF section

e Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Learning MRF parameters.
— Iterative proportional fitting (IPF)
« Vision applications of inference in MRF’s.




Joint probabilities for undirected graphs

By elementary
P(Xv X5 Xs) = P(X1: X3 | Xz)P(Xz) probability

Use the conditional —
independence assumption P (Xl | Xz ) P(X3 | XZ) P(Xz)

Multiply top and _ P(X1 | XZ)P(Xz)P(Xs | Xz)P(Xz)
bottom by P(x2) - P(XZ)

Re-write conditionals P(Xl, X, ) P(X2 , X3)
as joint probabilities - AaroN

P (Xz) General result for
separating clique x2

More complicated graph

P %, %, X0, %) = - a2 PO X)P (s, X )P (X3, X5)
TR TRATRAER P(%,)P(x;)P(X5)

So for this case of a tree, we can measure the
= H ¢(Xi s Xj ) compatibility functions by measuring the joint
- statistics of neighboring nodes. For graphs with
(i) loops, we can use these functions as starting
points for an iterative method (IPF) that handles

the loops properly.

For jointly Gaussian random variables

. . . I By the previous results for this
7%()(1 % XS)A1123[XZJ graphical model

_ PO X )P(X, %3)

Learning MRF parameters, labeled data

Iterative proportional fitting lets you
make a maximum likelihood
estimate of a joint distribution from
observations of various marginal
distributions.

— X3
P(Xl’ Xo X3) _G(!3$1 ral form for Gaussian R.V. P(X )
2
1 = 1 -
-0 "2)/\1%[:;] -0 )@)M%[E] %sz}lxz
=ke
a b o
-1
A]_zg = b C d Thus, for this graphical model,
the inverse covariance has this
0 d e particular structure.
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IPF update equation

oy 0bserved
Plai.wa. .. a) 0T = Py aa, . 2)(0) gif))pT(?)_

Scale the previous iteration’s estimate for the joint
probability by the ratio of the true to the predicted
marginals.

Gives gradient ascent in the likelihood of the joint
probability, given the observations of the marginals.

See: Michael Jordan’s book on graphical models

Convergence of to correct marginals by IPF algorithm

rarg (b) versus estimates (1) and final difference ()
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Convergence of to correct marginals by IPF algorithm

marg2 (b) versus estimates (1) and final difference (y)

03

IPF results for this example:
comparison of joint probabilities

True joint
probability

#1. ﬁange [0 00862, 0 0742]
true joint ﬂop] Cb"“‘""]

Final maximum
entropy estimatg

Initial guess

Application to MRF parameter estimation

 Can show that for the ML estimate of the clique
potentials, ¢.(x.), the empirical marginals equal
the model marginals,

ﬁ(lﬁc) = }')(17(:)
* This leads to the IPF update rule for ¢.(x,)

08T (we) = ¢t (we) T2

» Performs coordinate ascent in the likelihood of the
MRF parameters, given the observed data.

Reference: unpublished notes by Michael Jordan

Outline of MRF section

* Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Learning MRF parameters.
— Iterative proportional fitting (IPF)
* Vision applications of inference in MRF’s.




Outline of MRF section

* Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts

« Vision applications of inference in MRF’s.

 Learning MRF parameters.
— Iterative proportional fitting (IPF)

Vision applications of MRF’s

o Stereo

» Motion estimation
Super-resolution
Many others...

Vision applications of MRF’s

 Stereo

Motion estimation
* Super-resolution
» Many others...

Motion application

image patches

@

scene patches

What behavior should we see in a
motion algorithm?

 Aperture problem

* Resolution through propagation of
information

* Figure/ground discrimination

The aperture problem

I




The aperture problem

Motion analysis: related work

¢ Markov network
— Luettgen, Karl, Willsky and collaborators.
Neural network or learning-based
— Nowlan & T. J. Senjowski; Sereno.
¢ Optical flow analysis
— Weiss & Adelson; Darrell & Pentland; Ju,

Black & Jepson; Simoncelli; Grzywacz &
Yuille; Hildreth; Horn & Schunk; etc.

Program demo

Inference: M otion estimation results

(maxima of scene probability distributions displayed)

Image data

Iterations 0 and 1

Initial guesses only

show motion at edges.

Motion estimation results

(maxima of scene probability distributions displayed)

‘ Iterations 2 and 3

Figure/ground still
unresolved here.

Motion estimation results

(maxima of scene probability distributions displayed)

Iterations 4 and 5 ‘

Final result compares well with vector
quantized true (uniform) velocities.

10



Vision applications of MRF’s

 Stereo

» Motion estimation
* Super-resolution
» Many others...

Pixel-based images B
are not resolution s
independent

Pixel replication |
I

Cubic spline,
sharpened

Training-based
super-resolution

Polygon-based
graphics
images are
resolution

Super-resolution

 Image: low resolution image
« Scene: high resolution image

ultimate goal...

independent

3 approaches to perceptual
sharpening

(1) Sharpening; boost existing high
frequencies. “patl requency

(2) Use multiple frames to obtain

higher sampling rate in a still frame.”.
(3) Estimate high frequencies not

present in image, although implicitly

defined. : AN

spatial frequency

amplitude

amplitude

In this talk, we focus on (3), which
we’ll call “super-resolution”.

Super-resolution: other approaches

Schultz and Stevenson, 1994
» Pentland and Horowitz, 1993

« fractal image compression (Polvere, 1998;
Iterated Systems)

« astronomical image processing (eg. Gull and
Daniell, 1978; “pixons”
http://casswww.ucsd.edu/puetter.html)

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.

11



Do a first interpolation

Low-resolution

Full frequency original

Low-resolution

Representation

Zoomed low-freq. Full freq. original

Representation

Zoomed low-freq. Full freq. original

. True high fregs

Low-band input \ n freq

(contrast normalized, (to minimize the ity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).

Gather ~100,000 patches

n u W high fregs.

= L E B B m
..Iln. .....Iowfreqs."'

Training data samples (magnified)

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

m @ m ®E N E B N highfregs.

.II .. .....Iowfreqs."'

Training data samples (magnified)

12



Example: input image patch, and closest
matches from database

Input patch 5
EEEELEEL

Closest image SRR S S S g g g

patches from database 5 ‘ 5 = = =
—

e LI L L e 8

Corresponding ! : .q_: 5?5__5

high-resolution = . e e

high freqs. patches from database [y
S TR R R TR T e

Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

low fregs. "

Scene-scene compatibility function,
\P(Xii XJ) =H=

Tmage patch Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

—ld;—d;|? /202

Underlying candidate \If (Sc% 5 ij) = exp
scene palches. Each
[ renders to the image
patch.

f
/
i

Uniqueness constraint,
L not smoothness.
d

Markov network

Image-scene compatibility Ey

function, d(x;, y;) I
-

Assume Gaussian noise takes you from X
observed image patch to synthetic sample:

®(z;, ;) = exp Wiy /207




Bel |ef PI’Opaga'[IOH After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. 0

Iter. 1

Iter. 3

Zooming 2 octaves

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204

Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

Original
50x58

(cubic spline implies thin
plate prior)

True
200x232

Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

Training images

True

Original (cubic spline implies thin
50x58 plate prior)
. . True
Cubic spline 200x232

The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58

Training images

Markov

True
network

14



Next, train on a world of vertically
oriented rectangles.

The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original
50x58
Training images
True

Now train on a generic collection of

images.
Original
50x58

True

Original
50x58
Training images
Markov True
network
The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.
Original
50x58
Markov
network

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
arandom collection of
photographs.

Original Cubic
70x70 spline
Markov
Fr(:lti’nin : True
ng: 280x280
generic

15



Kodak Imaging Scienge Technology Lab test.

< | 3test images, 640x480, to be
. : zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.

Algorithms compared

« Bicubic Interpolation
 Mitra's Directional Filter
 Fuzzy Logic Filter
*Vector Quantization

* VISTA

Bicubic spline

Bicubic spline Altamira VISTA

User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”

Cubic gpiine z00m

16



by super

Bancpass Meced and contrast
mnkch palches

romal

Irear raw e data

ilest match
training data

palches from

Training image
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More general graphical models than
MRF grids

« In this course, we’ve studied Markov chains, and
Markov random fields, but, of course, many other
structures of probabilistic models are possible and
useful in computer vision.

« For anice on-line tutorial about Bayes nets, see
Kevin Murphy’s tutorial in his web page.

80-dimensional
representation

Credit: Antonio Torralba

“Top-down” information: a
representation for image context

Images

17



“Bottom-up” information: labeled
training data for object recognition.
BB | [ e N L

-

«Trained detectors for 9 types of objects: bookshelf, desk,
screen (frontal) , steps, building facade, etc.
+100-200 positive patches, > 10,000 negative patches

Combining top-down with bottom-up:
graphical model showing assumed
statistical relationships between variables

kitchen, office, lab, conference
room, open area, corridor,
elevator and street.

Categorization of new places
Familiar ICCV 2003 poster

e By e e e Torer .
20 site ol - Eere . : . Freeman, and Rubin

1000 1500 fome

New environment :
Sgpanegt By Torralba, Murphy,

100 ICCV 2003 poster
90 By Torralba, Murphy,
Freeman, and Rubin

80

270

e

= 60

=

5 50
z = Bagkshelr
é) 40 - AT
= le
30 BLAIAR
20 = g
10
0

0 5 10 15 20 25 30 35
False alarms (from 2000 distractors)
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