Class logistics

* Tonight midnight, the take-home exam is due.
e Next week: spring break

 Following week, on Thursday, your project
proposals are due.

— Feel free to ask Xiaoxu or me for feedback or ideas
regarding the project.

— Auditors are welcome to do a project, and we’ll read
them and give feedback.



Generative Models

Bill Freeman, MIT

Some of these slides made with Andrew Blake,
Microsoft Research Cambridge, UK

6.869 March 17, 2005



|_ast class

(a) We looked at ways to fit observations of
probabilistic data, and EM.

(b) We’re looking at the modularized joint
probability distribution described by
graphical models.



Making probability distributions modular, and
therefore tractable:

Probabilistic graphical models

Vision is a problem involving the interactions of many variables:
things can seem hopelessly complex. Everything is made
tractable, or at least, simpler, if we modularize the problem.
That’s what probabilistic graphical models do, and let’s examine
that.

Readings: Jordan and Weiss intro article—fantastic!
Kevin Murphy web page—comprehensive and with
pointers to many advanced topics



A toy example

Suppose we have a system of 5 interacting variables, perhaps some are
observed and some are not. There’s some probabilistic relationship between
the 5 variables, described by their joint probability,

P(x1, X2, X3, x4, x5).

If we want to find out what the likely state of variable x1 is (say, the
position of the hand of some person we are observing), what can we do?

Two reasonable choices are: (a) find the value of x1 (and of all the other
variables) that gives the maximum of P(x1, x2, x3, x4, x5); that’s the MAP
solution.

Or (b) marginalize over all the other variables and then take the mean or the
maximum of the other variables. Marginalizing, then taking the mean, is
equivalent to finding the MMSE solution. Marginalizing, then taking the
max, is called the max marginal solution and sometimes a useful thing to do.



To find the marginal probability at x1, we have to take this sum:
Z P(X11 WTRACTRAE Xs)

X9 ,X3,X4,Xg

If the system really is high dimensional, that will quickly become
intractable. But if there is some modularity in P(X,, X,, X5, X, X;)
then things become tractable again.

Suppose the variables form a Markov chain: x1 causes X2 which causes x3,
etc. We might draw out this relationship as follows:



P(a,b) = P(bja) P(a)
By the chain rule, for any probability distribution, we have:

P(X,, X,, X3, X4, X5 ) = P(X)P (X, X5, X, X5 | %)
=P (X )P (X, | X )P (X5, X, X5 | X, X,)
= P(X)P(X, [ X )P (X5 | X0, X, )P (X4, X5 | X4 X5, X5)
=P(X)P(X, | X )P (X5 | X[, X, )P (X, | X, X5, X3 )P (Xs | Xi5 Xoy X5, X,)
But if we exploit the assumed modularity of the probability distribution over

the 5 variables (in this case, the assumed Markov chain structure), then that
expression simplifies:

O OO D ud'®

Now our marginalization summations distribute through those terms:

D PO X Xy X Xs) = POG) Y P(X 1) D P(Xs %) D P(Xy 1%:) D P (% | X,)

Xy, X3, X4, X5

= Px)P (%, [ X)P (X3 | X,)P(X, | X5)P (X5 | X,)



Belief propagation

Performing the marginalization by doing the partial sums is called
“belief propagation”.

D PO X X X %) = P(x)D PO %) 2, P(Xs 1%,) 2 P(X, %)) P (X5 1%,)

Xy ,X3,Xq, X5

In this example, it has saved us a lot of computation. Suppose each
variable has 10 discrete states. Then, not knowing the special structure
of P, we would have to perform 10000 additions (10”4) to marginalize
over the four variables.

But doing the partial sums on the right hand side, we only need 40
additions (10*4) to perform the same marginalization!



Another modular probabilistic structure, more common in vision
problems, is an undirected graph:

The joint probability for this graph is given by:
P(X1’ Xo1 K31 Xy Xs) = (D(Xl’ Xz)(D(Xw X3)CD(X3, X4)(D(X4’ X5)

Where cI)(xl, Xz) is called a “compatibility function”. We can
define compatibility functions we result in the same joint probability as
for the directed graph described in the previous slides; for that example,
we could use either form.



Markov Random Fields

» Allows rich probabilistic models for
Images.

« But built in a local, modular way. Learn
local relationships, get global effects out.




MRF nodes as pixels

Fig. 2.3. Smoothing
with the wrong prior. (a)
Original, (b) degraded
image, (c) MAP esti-
mate 3 = 1, (d) MAP
estimate 3 = 0.3, (e)
median filter

d
Winkler, 1995, p. 32



MRF nodes as patches

Image patches




Network joint probability

P(X,y) == H‘I’(x X )HCD(x y;)

scene Scene scene Image- scene
image compatibility compatibility
function function
neighboring local

scene nodes observations



In order to use MRFs:

e Given observations y, and the parameters of
the MRF, how Infer the hidden variables, x?

 How learn the parameters of the MRF?



Outline of MRF section

 Inference In MRF’s.
— Gibbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— Iterative proportional fitting (IPF)



Variational methods

e Reference: Tommi Jaakkola’s tutorial on
variational methods,
http://www.al.mit.edu/people/tommi/

o Example: mean field

— For each node

 Calculate the expected value of the node,
conditioned on the mean values of the neighbors.



Outline of MRF section

 Inference In MRF’s.
— Glbbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

o Learning MRF parameters.
— lterative proportional fitting (IPF)



Derivation of belief propagation

XIMMSE = msan sum sum P(Xl’ KXoy X351 Y11 Yo y3)

1 X2 X3



The posterior factorizes

Ximmse = MeEan sum sum P(Xw Xy1 X351 Y11 Yo Y3)

X1 X2 X3
= mean sum sum ®(x,, y,)
X1 X2 X3

(D(XZ’ y2) LIj(Xl’ XZ)
D(X3, ¥5) ¥ Xz, %)

»® ©® ®

D(x,, Y,) D(X,,Y,) D (X3, Y5)

: % %,) : (%0 %) :



Propagation rules

Ximmse = Mean sum sum P(Xw Xy1 X351 Y11 Yo Y3)

X1 X2 X3
Ximmse = mgan suxlm Stim D(x;,Y,)
1 2 3

D(X,,Y,) Y(X,X,)
D(X3, Y5) V(X5 X5)

»® ©® ®

Sl.)](m q)(xz, y2) LIJ(X:U X2) D(x,, Y,) D (X, Y,) D (X5, ¥3)
2

sum d(X,, Y,;) Y(X,, X,) ®<>®<>®

XIMMSE = msan (D(Xw y1)
1



Propagation rules
XiMMSE = mian CD(Xl’ y1)
sum D(X,,Y,) Y(X, X,)

SUM (X, ;) ¥ (X, X;)

M (x,) =SUm (%) D(%;,y,) M3 ()

»® ©® ®

D(x,, Y,) D(X,,Y,) D (X3, Y5)

: % %,) : (%0 %) :



Propagation rules
XiMMSE = mian CD(Xl’ yl)
sum D(X,,Y,) Y(X, X,)

SUM (X, 3) ¥ (%, %;)

M (x) =SUm (0, %,) (%, y,) M3 (%)

»® ©® ®

D(x,, Y,) D(X,,Y,) D (X3, Y5)

: % %,) : (%0 %) :



Belief propagation: the nosey
neighbor rule

“Given everything that | know, here’s what |
think you should think”

(Given the probabilities of my being In
different states, and how my states relate to
your states, here’s what | think the
probabilities of your states should be)



Belief propagation messages

A message: can be thought of as a set of weights on
each of your possible states

To send a message: Multiply together all the incoming
messages, except from the node you’re sending to,

then multiply by the compatibility matrix and marginalize
over the sender’s states.

M/ (%) = ZW.,(X.,X) [ [Mf(x))

keN ()N




Beliefs

To find a node’s beliefs: Multiply together all the
messages coming In to that node.

J

b;(x;) = | [M(x))

keN(}J)



Belief, and message updates

b; (%)) = | [M(x))

keN(}J)

J

|\/lij (%) :ZWij(Xi’Xj) HM;((XJ')

keN (j)\i



Optimal solution In a chain or tree;:
Belief Propagation

* “Do the right thing” Bayesian algorithm.

e For Gaussian random variables over time:
Kalman filter.
 For hidden Markov models:

forward/backward algorithm (and MAP
variant Is Viterbi).



No factorization with loops!
XiMMSE = mian CD(Xl’ yl)
sum D(X,,Y,) Y(X, X,)

SUM (X3, Y3) ¥ (X2 X5) P(x,,%,)



Justification for running belief propagation

In networks with loops
o Experimental results:

— Error-correcting codes Kschischang and Frey, 1998;
McEliece et al., 1998

Freeman and Pasztor, 1999:

— Vision applications Frey, 2000

e Theoretical results:

~ For Gaussian processes, [means ar eorrect, . ;oo

— Large neighborhood local maximum for MAP.

_ Weiss and Freeman, 2000
— Equivalent to Bethe approx. in statistical physics.

— Tree-weighted reparamet\(gﬁ%'a%%hlzreeman’ and Weiss, 2000

Wainwright, Willsky, Jaakkola, 2001



Statistical mechanics interpretation

U - TS = Free energy

U=avg. energy = > p(X,X,,.. ) E(X,, X,,...)
T = temperature ™
S=entropy = 2 PO Xy ) N P(X, X, ,0)

states



Free energy formulation

Defining
A EOGx)T _ A—E()/T
LPij(xwxj)—e (Di(xi)_e
then the probability distribution P(X;, X,,...)
that minimizes the F.E. Is precisely
the true probability of the Markov network,

P(Xy X 0n) = [ ] ¥y 6 ) [ T @1 (%)




Approximating the Free Energy

Exact: FLP(X, X5 Xy )]
Mean Field Theory: F[b. ()]

Bethe Approximation :  F10:(X),0; (X, X;)]
Kikuchi Approximations:

F[b (X)’ U(XH j)’ Ijk(XI ]! )]



Mean field approximation to free energy

U - TS = Free energy

Fueanrierd(3) = Z Zbu (X )bj (Xj ) E; (X, X; )+ ZZ b, (x;)T Inb, ()

(1) %X

The variational free energy is, up to an additive constant, equal to the
Kllback-Leibler divergence between b(x) and the true probability, P(x).

KL divergence: [ [b(x)
D, (IIP)= 3 [To(In-

P(x)



Setting deriv w.r.t b.=0

U - TS = Free energy

Corresponds to eg. 18 in Jordan and Weiss ms.

b, (%) = aexp(—Zij (X;)E; (X, %;)/T)
() X
In words: “Set the probability of each state x; at node i to be

proportional to e to the minus expected energy corresponding to
each state x;, given the expected values of all the neighboring

states.”



Bethe Approximation

On tree-like lattices, exact formula:
p(Xl, Xoyeuny XN) = H pij (xi : xj )H[ o (Xi )]1—qi

(1) i

Faetne (B b”) = Zzbu (X, Xj)(Eij (X, Xj) +T Inbij (X, Xj))

(1) %X

+Z(1—qi)2bi (%)(E (%) +T Inb, (X))



Gibbs Free Energy
Bethe(bl |J)+Z7/|j{zblj(xl XJ) 1}

(1) Xj s X

+2, A4 ){Zb.,(x. Xj)=D0;(X;)}

xj (1)



Gibbs Free Energy
Bethe(b blj)_l_zylj{zblj(x X) 1}

(1)) Xi i Xj
D D A (% ){Zb.,(x X;)—b;(X;)}
Xj  (ij)

Set derivative of Gibbs Free Energy w.r.t. by, b; terms to zero:

o /1i' (Xi)
blj (X| ’ J) k LPu (X| ’ J) eXp( .JI. )
2 A (%)

b; (X;) —kCD(X)eXIO(‘EN('} )



Belief Propagation = Bethe

Lagrange multipliers A;(X;)
enforce the constraints b,- (xj) — Zbij (Xi , X,-)
Xi

Bethe stationary conditions = message update rules

with ;) =TIn [ [M{(x;)

keN(j)\i



Region marginal probabilities

bi(xi) :kq)(xi)HMik(Xi)

keN (i)

by (% %) =k ¥(x.x,) TIM{(x) TIME(x))

KeN(i)\ ] keN (j)\i



Belief propagation equations

Belief propagation equations come from the
marginalization constraints.

. e

M/ (%) = ZW.J(X X;) [ IM[(x;)

keN(j)\i



Results from Bethe free energy analysis

Fixed point of belief propagation equations iff. Bethe
approximation stationary point.

Belief propagation always has a fixed point.

Connection with variational methods for inference: both
minimize approximations to Free Energy,

— variational: usually use primal variables.

— belief propagation: fixed pt. equs. for dual variables.

Kikuchi approximations lead to more accurate belief
propagation algorithms.

Other Bethe free energy minimization algorithms—
Yuille, Welling, etc.



Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.

D Typical choice for Kikuchi cluster.

i_l_j . o—
=] LERL A
1

Update for Update for
messages messages —I—



Generalized belief propagation

Marginal probabilities for nodes in one row
of a 10x10 spin glass
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References on BP and GBP

J. Pearl, 1985

— classic

Y. Weiss, NIPS 1998
— Inspires application of BP to vision

W. Freeman et al learning low-level vision, 1JCV 1999

— Applications in super-resolution, motion, shading/paint
discrimination

H. Shum et al, ECCV 2002
— Application to stereo

M. Wainwright, T. Jaakkola, A. Willsky
— Reparameterization version

J. Yedidia, AAAI 2000
— The clearest place to read about BP and GBP.



Graph cuts

Algorithm: uses node label swaps or expansions
as moves In the algorithm to reduce the energy.
Swaps many labels at once, not just one at a time,
as with ICM.

Find which pixel labels to swap using min cut/max
flow algorithms from network theory.

Can offer bounds on optimality.

See Boykov, Veksler, Zabih, IEEE PAMI 23 (11)
Nov. 2001 (available on web).



Comparison of graph cuts and belief
propagation

Comparison of Graph Cuts with Belief
Propagation for Stereo, using Identical
MRF Parameters, ICCV 2003.

Marshall F. Tappen William T. Freeman

{a) Tsukuba Image by Graph Cuts {¢) Synchronous BP (dy Accelerated BP

Figure 3. Results produced by the three algorithms on the Tsukuba image. The parameters used to
generate this field were = = 501, T' = 4, P = 2. Again, Graph Cuts produces a much smoother solution.
Belief Propagation does maintain some structures that are lost in the Graph Cuts solution, such as
the camera and the face in the foreground.



Ground truth, graph cuts, and belief
propagation disparity solution energies

Energy of MRF Labelling Returned (< 10%)
Svnchronous | % Energy from Occluded
[mage Ground-Truth | Graph Cuts | Behet Prop Matching Costs
Map 757 383 442 6 1%
Sawtooth 6391 632 | 713 T9%
Tsukuba |852 663 773 6 1%
Venus 37349 | 442 1501 T

Figure 2. Field Energies for the MRF labelled using ground-truth data compared to the energies for
the fields labelled using Graph Cuts and Belief Propagation. Notice that the solutions returned by
the algorithms consistently have a much lower energy than the labellings produced from the ground-
truth, showing a mismatch between the MRF formulation and the ground-truth. The final column
contains the percentage of each ground-truth solution’s energy that comes from matching costs of

occluded pixels.



Graph cuts versus belief propagation

» Graph cuts consistently gave slightly lower energy
solutions for that stereo-problem MRF, although
BP ran faster, although there Is now a faster graph
cuts implementation than what we used...

 However, here’s why | still use Belief
Propagation:
— Works for any compatibility functions, not a restricted
set like graph cuts.
— | find it very intuitive.
— Extensions: sum-product algorithm computes MMSE,

and Generalized Belief Propagation gives you very
accurate solutions, at a cost of time.



MAP versus MMSE

(a) MAP Estimate () MMSE Estimate

Figure 7. Comparison of MAP and MMSE estimates on a different MRF formulation. The MAP estimate
chooses the most likely discrete disparity level for each point, resulting in a depth-map with stair-
stepping effects. Using the MMSE estimate assigns sub-pixel disparities, resulting in a smooth depth
map.



Show program comparing some
methods on a simple MRF

testMRF.m



Outline of MRF section

 Inference iIn MRF’s.
— Glbbs sampling, simulated annealing
— Iterated condtional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— lterative proportional fitting (IPF)



Vision applications of MRF’s

Stereo

Motion estimation
Super-resolution
Many others...



Vision applications of MRF’s

Stereo

Motion estimation
Super-resolution
Many others...



Motion application

Image patches




What behavior should we see In a
motion algorithm?

o Aperture problem

« Resolution through propagation of
Information

* Figure/ground discrimination



The aperture problem




The aperture problem




Program demo



Motion analysis: related work

e Markov network

— Luettgen, Karl, Willsky and collaborators.
* Neural network or learning-based

— Nowlan & T. J. Senjowski; Sereno.
o Optical flow analysis

— Weiss & Adelson: Darrell & Pentland:; Ju,
Black & Jepson; Simoncelli; Grzywacz &
Yuille; Hildreth: Horn & Schunk; etc.



Inference: I\/Iotlon estimation results

(maxima of scene probability distributions displayed)

Image data
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show motion at edges.



A A

I\/Iotlon estimation results

(maxima of scene probability distributions displayed)
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I\/Iotlon estimation results
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Final result compares well with vector
quantized true (uniform) velocities.



Vision applications of MRF’s

Stereo

Motion estimation
Super-resolution
Many others...



Super-resolution

e Image: low resolution image
e Scene: high resolution image

ultimate goal...

scene




Pixel-based images
are not resolution
Independent

Pixel replication |
L

Cubic spline,
sharpened

Training-based

Polygon-based super-resolution
graphics |
Images are
resolution
Independent




3 approaches to perceptual

sharpening N

amplitude

(1) Sharpening; boost existing high
freq Ue n C I eS . spatial frequency

(2) Use multiple frames to obtain
higher sampling rate in a still frame._’.
(3) Estimate high frequencies not
present in image, although implicitly
defined. E[ N \
In this talk, we focus on (3), which \\

’ “ PRl ial frequen
we’ll call “super-resolution™. spatialfrequency

amplitude




Super-resolution: other approaches

e Schultz and Stevenson, 1994
 Pentland and Horowitz, 1993

o fractal image compression (Polvere, 1998,
Iterated Systems)

 astronomical image processing (eg. Gull and
Daniell, 1978; “pixons”

http://casswww.ucsd.edu/puetter.ntml)



Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.




Do a first interpolation

Low-resolution



=
. - | .

Zoomed low-resolution Full frequency original

Low-resolution



Representation

Zoomed low-freq.

Full freq. original




Representation

Zoomed low-freq.

Full freq. original

: True high fregs

Low-band input \ J q

(contrast normalized, (to minimize the complexity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the input image,

and normalize the local contrast level).



Gather ~100,000 patches

@ BH B EH BB B N hghfregs.

H i N
1T 1 [ ey

Training data samples (magnified)



Nearest neighbor estimate

Input low fregs.

H BHB B EH BB B N hghfregs.

EESeEEEN .

Estimated high fregs.

Training data samples (magnified)




Nearest neighbor estimate

Input low fregs.

H B B B B N highfregs.
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Example: Input image patch, and closest
matches from database

Input patch

#1: Range [-2.67, 2.58]
Dims [7, 7

-
CIOSeSt I I I la e #3: Hange[ 188 228] #0: Hange[ 199 266 #11: Range[ 192 185] #2: Hange[2D? 241] #35: Range[ 228 322 #4: Hange[ 14312] #15: Range [-2.39, 2.95] #16: Range [-2.08, 1.31]
Dims [7 Dims [7 Dims [7 Dims [7 Dims [7 Dims [7, Dims [7, 7] Dims [7, 7]

patches from database 5 E E = = 5

#17: Range [-203, 1.82] #13: Range [-1.87,3.14]  #19: Range [-2.15, 1.9]  #20: Range [-2.48, 2.26] #21: Range [-2.26, 2.25] #22: Range [-2.13, 1.96] #23: Range [-2.17, 2.13]  #24: Range [-1.5, 2.36]
Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7] Dims [7, 7]

Corresponding ‘ - = - = 5 = E

W25 Hange[ 07 236] #25 ﬁange[ 551 48] 27 ﬁange[ 333 343 w28 Hange[ 47 43 29 ﬁange[ 40, 456] 420: Fenge [ a 18,574] #31: s |- 345 S8 #32: Fange [ 439 451]
E.51 2 51 . 5] Dims [=, 5]

- - Dims
#39:Fonge 929, 4301 #04: fonge [-4.00, 620 #05:Fonee [7.2,0.45] 495 Range |S67, 5051 437 Fonge [-2.50, 3051 430: e 520,392 439, rwe |- 324 3411 #d0: Fange [-2.92, 254]
Dims [5, 5] Dims [5, 5] Dims [3, 5] Dims [, 5] Dims [5, 5] Dims [5, 5] , 5] Dims [5, 5]




Image patch

Underlyving candidate
scene patches. Each
renders to the image
patch.



Scene-scene compatibility function,

Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

. _|d._d‘|2 20.2
\I/(SCZ',.CCJ') = exp i—d; 17/

Unigueness constraint,
L not smoothness.
d



Image-scene compatibility $y

function, ©(x;, ;)
-

Assume Gaussian noise takes you from X
observed image patch to synthetic sample:

P (w;,y;) = exp lvimvlE) /207



Markov network




Bel |ef P ropag atl On After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. O

Iter. 1

Iter. 3




Zooming 2 octaves

& i We apply the super-resolution
- algorithm recursively, zooming

up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204



Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

Original
50x58

(cubic spline implies thin
plate prior)

True
200%x232




Original (cubic spline implies thin
50x58 plate prior)
: : True
Cubic spline 200x232




Next, train the Markov network
algorithm on a world of random noise
Images.

Original
50x58




The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58

Markov

True
network



Next, train on a world of vertically
oriented rectangles.

Original
50x58

Training images




The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original

50x58
Training images

Markov

True
network




Now train on a generic collection of
Images.

Original
50x58




The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58

Markov
network



Generic training images

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.




Original
70x70

Markov
net,
training:
generic

True
280x280




Kodak Imaging Science Technology Lab test.

S R ! .. f (‘ X'ﬂ'
b 4 'f 1 ""
2 i '. A1 '.__

)
J

3 test Images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.




Algorithms compared

 Bicubic Interpolation

e Mitra's Directional Filter
e Fuzzy Logic Filter
*VVector Quantization

e VISTA






Bicubic spline Altamira



User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
Images created by Freeman’s algorithm.”
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Source image patches
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framm traming daia

Hest match patches from
training data



Training Image
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Processed image




Outline of MRF section

* Inference iIn MRF’s.
— Glbbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Variational methods
— Belief propagation
— Graph cuts
 Vision applications of inference in MRF’s.

e Learning MRF parameters.
— Iterative proportional fitting (IPF)



Learning MRF parameters, labeled data

Iterative proportional fitting lets you
make a maximum likelihood
estimate of a joint distribution from
observations of various marginal
distributions.



true joint probability

520

L'd
L0
120
520
E0

True joint
probability el
0.35
0.3
Observed
0251 .
a5l marginal
L distributions

0.1 L L 1 1 ! 1 ]
1



Initial guess at joint probability

Initial guess at joint probability




|PF update equation

P (. )Observed
P(xq1,2o,... ,.ccd)(t+1) = P(z1,22,... ,.ccd)(t) (xfa)(mi)(t)

Scale the previous iteration’s estimate for the joint
probability by the ratio of the true to the predicted
marginals.

Gives gradient ascent in the likelihood of the joint
probability, given the observations of the marginals.

See: Michael Jordan’s book on graphical models



Convergence of to correct marginals by IPF algorithm

margl (b) versus estimates (1] and final difference (y)

.35

0.3

0.25F
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Convergence of to correct marginals by IPF algorithm

margs (b) versus estimates (1) and final difference (y)

0.3
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IPF results for this example:
comparison of joint probabilities

True joint
probability

#1: Rar‘lge [EI 00B62, 0.074%]
true joint (top) and TqF'Ebs imate (bottom)

Final maximum
entropy estimate

Initial guess

#2: Hange [0.0165, 0.0728]
Clims [&, 9]



Application to MRF parameter estimation

e Can show that for the ML estimate of the clique
potentials, ¢.(X.), the empirical marginals equal
the model marginals,

p(ze) = p(ze)
 This leads to the IPF update rule for ¢.(x.)
(t‘l‘l) — ( ) ﬁ(mc)
( C) ¢C (ch) (t) (35'0)
e Performs coordinate ascent in the likelihood of the
MRF parameters, given the observed data.

Reference: unpublished notes by Michael Jordan



More general graphical models than
MRF grids

* |In this course, we’ve studied Markov chains, and
Markov random fields, but, of course, many other
structures of probabilistic models are possible and
useful in computer vision.

* For a nice on-line tutorial about Bayes nets, see
Kevin Murphy’s tutorial in his web page.




“Top-down” Information: a
representation for image context

Images

80-dimensional
representation

Credit; Antonio Torralba



“Bottom-up” information: labeled
training data for ob| ect reconltlon

Polygon-Class-List
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*Trained detectors for 9 types of objects: bookshelf, desk,
screen (frontal) , steps, building facade, etc.
*100-200 positive patches, > 10,000 negative patches



Combining top-down with bottom-up:
graphical model showing assumed
statistical relationships between variables

?

kitchen ff e, lab, conference

room, p rea, corrldor,
elevator dt et.

oo .@..




Thercesa office
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outdoor
indoor

Categorization of new places

Famihar

New environment environment

e

ICCV 2003 poster
By Torralba, Murphy,
Freeman, and Rubin



Bottom-up detection: ROC curves

100 ICCV 2003 poster
90 fesk By Torralba, Murphy,
U CS L L : Freeman, and Rubin
80 1 streetlight
270 |
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False alarms (from 2000 distractors)
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