Generative Models

Bill Freeman, MIT
Some of these slides made with Andrew Blake, Microsoft Research Cambridge, UK
6.869 March 15, 2005

What is the goal of vision?

If you are asking,
"Are there any faces in this
image?",
then you would probably want to use discriminative methods.

If you are asking,
"Find a 3-d model that
describes the runner",
then you would use generative methods

What is the goal of vision?

If you are asking,
"Are there any faces in this
image?",
then you would probably want to use discriminative methods.

Modeling outline

(a) So we want to look at high-dimensional visual data, and fit models to it; forming summaries of it that let us understand what we see.
(b) After that, we'll look at ways to modularize the joint probability distribution.

Fit this distribution with a Gaussian

$$
P\left(z_{n} \mid \mu, \sigma\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \frac{-\left(z_{n}-\mu\right)^{2}}{2 \sigma^{2}}
$$

How find the parameters of the bestfitting Gaussian?

How find the parameters of the bestfitting Gaussian?

$$
\hat{\mu}, \widehat{\sigma}=\operatorname{argmax}_{\mu, \sigma} P(z \mid \mu, \sigma)
$$

Maximum likelihood parameter estimation:

Fitting two lines: on the one hand...

$$
\begin{aligned}
& \text { MLE with hidden/latent variables: } \\
& \text { Expectation Maximisation } \\
& \text { General problem: } \\
& y=\left(Y_{1}, \ldots, Y_{N}\right) ; \theta=\left(a_{1}, a_{2}\right) ; z=\left(z_{1}, \ldots, z_{N}\right) \\
& \text { data parameters hidden variables } \\
& \text { For MLE, want to maximise the log likelihood } \\
& \text { The sum over } \mathrm{z} \text { inside } \\
& \text { the } \log \text { gives a } \\
& \text { complicated expression } \\
& \text { for the ML solution. } \\
& \widehat{\theta}=\arg \max _{\theta} \log p(y \mid \theta) \\
& =\arg \max _{\theta} \log \sum_{z} p(y, z \mid \theta)
\end{aligned}
$$

The EM algorithm

We don't know the values of the
labels, z_{i}, but let's use its expected value
under its posterior with the current
parameter values, $\theta_{\text {old }}$. That gives us the
"expectation step":
"E.step" $\quad Q\left(\theta ; \theta_{\text {old }}\right)=\sum_{z} p\left(z \mid y, \theta_{\text {old }}\right) \log p(y \mid z \theta)$

Now let's maximize this Q function,
an expected log-likelihood, over the
parameter values, giving the
"maximization step":
"M-step" $\quad \theta_{\text {new }}=\arg \max _{\theta} Q\left(\theta ; \theta_{\text {old }}\right)$

Each iteration increases the total log-likelihood $\log p(y \mid \theta)$

Expectation Maximisation applied to fitting the two lines

Hidden variables $z_{n}=i$ associate data point \boldsymbol{n} with line \boldsymbol{i}
and probabilities of association are $w_{i}(n), i=1,2$,

Need:
$w_{i}(n)=p\left(z_{n}=i \mid y, \theta\right) \propto p\left(y \mid z_{n}=i, \theta\right) \propto \exp \left[-d\left(Y_{n} ; a_{i}\right)^{2} / 2\right.$ and then:
$Q\left(y, \theta, \theta_{\text {old }}\right)=\sum_{n}-\frac{1}{2}\left(w_{1}(n) d\left(Y_{n} ; a_{1}\right)^{2}+w_{2}(n) d\left(Y_{n} ; a_{2}\right)^{2}\right)$
and maximising that gives

$$
\hat{a}_{i}=\frac{\sum_{n} w_{i}(n) Y_{n} X_{n}}{\sum_{n} w_{i}(n) X_{n}^{2}}
$$

Modeling outline

(a) So we want to look at high-dimensional visual data, and fit models to it; forming summaries of it that let us understand what we see.
(b) After that, we'll look at ways to modularize the joint probability distribution.

Making probability distributions modular, and therefore tractable: Probabilistic graphical models

Vision is a problem involving the interactions of many variables: things can seem hopelessly complex. Everything is made tractable, or at least, simpler, if we modularize the problem. That's what probabilistic graphical models do, and let's examine that.

Readings: Jordan and Weiss intro article—fantastic!
Kevin Murphy web page-comprehensive and with pointers to many advanced topics

A toy example

Suppose we have a system of 5 interacting variables, perhaps some are observed and some are not. There's some probabilistic relationship between the 5 variables, described by their joint probability, $P(x 1, x 2, x 3, x 4, x 5)$.

If we want to find out what the likely state of variable $x 1$ is (say, the position of the hand of some person we are observing), what can we do?

Two reasonable choices are: (a) find the value of x 1 (and of all the other variables) that gives the maximum of $\mathrm{P}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5)$; that's the MAP solution.
Or (b) marginalize over all the other variables and then take the mean or the maximum of the other variables. Marginalizing, then taking the mean, is equivalent to finding the MMSE solution. Marginalizing, then taking the max, is called the max marginal solution and sometimes a useful thing to do.

To find the marginal probability at x 1 , we have to take this sum:

$$
\sum_{x_{2}, x_{3}, x_{4}, x_{5}} P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

If the system really is high dimensional, that will quickly become intractable. But if there is some modularity in $P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ then things become tractable again.

Suppose the variables form a Markov chain: x1 causes x2 which causes x3, etc. We might draw out this relationship as follows:

Belief propagation

Performing the marginalization by doing the partial sums is called "belief propagation".
$\sum_{x_{2}, x_{3}, x_{4}, x_{5}} P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\quad P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{3}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{4}\right)$
In this example, it has saved us a lot of computation. Suppose each variable has 10 discrete states. Then, not knowing the special structure of P, we would have to perform 10000 additions ($10 \wedge 4$) to marginalize over the four variables.
But doing the partial sums on the right hand side, we only need 40 additions (10*4) to perform the same marginalization!

In order to use MRFs:

- Given observations y, and the parameters of the MRF, how infer the hidden variables, x ?
- How learn the parameters of the MRF?

Outline of MRF section

- Inference in MRF's.
- Gibbs sampling, simulated annealing
- Iterated condtional modes (ICM)
- Variational methods
- Belief propagation
- Graph cuts
- Vision applications of inference in MRF's.
- Learning MRF parameters.
- Iterative proportional fitting (IPF)

Gibbs Sampling and Simulated

 Annealing- Gibbs sampling:
- A way to generate random samples from a (potentially very complicated) probability distribution.
- Simulated annealing:
- A schedule for modifying the probability distribution so that, at "zero temperature", you draw samples only from the MAP solution.

$$
P(x)=\frac{1}{Z} \exp (-E(x) / k T)
$$

Reference: Geman and Geman, IEEE PAMI 1984.

Gibbs sampling and simulated annealing

So you can find the mean value (MMSE estimate) of a variable by doing Gibbs sampling and averaging over the values that come out of your sampler.
You can find the MAP value of a variable by doing Gibbs sampling and gradually lowering the temperature parameter to zero.

Iterated conditional modes

- For each node:
- Condition on all the neighbors
- Find the mode
- Repeat.

Variational methods

- Reference: Tommi Jaakkola's tutorial on

Outline of MRF section

- Inference in MRF's. variational methods,
http://www.ai.mit.edu/people/tommi/
- Example: mean field
- For each node
- Calculate the expected value of the node, conditioned on the mean values of the neighbors.
- Gibbs sampling, simulated annealing
- Iterated condtional modes (ICM)
- Variational methods
- Belief propagation
- Graph cuts
- Vision applications of inference in MRF's.
- Learning MRF parameters.
- Iterative proportional fitting (IPF)

Derivation of belief propagation

$x_{1 M M S E}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$

Propagation rules

```
\(x_{1 \text { MMSE }}=\operatorname{mean}_{x_{1}} \operatorname{sum}_{x_{2}} \operatorname{sum}_{x_{3}} P\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)\)
\(x_{1 M M S E}=\) mean \(\operatorname{sum}_{x_{1}} \operatorname{sum} \Phi\left(x_{1}, y_{1}\right)\)
        \(\Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)\)
        \(\Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)\)
    \(x_{1 \text { MMSE }}=\operatorname{mean}_{x_{1}} \Phi\left(x_{1}, y_{1}\right)\)
        \(\operatorname{sum}_{x_{2}}^{x_{1}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)\)
        \(\operatorname{sum} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)\)
```



```
        \(x_{3}\)
```


Propagation rules

$x_{1 M M S E}=\operatorname{mean}_{x_{1}} \Phi\left(x_{1}, y_{1}\right)$
$\operatorname{sum}_{x_{2}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)$
$\operatorname{sum}_{x_{3}} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)$
$M_{1}^{2}\left(x_{1}\right)=\operatorname{sum} \Psi\left(x_{1}, x_{2}\right) \Phi\left(x_{2}, y_{2}\right) \frac{M_{2}^{3}\left(x_{2}\right)}{(2)}$

Belief propagation messages

A message: can be thought of as a set of weights on each of your possible states
To send a message: Multiply together all the incoming messages, except from the node you're sending to, then multiply by the compatibility matrix and marginalize over the sender's states.

$$
\begin{gathered}
M_{i}^{j}\left(x_{i}\right)=\sum_{x_{j}} \psi_{\mathrm{ij}}\left(x_{i}, x_{j}\right) \prod_{k \in N(j))_{i}} M_{j}^{k}\left(x_{j}\right) \\
\mathrm{i} \bullet \mathrm{j} \bullet=\mathrm{i} \bullet
\end{gathered}
$$

Propagation rules

$x_{1 M M S E}=\operatorname{mean}_{x_{1}} \Phi\left(x_{1}, y_{1}\right)$
$\operatorname{sum}_{x_{2}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right)$
$\operatorname{sum}_{x_{3}} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right)$
$M_{1}^{2}\left(x_{1}\right)=\operatorname{sum}_{x_{2}} \Psi\left(x_{1}, x_{2}\right) \Phi\left(x_{2}, y_{2}\right) M_{2}^{3}\left(x_{2}\right)$

Belief propagation: the nosey neighbor rule
"Given everything that I know, here's what I think you should think"
(Given the probabilities of my being in different states, and how my states relate to your states, here's what I think the probabilities of your states should be)

Beliefs

To find a node's beliefs: Multiply together all the messages coming in to that node.

Belief, and message updates
$\xrightarrow{\mathbf{j}} b_{j}\left(x_{j}\right)=\prod_{k \in N(j)} M_{j}^{k}\left(x_{j}\right)$ $M_{i}^{j}\left(x_{i}\right)=\sum_{x_{j}} \psi_{\mathrm{ij}}\left(x_{i}, x_{j}\right) \prod_{k \in N(j) i} M_{j}^{k}\left(x_{j}\right)$

No factorization with loops!

$$
\begin{aligned}
x_{1 \text { MMSE }}= & \operatorname{mean}_{x_{1}} \Phi\left(x_{1}, y_{1}\right) \\
& \operatorname{sum}_{x_{2}} \Phi\left(x_{2}, y_{2}\right) \Psi\left(x_{1}, x_{2}\right) \\
& \operatorname{sum}_{x_{3}} \Phi\left(x_{3}, y_{3}\right) \Psi\left(x_{2}, x_{3}\right) \Psi\left(x_{1}, x_{3}\right)
\end{aligned}
$$

Optimal solution in a chain or tree:

 Belief Propagation- "Do the right thing" Bayesian algorithm.
- For Gaussian random variables over time: Kalman filter.
- For hidden Markov models: forward/backward algorithm (and MAP variant is Viterbi).

Justification for running belief propagation in networks with loops

- Experimental results:
- Error-correcting codes Kschischang and Frey, 1998; McEliece et al., 1998
$\begin{array}{ll}\text { - Vision applications } & \begin{array}{l}\text { Freeman and Pasztor, 1999; } \\ \text { Frey, } 2000\end{array}\end{array}$
- Theoretical results:
- For Gaussian processes, means are correct.
- Large neighborhood local maximum for MAP.
- Equivalent to Bethe approx in statistical physics
- Tree-weighted reparameterization Freeman, and Weiss, 2000 Wainwright, Willsky, Jaakkola, 2001

Free energy formulation
Defining

$$
\Psi_{i j}\left(x_{i}, x_{j}\right)=e^{-E\left(x_{i}, x_{j}\right) / T} \quad \Phi_{i}\left(x_{i}\right)=e^{-E\left(x_{i}\right) / T}
$$

then the probability distribution $P\left(x_{1}, x_{2}, \ldots\right)$ that minimizes the F.E. is precisely the true probability of the Markov network,

$$
P\left(x_{1}, x_{2}, \ldots\right)=\prod_{i j} \Psi_{i j}\left(x_{i}, x_{j}\right) \prod_{i} \Phi_{i}\left(x_{i}\right)
$$

Approximating the Free Energy

Exact:
Mean Field Theory:
Bethe Approximation: $\quad F\left[b_{i}\left(x_{i}\right), b_{i j}\left(x_{i}, x_{j}\right)\right]$
Kikuchi Approximations:

$$
F\left[b_{i}\left(x_{i}\right), b_{i j}\left(x_{i}, x_{j}\right), b_{i j k}\left(x_{i,} x_{j}, x_{k}\right), \ldots .\right]
$$

Bethe Approximation

On tree-like lattices, exact formula:

$$
\begin{gathered}
p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\prod_{(i j)} p_{i j}\left(x_{i}, x_{j}\right) \prod_{i}\left[p_{i}\left(x_{i}\right)\right]^{1-q_{i}} \\
F_{\text {betele }}\left(b_{i j}, b_{i j}\right)=\sum_{(i j)} \sum_{x_{i}, j_{j}} b_{i}\left(x_{i}, x_{j}\right)\left(E_{i j}\left(x_{i}, x_{j}\right)+T \ln b_{j i}\left(x_{i}, x_{j}\right)\right) \\
\quad+\sum_{i}\left(1-q_{i}\right) \sum_{x_{i}} b_{i}\left(x_{i}\right)\left(E_{i}\left(x_{i}\right)+T \ln b_{i}\left(x_{i}\right)\right)
\end{gathered}
$$

Gibbs Free Energy	
$F_{\text {Bethe }}\left(b_{i}, b_{i j}\right)+\sum_{(i j)} \gamma_{i j}\left\{\sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right)-1\right\}$	
$+\sum_{x_{j}} \sum_{(i j)} \lambda_{i j}\left(x_{j}\right)\left\{\sum_{x_{i}} b_{i j}\left(x_{i}, x_{j}\right)-b_{j}\left(x_{j}\right)\right\}$	
Set derivative of Gibbs Free Energy w.r.t. $\mathrm{b}_{\mathrm{i},} \mathrm{b}_{\mathrm{i}} \mathrm{t}$ term	
$b_{i j}\left(x_{i}, x_{j}\right)=k \Psi_{i j}\left(x_{i}, x_{j}\right) \exp \left(\frac{-\lambda_{i j}\left(x_{i}\right)}{T}\right)$	
$b_{i}\left(x_{i}\right) \quad=k \Phi\left(x_{i}\right) \exp \left(\frac{\sum_{j \in N(i)} \lambda_{i j}\left(x_{i}\right)}{T}\right)$	

Region marginal probabilities

$$
b_{i j}\left(x_{i}, x_{j}\right)=k \Psi\left(x_{i}, x_{j}\right) \prod_{k \in \mathbb{N}(i) j} M_{i}^{k}\left(x_{i}\right) \prod_{k \in \mathbb{N}())\rangle} M_{j}^{k}\left(x_{j}\right)
$$

ititin

Belief propagation equations

Belief propagation equations come from the marginalization constraints.

Kikuchi message-update rules

Groups of nodes send messages to other groups of nodes.

messages

References on BP and GBP

- J. Pearl, 1985
- classic
- Y. Weiss, NIPS 1998
- Inspires application of BP to vision
- W. Freeman et al learning low-level vision, IJCV 1999

Applications in super-resolution, motion, shading/paint discrimination

- H. Shum et al, ECCV 2002

Application to stereo

- M. Wainwright, T. Jaakkola, A. Willsky
- Reparameterization version
- J. Yedidia, AAAI 2000
- The clearest place to read about BP and GBP.

Results from Bethe free energy analysis

- Fixed point of belief propagation equations iff. Bethe approximation stationary point.
- Belief propagation always has a fixed point
- Connection with variational methods for inference: both minimize approximations to Free Energy
- variational: usually use primal variables.
- belief propagation: fixed pt. equs. for dual variables.
- Kikuchi approximations lead to more accurate belief propagation algorithms.
- Other Bethe free energy minimization algorithmsYuille, Welling, etc

Generalized belief propagation

Graph cuts

- Algorithm: uses node label swaps or expansions as moves in the algorithm to reduce the energy. Swaps many labels at once, not just one at a time, as with ICM.
- Find which pixel labels to swap using min cut/max flow algorithms from network theory.
- Can offer bounds on optimality.
- See Boykov, Veksler, Zabih, IEEE PAMI 23 (11) Nov. 2001 (available on web).

Comparison of graph cuts and belief propagation

Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters, ICCV 2003
Marshall F. Tappen William T. Freeman

(a) Tsukuka Image

(b) Graph Cuts

(c) Synchronous BP

(d) Aceelerated BP

Graph cuts versus belief propagation

- Graph cuts consistently gave slightly lower energy solutions for that stereo-problem MRF, although BP ran faster, although there is now a faster graph cuts implementation than what we used...
- However, here's why I still use Belief Propagation:
- Works for any compatibility functions, not a restricted set like graph cuts.
- I find it very intuitive.
- Extensions: sum-product algorithm computes MMSE, and Generalized Belief Propagation gives you very accurate solutions, at a cost of time.

Show program comparing some methods on a simple MRF testMRF.m

Outline of MRF section

- Inference in MRF's.
- Gibbs sampling, simulated annealing
- Iterated condtional modes (ICM)
- Variational methods
- Belief propagation
- Graph cuts
- Vision applications of inference in MRF's.
- Learning MRF parameters.
- Iterative proportional fitting (IPF)

Vision applications of MRF's

- Stereo
- Motion estimation
- Labelling shading and reflectance
- Many others...

Vision applications of MRF's

- Stereo
- Motion estimation
- Labelling shading and reflectance
- Many others...

What behavior should we see in a motion algorithm?

- Aperture problem
- Resolution through propagation of information
- Figure/ground discrimination

Program demo

Vision applications of MRF's

- Stereo
- Motion estimation
- Labelling shading and reflectance
- Many others...

Add a reflectance pattern to the surface. Points inside the squares should reflect less light

Propagating Information

- Can disambiguate areas by propagating information from reliable areas of the image into ambiguous areas of the image

Propagating Information

- Consider relationship between neighboring derivatives

- Use Generalized Belief

Propagation to infer labels

Setting Compatibilities

- Set compatibilities according to image contours
- All derivatives along a contour should have the same label
- Derivatives along an image contour strongly influence each other

Outline of MRF section

- Inference in MRF's.
- Gibbs sampling, simulated annealing
- Iterated conditional modes (ICM)
- Variational methods
- Belief propagation
- Graph cuts
- Vision applications of inference in MRF's.
- Learning MRF parameters.
- Iterative proportional fitting (IPF)

Learning MRF parameters, labeled data

Iterative proportional fitting lets you make a maximum likelihood estimate a joint distribution from observations of various marginal distributions.

Initial guess at joint probability

IPF update equation

$P\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{(t+1)}=P\left(x_{1}, x_{2}, \ldots, x_{d}\right)^{(t)} \frac{P\left(x_{i}\right)^{\text {observed }}}{P\left(x_{i}\right)^{(t)}}$
Scale the previous iteration's estimate for the joint probability by the ratio of the true to the predicted marginals.

Gives gradient ascent in the likelihood of the joint probability, given the observations of the marginals.

See: Michael Jordan's book on graphical models

Application to MRF parameter estimation

- Can show that for the ML estimate of the clique potentials, $\phi_{\mathrm{c}}\left(\mathrm{x}_{\mathrm{C}}\right)$, the empirical marginals equal the model marginals,

$$
\tilde{p}\left(x_{c}\right)=p\left(x_{c}\right)
$$

- This leads to the IPF update rule for $\phi_{c}\left(\mathrm{x}_{\mathrm{c}}\right)$ $\phi_{C}^{(t+1)}\left(x_{c}\right)=\phi_{c}^{(t)}\left(x_{c}\right) \frac{\tilde{p}\left(x_{c}\right)}{p^{(t)}\left(x_{c}\right)}$
- Performs coordinate ascent in the likelihood of the MRF parameters, given the observed data.

Reference: unpublished notes by Michael Jordan

More general graphical models than MRF grids

- In this course, we've studied Markov chains, and Markov random fields, but, of course, many other structures of probabilistic models are possible and useful in computer vision.
- For a nice on-line tutorial about Bayes nets, see Kevin Murphy's tutorial in his web page.

