Today

- Interpretation tree
- Edges
- Bayes

Assignments

Take-home exam:
Given out Tuesday, March 15, due midnight, March 17.
Cannot collaborate on it.
Open book.

Problem set 2

- Can have until Monday 5pm to complete it.

6.869 projects

- Proposals to us by March 31 or earlier.
- We will ok them by April 5
- 3 possible project types:
- Original implementation of an existing algorithm
- Rigorous evaluation of existing implementation.
- Synthesis or comparison of several research papers.

6.869 projects, continued

- Some possible projects
- Evaluate the performance of local image feature descriptors.
- Pose and solve a vision problem: make an algorithm that detects broken glass, or that finds trash. Implement and evaluate it.
- Implement and evaluate the photographic/computer graphics discriminator.
- Compare several motion estimation algorithms. Discuss how they're different, the benefits of each, etc. Put them in a common framework.

Interpretation Trees

- Tree of possible model-image feature assignments
- Depth-first search
- Prune when unary (binary, ...) constraint violated
- length
- area
- orientation

5

Interpretation tree

The problem is to match the line primitives in the model, $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$ to those in the scene, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$. Select a scene feature at random, feature \mathbf{a}, say. Choose a model feature at random. The choice $(\mathbf{a}, \mathbf{1})$ represents a node in the tree. However, we could equally choose $(\mathbf{a}, 2)$ or $(\mathbf{a}, 3)$ as initial nodes. Thus there are three nodes at the first level of the tree.

Now expand each of these nodes. For example, if we choose to expand (a, 1) then the three children would be defined as (b, 1), (b,2) and (b, 3). If we expand $(a, 2)$ then the children are the same. Hence, for a completely unconstrained tree search matching a model of \mathbf{n} primitives to a scene having \mathbf{n} primitives there will \mathbf{n} nodes at the first level, $n \wedge 2$ at the second level and so on until there are $n \wedge n$ nodes at the last level.

Interpretation tree

In general, we shall deal with constrained tree search. For example, is a scene labelling of
 the hypoteneuses of three separate triangle, and that the other sides are occluded or otherwise undetected. Suppose we know a-priori that there is only one triangle in the scene? Then, at the second level of the search tree we can only expand $(\mathbf{a}, \mathbf{1})$ with $(\mathbf{b}, \mathbf{2})$ and $(\mathbf{b}, \mathbf{3})$; this a uniqueness constraint by analogy with the stereo matching problem. Hence for each of \mathbf{n} nodes at the first level, there are $\mathbf{n - 1}$ children, then $\mathbf{n}-\mathbf{2}$ children and so on.
To reduce the combinatorics of the search still further, we should add additional constraints...Unary constraints apply to single pairings between model and scene features. For example we could introduce a constraint which says that lines can only be matched if they have the same length. Binary or pairwise constraints are based on pairs if features.

- Points of sharp change - General strategy in an image are interesting:
- change in reflectance
- change in object
- change in illumination
- noise
- Sometimes called edge points
- determine image gradient
- now mark points where gradient magnitude is particularly large wrt neighbours (ideally, curves of such points).

Interpretation Trees

Smoothing and Differentiation

- Issue: noise
- smooth before differentiation
- two convolutions to smooth, then differentiate?
- actually, no - we can use a derivative of

Gaussian filter

- because differentiation is convolution, and convolution is associative

The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

Notice

- Something nasty is happening at corners
- Scale affects contrast
- Edges aren’t bounding contours

Remaining issues

- Check that maximum value of gradient value is sufficiently large
- drop-outs? use hysteresis
- use a high threshold to start edge curves and a low

edges

- Issues:
- On the one hand, what a useful thing: a marker for where something interesting is happening in the image.
- On the other hand, isn't it way to early to be thresholding, based on local, low-level pixel information alone?

Another useful, bandpass-filterbased, non-linear operation: Contrast normalization

- Maintains more of the signal, but still does some gain control.
- Algorithm: bp = bandpassed image.
amplitude \qquad absval $=$ abs(bp);
local contrast \qquad \longrightarrow avgAmplitude $=$ upBlur(blurDn(absval, 2), 2); Contrast \longrightarrow contrastNorm = bp ./ (avgAmplitude + const); normalized output 24

Bayesian methods

See Bishop handout, chapter 1 from "Neural Networks for Pattern Recognition", Oxford University Press.

Simple, prototypical vision problem

- Observe some product of two numbers, say 1.0.
- What were those two numbers?
- Ie, 1 = ab. Find a and b.
- Cf, simple prototypical graphics problem: here are two numbers; what's their product?

Bayes rule

$P(x \mid y)=P(y \mid x) P(x) / P(y)$

Bayesian approach

- Want to calculate $\mathrm{P}(\mathrm{a}, \mathrm{b} \mid \mathrm{y}=1)$.
- Use $P(a, b \mid y=1)=k P(y=1 \mid a, b) P(a, b)$.

Posterior probability 33

A common criticism of Bayesian methods

- "You need to make all those assumptions about prior probabilities".
- Response...?
- "Everyone makes assumptions. Bayesians put their assumptions out in the open, clearly stated, where they belong."

Prior probability

In this case, we'll assume $\mathrm{P}(\mathrm{a}, \mathrm{b})=\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b})$, and $\mathrm{P}(\mathrm{a})=\mathrm{P}(\mathrm{b})=$ const., $0<\mathrm{a}<4$.

Likelihood function, P(obs|parms)

- The forward model, or rendering model, taking into account observation noise.
- Example: assume Gaussian observation noise. Then for this problem:

$$
P(y=1 \mid a, b)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(1-a b)^{2}}{2 \sigma^{2}}}
$$

Posterior probability

Posterior $=\mathrm{k}$ likelihood prior

$$
P(a, b \mid y=1)=k e^{-\frac{(1-a b)^{2}}{2 \sigma^{2}}}
$$

for $0<a, b<4$,
0 elsewhere

Bayesian decision theory

parameter variable, \mathbf{z}. A loss function $L(\mathbf{z}, \tilde{\mathbf{z}})$ specifies the penalty for estimating $\tilde{\mathbf{z}}$ when the true value is \mathbf{z}. Knowing the posterior probability, one can select the parameter values which minimize the expected loss for a particular loss function;

$$
[\text { expected loss }]=\int[\text { posterior] [loss function] } d \text { [parameters] }
$$ $R(\hat{\mathbf{z}} \mid \mathbf{y})=-C \int\left[\exp \left[-\frac{7}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{f}(\mathbf{z})\|^{\mathbf{2}}\right] \mathbf{P}_{\mathbf{z}}(\mathbf{z})\right] \quad L(\mathbf{z}, \tilde{\mathbf{z}}) \quad d \mathbf{z}$,

where we have substituted from Bayes' rule, Eq. (4), and the noise model, Eq. (3). The optimal estimate is the parameter $\tilde{\mathbf{z}}$ of minimum risk.

Convolve loss function with posterior

Typically, L(z, $\tilde{z})=\mathrm{L}(\mathrm{z}-\tilde{z})$, and the integral for the expected loss becomes a convolution of the posterior probability with the loss function.

Local mass loss function may be useful model for perceptual tasks
 50

Figure 2: Left colluna: There loss fuactions. Plots show penalty for guessing parameter values offset from
the actual value, takcu to be the plot center. (a) Minus delta function loss, assured in MAP estimation. Only preciwely the conrect amswer matters. (b) Squared eror hos (a parabola), wed in MMSE estination. Very wrong guesses can carry inordinate influence. (c) Mirewarded while all others carry nearly equal penaty. Right columa: Correpponding expected loss, or Baye nisk, for the $y=a 6$ problem. Note: hos incrasss verotimator is nimus the puoterior probability. There is no unique point of minimum loss. (e) The minimum nean squared error estimate, ($1.3,13$) (arrow) does not lie along the ridge of solutions to $a b=1$. (f) The minus local mass loes favers the point $(1.0,1.0)$ (arrow),
the moot pombability muss in that local ucishborbood

Figure 3: Visual comparison of illumination spectrum estimates for four color constancy algorithms: local mass, gray world, MAP and subspace. For a given illuminant, shown in dark line, a set of surfaces was drawn from the prior distribution 19 times. For each draw, each adgorithm estimated the illmninant reflectance spectrum. The maximum local mass estimates, (a), are grouped closest to the actual illumination spectrum. The gray world algorithm estimates, (b), have wider variability. The MAP estimator, (c), ignores relevant information in the posterior distribution, which results in a systematic bias of its estimates. The subspace algorithm, (d), was not designed to work under the tested conditions, and performs poorly.

Regularization vs Bayesian interpretations

Regularization: minimize
$(1-a b)^{2}+\lambda\left(a^{2}+b^{2}\right)$
$\underset{\substack{\text { Bayes: } \\ \text { maximize }}}{ } \quad e^{-\frac{(1-a b)^{2}}{2 \sigma^{2}}} e^{-\lambda\left(a^{2}+b^{2}\right)}$

Bayesian interpretation of regularization approach

- For this example:
- Assumes Gaussian random noise added before observation
- Assumes a particular prior probability on a, b.
- Uses MAP estimator (assumes delta fn loss).

- Know what the things mean
- Speak with other modalities in language of probability
- Loss function
- Bayes also offers principled ways to choose between different models.

Generic shape interpretations render to the image over a range of light directions

Loss function

$L(s, \theta \mid y)=\int P\left(s^{\prime}, \theta^{\prime} \mid y\right) l\left(s, \theta, s^{\prime}, \theta^{\prime}\right) d s^{\prime} s \theta^{\prime}$

