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Bill Freeman, MIT 6.869, March 10, 2005 !

Assignments

Take-home exam:

Given out Tuesday, March 15, due midnight,
March 17.

Cannot collaborate on it.
Open book.

Problem set 2
— Can have until Monday 5pm to complete it.

6.869 projects

* Proposals to us by March 31 or earlier.

» We will ok them by April 5

* 3 possible project types:
— Original implementation of an existing algorithm
— Rigorous evaluation of existing implementation.

— Synthesis or comparison of several research
papers.

6.869 projects, continued

» Some possible projects

— Evaluate the performance of local image feature
descriptors.

— Pose and solve a vision problem: make an algorithm
that detects broken glass, or that finds trash. Implement
and evaluate it.

— Implement and evaluate the photographic/computer
graphics discriminator.

— Compare several motion estimation algorithms. Discuss
how they’re different, the benefits of each, etc. Put
them in a common framework.

Interpretation Trees

« Tree of possible model-image feature assignments
¢ Depth-first search

« Prune when unary (binary, ...) constraint violated

- length
— area
— orientation
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Interpretation tree

The problem is to match the line primitives in the model, {1, 2, 3} to those
in the scene, {a, b, c}. Select a scene feature at random, feature a, say.
Choose a model feature at random. The choice (a, 1) represents a node
in the tree. However, we could equally choose (a, 2) or (a, 3) as initial
nodes. Thus there are three nodes at the first level of the tree.

Now expand each of these nodes. For example, if we choose to expand (a,
1) then the three children would be defined as (b, 1), (b, 2) and (b, 3).
If we expand (@, 2) then the children are the same. Hence, for a
completely unconstrained tree search matching a model of n
primitives to a scene having n primitives there will n nodes at the first
level, n”2 at the second level and so on until there are n”n nodes at
the last level.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/high/matching/tree.htfn




Interpretation tree

In general, we shall deal with constrained tree search. For example, is a scene
labelling of
{(a, 3), (b, 3), (c,3)} sensible ? Well it suggests that we can detect in the scene
the hypoteneuses of three separate triangle, and that the other sides are
occluded or otherwise undetected. Suppose we know a-priori that there is only
one triangle in the scene ? Then, at the second level of the search tree we can
only expand (a, 1) with (b, 2) and (b, 3); this a uniqueness constraint by
analogy with the stereo matching problem. Hence for each of n nodes at the
first level, there are n-1 children, then n-2 children and so on.

To reduce the combinatorics of the search still further, we should add additional
constraints...Unary constraints apply to single pairings between model and
scene features. For example we could introduce a constraint which says that
lines can only be matched if they have the same length. Binary or pairwise
constraints are based on pairs if features.

http://homepages.inf.ed.ac.uk/rbflCVQnIine/LOCAL_COPIES/MARBLE/high/matching/tree.ht?n

Gradients and edges (Forsyth, ch. 8)

* Points of sharp change + General strategy
in an image are - determine image
interesting: gradient
— change in reflectance
— change in object
— change in illumination

— now mark points where
gradient magnitude is
particularly large wrt

B nois? neighbours (ideally,
» Sometimes called curves of such points).
edge points

Forsyth, 2002

Interpretation Trees

e,
Scene s 83 oy
bl © /
a )2 o5
&5 \h,ﬂ

,JE A Search Tree

“Wild cards” handle spurious image features
[ A.M. Wallace. 1988. ]

hnE://facuI(z.wasm ng(on.edulcfolsonlgagerslgdflicgroll. pdf

There are three major issues:
1) The gradient magnitude at different scales is different; which should|
we choose?
2) The gradient magnitude is large along thick trail; how
do we identify the significant points?
3) How do we link the relevant points up into curves?

Forsyth, 2002

Smoothing and Differentiation

¢ |Issue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of
Gaussian filter

« because differentiation is convolution, and
convolution is associative

1 pixel 3 pixels

7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Forsyth, 2002
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We wish to mark points along the curve where the magnitude is biggest. ® ® O ® ® values.
We can do this by looking for a maximum along a slice normal to the curve T
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?
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Notice

» Something nasty is happening at corners
* Scale affects contrast
* Edges aren’t bounding contours

Forsyth, 2002




Forsyth, 2002
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edges

* [ssues:

— On the one hand, what a useful thing: a marker
for where something interesting is happening in
the image.

— On the other hand, isn’t it way to early to be
thresholding, based on local, low-level pixel
information alone?

Something
useful with
edges

exkges) i which we want 1o locate this model, usder the tranfonasion of fwo-dmensionsl
translation and scaling (that is the model is allowed bo move in x ind v, and abso bo scale
separstely in each of these dimensions, for a total of four i

Dan Huttenlocher

abscrwes the et B Summation (Iransdasion.
and scaling) of the model with respect bo B image, in e sense that it maamizes the

http://www.cs.cornell Eraction of moded ede poists thal ke e image edee poists (witkin 1 gl Sagonady)
du/~dph/hausdorff/ Ve g perot; e g ey, the pec st e e ekl g, s the
-edu/~dph/hausdort yebow pots 2 locations whers both an amage eedge and a frssfomed modsd sdgs are

hausdorff1.html comcident Note that there are mamy red locations adjacest to green ones (whech would not
be detected by @ method ruch as bisary corrstaion)

Another useful, bandpass-filter-
based, non-linear operation:
Contrast normalization

» Maintains more of the signal, but still does
some gain control.

* Algorithm: bp = bandpassed image.

amplitude —— absval = abs(bp);
local contrast— avgAmplitude = upBlur(blurDn(absval, 2), 2);

Contrast — contrastNorm = bp ./ (avgAmplitude + const);
normalized
output 2
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Bayesian methods

See Bishop handout, chapter 1 from “Neural Networks
for Pattern Recognition”, Oxford University Press.

Bandpass filtered Bandpass filtered and
contrast normalized®

Simple, prototypical vision problem

* Observe some product of two numbers, say 1.0.
* What were those two numbers?
le,1=ab. Findaandb.

« Cf, simple prototypical graphics problem: here are
two numbers; what’s their product?




l=ab

hype/rbola of feasible solutions

Bayes rule

P(xly) = P(ylx) P(x) / P(y)

Bayesian approach

» Want to calculate P(a, b |y = 1).
» UseP(a, b|y=1)=kP(y=1Ja, b) P(a, b).

Likelihood function

Prior probability

Posterior probability 3

Likelihood function, P(obs|parms)

 The forward model, or rendering model,
taking into account observation noise.

» Example: assume Gaussian observation
noise. Then for this problem:

_(1-ab)®

e 20°?
\ 270

P(y=1|a,b) =

A common criticism of Bayesian
methods
* “You need to make all those assumptions
about prior probabilities”.
* Response...?

» “Everyone makes assumptions. Bayesians
put their assumptions out in the open,
clearly stated, where they belong.”

Prior probability

In this case, we’ll assume P(a,b)=P(a)P(b),
and P(a) = P(b) = const., 0<a<4.




Posterior probability
Posterior = k likelihood prior

_(1-ab)?

Pably=1)=ke 2

for 0 < a,b<4,
0 elsewhere

D. H. Brainard and W. T.
Freeman, Bayesian Color
Constancy, Journal of the
Optical Society of

@ weesiop (a) Posterior Probability =

Loss functions

For that posterior probability, what is the best
pair of numbers, (a,b), to pick, given your
observation ab = 1?
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 4a 2
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997




Bayesian decision theory

parameter variable. z. A loss function L(z. %) specifics the penalty for estimating & when the
true vajue is £, Knowing the pesterior probability, one can select the parameter values which
minimize the expected loss for a particular loss function:
[xpocted Joss] = [ [postarior] loss function] d [paramoters)
Rigly) = -c'f[‘-xl.'__._'_,| y - f(z)|*] Palz)] Liz.3) da. (21)

where we have substituted from Bayes” rule. Eq. (1), and the noise model, Eq, (3}, The optimal

estimate s the parameter 2 of minimum risk,

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 43
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

Convolve loss function with
posterior

Typically, L(z, Z) = L(z-Z), and the integral
for the expected loss becomes a convolution
of the posterior probability with the loss
function.

1 .l -
f l e t
(b) MMSE loss fn.
D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 15
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

(e) (minus) MMSE risk &

L

(a) MAP loss fn.
D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 47
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

(d) (minus) MAP risk w




(¢) MLM loss fn.
D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 49
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

Local mass loss function may be
useful model for perceptual tasks

: world_seri 15/cws_notebook_ap/tl_borchard_ap_01.jpg

(f) (minus) MLM risk
D. H. Brainard and W. T. Freeman, Bayésian Cdlor Constancy, Journal of the
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

Reminder of color constancy demo
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Figure 2: Left ool Theee loss functions. Plets
show prualty for guessing paranseter values ulfset from
he actual value, taken o be the plot center, (a) Mious
function loss, assusmed in MAF et

wely e correct amswer msatters. (b)
or bins {a pugabeola), wsed in M stiimtion. Very
wrong guesses can camy mordinate inflwence. {c) Mi-
nus boval psnes loss fumction, Nearly corredt answers are
rewarded while all others cary searly squal pesalty.
Right colwm: Comresponding expectal loss, or Bayes
sk, for the v = o
tivally, to show
extitator is mime 1l or probabiliy,  There i
v g poiot of minisn kess. (e The minioas
s squared error esthusate, (1.3,
lire adong the gidge of sdutioie to
miux Jocal pass loss favers the point {
where the ridge of high probabiity is widest, Ther
e npest paobability nees in that lecal seighborboed

Figure 3: Visual comparison of illumination spec-
trum estimates for four color constancy algorithms:
local mass, gray world, MAFP and subspace. For a
given luminant, shown in Jdark line, a set of surfaces
was drawn [vom the prier distribulion 19 twes. For
cach draw, ecach algoritlun estimated the illwninant
rellectance spectrum, The maximun local mass esti-
mates, {a), are grouped closest te the actual illumina-
tion spectrum. ‘The gray world algorithm estimates,
(b), have wider variability. The MAP estimator, (<),
ignores relevant information in the posterior distribu-
tion, which results in a systematic blas of its eslimates.
The subspace algorith, {(d), was not designed to work
wader the tested conditions, and perlorms poorly.
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Regularization vs Bayesian

interpretations
Regularization: (1_ a_b)2 + A{(a2 + bz)
minimize

(1-ab)?

Lo 2 2
Bay(?s;. e 20'2 e_i(a +b )
maximize

likelihood prior

10



Bayesian interpretation of
regularization approach

« For this example:

— Assumes Gaussian random noise added before
observation

— Assumes a particular prior probability on a, b.
— Uses MAP estimator (assumes delta fn loss).

Why the difference matters

» Know what the things mean

Speak with other modalities in language of
probability

Loss function

Bayes also offers principled ways to choose
between different models.

Example image

Multiple shape explanations

shapes for different assumed light directions

64
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 388, p. 542 - 545, April 7, 1994.

Generic shape interpretations render to
the image over a range of light directions

shape 5 image

image

szt fof ot

W. T Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.

Loss function

L(s,01y) = [P(s',0' Y)I(5,0,5',6")ds's 6"

11



Figure 10: Loss lunction imterpretation of genetic viewpoint assumplion. (a
Form For il invariant loss function. The function L{z, &) describes the p
the parometer 8 when the acutal value was 2. The marginalzation over generic variables of
Ex. (5) followed by MAP cstimation is cquivalent to using the loss fanction of (b). (¢} Shows
another pessible form for the los function, discussed in [11, 25, 24, 63).

67
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994,

Shape probabilities

0.10 0.10

1 2 3 4 5

68
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994

Comparison of shape explanations

(

(

_—

* Lighting
“genericity” of -
the shape 38 048
explanation:

69
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