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Today

• Interpretation tree
• Edges
• Bayes

Bill Freeman, MIT 6.869,  March 10, 2005 2

Assignments

Take-home exam:  
Given out Tuesday, March 15,  due midnight, 
March 17.
Cannot collaborate on it.
Open book.

Problem set 2
– Can have until Monday 5pm to complete it.
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6.869 projects

• Proposals to us by March 31 or earlier.
• We will ok them by April 5
• 3 possible project types:

– Original implementation of an existing algorithm
– Rigorous evaluation of existing implementation.
– Synthesis or comparison of several research 

papers.
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6.869 projects, continued

• Some possible projects
– Evaluate the performance of local image feature 

descriptors.  
– Pose and solve a vision problem:  make an algorithm 

that detects broken glass, or that finds trash.  Implement 
and evaluate it.

– Implement and evaluate the photographic/computer 
graphics discriminator.

– Compare several motion estimation algorithms. Discuss 
how they’re different, the benefits of each, etc.  Put 
them in a common framework.

5

Interpretation Trees

• Tree of possible model-image feature assignments
• Depth-first search
• Prune when unary (binary, …) constraint violated

– length
– area
– orientation

(a,1)

(b,2)

…

…
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Interpretation tree
The problem is to match the line primitives in the model, {1, 2, 3} to those 

in the scene, {a, b, c}. Select a scene feature at random, feature a, say. 
Choose a model feature at random. The choice (a, 1) represents a node 
in the tree. However, we could equally choose (a, 2) or (a, 3) as initial 
nodes. Thus there are three nodes at the first level of the tree. 

Now expand each of these nodes. For example, if we choose to expand (a, 
1) then the three children would be defined as (b, 1), (b, 2) and (b, 3).
If we expand (a, 2) then the children are the same. Hence, for a 
completely unconstrained tree search matching a model of n
primitives to a scene having n primitives there will n nodes at the first 
level,  n^2 at the second level and so on until there are  n^n nodes at 
the last level. 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/high/matching/tree.htm
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Interpretation tree
In general, we shall deal with constrained tree search. For example, is a scene 

labelling of 
{(a, 3), (b, 3), (c,3)} sensible ? Well it suggests that we can detect in the scene 
the hypoteneuses of three separate triangle, and that the other sides are 
occluded or otherwise undetected. Suppose we know a-priori that there is only 
one triangle in the scene ? Then, at the second level of the search tree we can 
only expand (a, 1) with (b, 2) and (b, 3); this a uniqueness constraint by 
analogy with the stereo matching problem. Hence for each of n nodes at the 
first level, there are n-1 children, then n-2 children and so on. 

To reduce the combinatorics of the search still further, we should add additional 
constraints…Unary constraints apply to single pairings between model and 
scene features. For example we could introduce a constraint which says that 
lines can only be matched if they have the same length. Binary or pairwise
constraints are based on pairs if features. 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/high/matching/tree.htm 8

Interpretation Trees

[ A.M. Wallace. 1988. ]

“Wild cards” handle spurious image features

http://faculty.washington.edu/cfolson/papers/pdf/icpr04.pdf
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Gradients and edges (Forsyth, ch. 8)

• Points of sharp change 
in an image are 
interesting:
– change in reflectance
– change in object
– change in illumination
– noise

• Sometimes called 
edge points

• General strategy
– determine image 

gradient

– now mark points where 
gradient magnitude is 
particularly large wrt
neighbours (ideally, 
curves of such points).

Forsyth, 2002
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There are three major issues:
1) The gradient magnitude at different scales is different; which should

we choose?
2) The gradient magnitude is large along thick trail; how

do we identify the significant points?
3) How do we link the relevant points up into curves?

Forsyth, 2002
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Smoothing and Differentiation

• Issue:  noise
– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of 

Gaussian filter
• because differentiation is convolution, and 

convolution is associative

Forsyth, 2002
12

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

1 pixel 3 pixels 7 pixels

Forsyth, 2002
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We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression).  These points should form a curve.  There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?

Forsyth, 2002
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Non-maximum
suppression

At q, we have a 
maximum if the 
value is larger 
than those at 
both p and at r. 
Interpolate to 
get these 
values.

Forsyth, 2002
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Predicting
the next
edge point

Assume the 
marked point is an 
edge point.  Then 
we construct the 
tangent to the edge 
curve (which is 
normal to the 
gradient at that 
point) and use this 
to predict the next 
points (here either 
r or s). 

Forsyth, 2002
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Remaining issues

• Check that maximum value of gradient 
value is sufficiently large
– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.
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Labeled as edge
Pixel number in linked list 
along gradient maxima
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Notice

• Something nasty is happening at corners
• Scale affects contrast
• Edges aren’t bounding contours

18

Forsyth, 2002
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fine scale
high 
threshold

Forsyth, 2002
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coarse 
scale,
high 
threshold

Forsyth, 2002
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coarse
scale
low
threshold

Forsyth, 2002
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edges

• Issues:  
– On the one hand, what a useful thing:  a marker 

for where something interesting is happening in 
the image.

– On the other hand, isn’t it way to early to be 
thresholding, based on local, low-level pixel 
information alone?

23

Something 
useful with 

edges

http://www.cs.cornell
.edu/~dph/hausdorff/
hausdorff1.html

Dan Huttenlocher

24

Another useful, bandpass-filter-
based, non-linear operation: 

Contrast normalization
• Maintains more of the signal, but still does 

some gain control.
• Algorithm:  bp = bandpassed image.

absval = abs(bp);

avgAmplitude = upBlur(blurDn(absval, 2), 2);

contrastNorm = bp ./ (avgAmplitude + const);

amplitude

local contrast

Contrast 
normalized 

output
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Original image Bandpass filtered 

(deriv of gaussian) 26

Bandpass filtered Absolute value Blurred 
absolute value

27Bandpass filtered Bandpass filtered and 
contrast normalized

28
Bandpass filtered Bandpass filtered and 

contrast normalized

29

Bayesian methods

See Bishop handout, chapter 1 from “Neural Networks 
for Pattern Recognition”, Oxford University Press.

30

Simple, prototypical vision problem

• Observe some product of two numbers, say 1.0.
• What were those two numbers?
• Ie, 1 = ab.  Find a and b.

• Cf, simple prototypical graphics problem: here are 
two numbers;  what’s their product?
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1     2     3     4

4

3

2

1

hyperbola of feasible solutions

a

b
1 = a b

32

Bayes rule

P(x|y) = P(y|x) P(x) / P(y)

33

Bayesian approach

• Want to calculate P(a, b | y = 1).
• Use P(a, b | y = 1) = k P(y=1|a, b) P(a, b).

Likelihood function

Prior probability

Posterior probability 34

Likelihood function, P(obs|parms)

• The forward model, or rendering model, 
taking into account observation noise.

• Example:  assume Gaussian observation 
noise.  Then for this problem:
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A common criticism of Bayesian 
methods

• “You need to make all those assumptions 
about prior probabilities”.

• Response…?
• “Everyone makes assumptions. Bayesians 

put their assumptions out in the open, 
clearly stated, where they belong.”

36

Prior probability

In this case, we’ll assume P(a,b)=P(a)P(b), 
and P(a) = P(b) = const., 0<a<4.
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Posterior probability

Posterior = k likelihood  prior

2
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for 0 < a,b<4,
0 elsewhere
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Ab = 1 problem

D. H. Brainard and W. T. 
Freeman, Bayesian Color 
Constancy, Journal of the 
Optical Society of 
America, A, 14(7), pp. 
1393-1411, July, 1997
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For that posterior probability, what is the best 
pair of numbers, (a,b), to pick, given your 
observation ab = 1?

40

Loss functions

41D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

42



8

43

Bayesian decision theory

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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Convolve loss function with 
posterior

Typically, L(z, z) = L(z-z), and the integral 
for the expected loss becomes a convolution 
of the posterior probability with the loss 
function.

~ ~

45D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

46

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

47D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

48

D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997
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49D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

50

Local mass loss function may be 
useful model for perceptual tasks

http://sportsillustrated.cnn.com/baseball/college/2000/college_world_series/news/2000/06/15/cws_notebook_ap/t1_borchard_ap_01.jpg

51D. H. Brainard and W. T. Freeman, Bayesian Color Constancy, Journal of the 
Optical Society of America, A, 14(7), pp. 1393-1411, July, 1997

52

Reminder of color constancy demo

53 54



10

55 56

57

D
. H

.B
ra

in
ar

d
an

d 
W

. T
. F

re
em

an
, B

ay
es

ia
n 

C
ol

or
 C

on
st

an
cy

, J
ou

rn
al

 o
f t

he
 

O
pt

ic
al

 S
oc

ie
ty

 o
f A

m
er

ic
a,

 A
, 1

4(
7)

, p
p.

 1
39

3-
14

11
, J

ul
y,

 1
99

7

58

59

D
. H

.B
ra

in
ar

d
an

d 
W

. T
. F

re
em

an
, B

ay
es

ia
n 

C
ol

or
 C

on
st

an
cy

, J
ou

rn
al

 o
f t

he
 

O
pt

ic
al

 S
oc

ie
ty

 o
f A

m
er

ic
a,

 A
, 1

4(
7)

, p
p.

 1
39

3-
14

11
, J

ul
y,

 1
99

7

60

Regularization vs Bayesian 
interpretations

)()1( 222 baab ++− λRegularization:
minimize

Bayes: 
maximize

)(2
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likelihood prior
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Bayesian interpretation of 
regularization approach

• For this example:
– Assumes Gaussian random noise added before 

observation
– Assumes a particular prior probability on a, b.
– Uses MAP estimator (assumes delta fn loss).

62

Why the difference matters

• Know what the things mean
• Speak with other modalities in language of 

probability
• Loss function
• Bayes also offers principled ways to choose 

between different models.
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Example image

64

Multiple shape explanations

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.

65

Generic shape interpretations render to 
the image over a range of light directions

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.
66

Loss function

'')',',,()|','()|,( θθθθθ sdssslysPysL ∫=



12

67
W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.

68

Shape probabilities

W. T. Freeman, The generic viewpoint assumption in a framework for visual perception, Nature, vol. 368, p. 542 - 545, April 7, 1994.

69

Comparison of shape explanations

• Lighting 
“genericity” of 
the shape 
explanation:

3.8                   0.48                  


