

Course requirements

- Two take-home exams
- Five problem sets with lab exercises in Matlab
- No final exam
- Final project

Grading

- Problem sets are graded check, check-plus, check-minus
- Contribution to grade:
- 5 problem sets: 30%
- 2 take-home exams: 40\%
- final project: 30%

Collaboration Policy

Problem sets may be discussed, but all written work and coding must be done individually. Take-home exams may not be discussed. Individuals found submitting duplicate or substantially similar materials due to inappropriate collaboration may get an F in this class and other sanctions.

Project

The final project may be

- An original implementation of a new or published idea
- A detailed empirical evaluation of an existing implementation of one or more methods
- A paper comparing three or more papers not covered in class, or surveying recent literature in a particular area
A project proposal not longer than two pages must be submitted and approved by April 1st. I can provide ideas or suggestions for projects.

Problem Set 0

- Out today, due 2/12
- Matlab image exercises
- load, display images
- pixel manipulation
- RGB color interpolation
- image warping / morphing with interp2
- simple background subtraction
- All psets graded loosely: check, check-, 0 .
- (Outstanding solutions get extra credit.)

Vision

- What does it mean, to see? "to know what is where by looking".
- How to discover from images what is present in the world, where things are, what actions are taking place.

Vision

- What does it mean, to see? "to know what is where by looking".
- How to discover from images what is present in the world, where things are, what actions are taking place.

Why study Computer Vision?

- One can "predict the future" (and avoid bad things...)!
- Images and movies are everywhere; fast-growing collection of useful applications
- building representations of the 3D world from pictures
- automated surveillance (who's doing what)
- movie post-processing
- face finding
- Greater understanding of human vision
- Various scientific questions
- how does object recognition work?

The course, in broad categories

- Images and image formation
- Low-level vision
- High-level vision
- Implementations and applications

What is object recognition?

- People draw distinctions between what is seen
- This could mean "is this a fish or a bicycle?"
- It could mean "is this George Washington?"
- It could mean "is this poisonous or not?"
- It could mean "is this slippery or not?"
- It could mean "will this support my weight?"
- Area of research:
- How to build programs that can draw useful distinctions based on image properties.

Images and image formation

Radiometry...not covered (see 6.801)

Low-level vision

Image filtering - Review of linear systems, convolution - Bandpass filter-based image representations - Probabilistic models for images			
$((())$) $)$	(\%)	(3)	
Oriented,	multi-scale re	sentation	

Learning and vision

Bayesian framework for vision

Coincidental appearance of faces in rock?

Recent, now classic, paper on face detection:
Rapid Object Detection Using a Boosted Cascade of Simple Features
Paul Viola Michael J. Jones Mitsubishi Electric Research Laboratories (MERL) Cambridge, MA Cambridge, MA

car

pedestrian
Identical local image features!

Use of context for object detection

Structure from Motion

What is the shape of the scene?

The world, to a face detector

Segmentation (perceptual grouping)
How many ways can you segment six points?
(or curves)

Segmentation

- Which image components "belong together"?
- Belong together=lie on the same object
- Cues
- similar colour
- similar texture
- not separated by contour
- form a suggestive shape when assembled

Tracking

Follow objects and estimate location..

- radar / planes
- pedestrians
- cars
- face features / expressions

Many ad-hoc approaches...
General probabilistic formulation: model density over time.

Tracking

- Use a model to predict next position and refine using next image
- Model:
- simple dynamic models (second order dynamics)
- kinematic models
- etc.
- Face tracking and eye tracking now work rather well

Companies and applications

- Cognex
- Reactrix
- Poseidon
- Mobileye
- Eyetoy
- Identix
- Roomba

And...

- Visual Category Learning
- Image Databases
- Image-based Rendering
- Medical Imaging

Skills learned from this class

- Goal: You'll be able to go to a computer vision conference and understand what's going on in most of the presentations.
- You'll have the skills and awareness of the literature to start building the vision systems you want.

Cameras, lenses, and calibration

Today:

- Camera models
- Projection equations
- Calibration methods

Images are projections of the 3-D world onto a 2-D plane...

The equation of projection

- Cartesian coordinates:
- We have, by similar triangles, that
(x, y, z) -> (f x/z, fy/z, -f)
- Ignore the third
coordinate, and get

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
- The line is called the horizon for that plane
- We show this on the board...

Geometric properties of projection

- Points go to points
- Lines go to lines
- Planes go to the whole image or a half-plane
- Polygons go to polygons
- Degenerate cases
- line through focal point to point
- plane through focal point to line

What if you photograph a brick wall head-on?

Pinhole camera demonstrations

- Film camera, box, demo. Apertures, lens.
- The image is the convolution of the aperture with the scene.

Example use of orthographic projection: inferring human body motion in 3-d

Advantage of orthographic projection

Our simplified rendering conditions are as follows: the body is transparent, and each marker is rendered to the image plane orthographically. For figural motion described by human motion basis coefficients $\vec{\alpha}$, the rendered image sequence, \vec{y}, is:

$$
\begin{equation*}
\vec{y}=P U \vec{\alpha}, \tag{1}
\end{equation*}
$$

where P is the projection operator which collapses the y dimension of the image sequence $U \vec{\alpha}$.

Orthography can lead to analytic solutions
have our multi-dimensional gaussian,

$$
\begin{equation*}
\text { Prior probability } \quad P(\vec{\alpha})=k_{2} e^{-\vec{\alpha}^{\prime} \Lambda^{-1}-\vec{\alpha}} \tag{3}
\end{equation*}
$$

where k_{2} is another normalization constant. If we model the observation noise as i.i.d. gaussian with variance σ, we have, for the likelihood term of Bayes theorem,

Likelihood function $P(\vec{y} \mid \vec{\alpha})=k_{3} e^{-|\vec{y}-P U \vec{a}|^{2} /\left(2 o^{2}\right)}$,
with normalization constant k_{3}.
The posterior distribution is the product of these two gaussians. That yields another gaussian, with mean and covariance found by a matrix generalization of "completing the square" [7]. The squared error optimal estimate for α is then

$$
\begin{equation*}
\alpha=S U^{\prime} P^{\prime}\left(P U S U^{\prime} P^{\prime}+\sigma I\right)^{-1}(\vec{y}-(P \vec{m})) \tag{5}
\end{equation*}
$$

Analytic solution for inferred 3-d motion
Leventon and Freeman, Bayesian Estimation of Human Motion, MERL TR98-06

First order optics

$$
\sin (\theta) \approx \theta
$$

Paraxial refraction equation

$$
\frac{\theta_{\mathrm{f}}}{\int_{\mathrm{D} / 2}} \theta \approx \frac{D / 2}{f}
$$

$$
\begin{aligned}
& \alpha_{1}=\gamma+\beta_{1} \approx h\left(\frac{1}{R}+\frac{1}{d_{1}}\right) \\
& \alpha_{2}=\gamma-\beta_{2} \approx h\left(\frac{1}{R}-\frac{1}{d_{2}}\right) \\
& n_{1} \alpha_{1} \approx n_{2} \alpha_{2} \Leftrightarrow \frac{n_{1}}{d_{1}}+\frac{n_{2}}{d_{2}}=\frac{n_{2}-n_{1}}{R}
\end{aligned}
$$

The thin lens, first order optics

$\frac{1}{z^{\prime}}-\frac{1}{z}=\frac{1}{f} \quad f=\frac{R}{2(n-1)}$
Forsyth\&Ponc

What camera projection model applies for a thin lens?

More accurate models of real lenses

- Finite lens thickness
- Higher order approximation to $\sin (\theta)$
- Chromatic aberration
- Vignetting

Candle and laser pointer demo

Third order optics

$$
\begin{aligned}
& \sin (\theta) \approx \theta-\frac{\theta^{3}}{6} \\
& \frac{\theta}{\mathrm{f}} \mathbb{D}^{\mathrm{D} / 2} \theta \approx \frac{D / 2}{f}-\frac{\left(\frac{D / 2}{f}\right)^{3}}{6}
\end{aligned}
$$

Paraxial refraction equation, $3^{\text {rd }}$ order optics

$$
\frac{n_{1}}{d_{1}}+\frac{n_{2}}{d_{2}}=\frac{n_{2}-n_{1}}{R}+h^{2}\left[\frac{n_{1}}{2 d_{1}}\left(\frac{1}{R}+\frac{1}{d_{1}}\right)^{2}+\frac{n_{2}}{2 d_{2}}\left(\frac{1}{R}-\frac{1}{d_{2}}\right)^{2}\right]
$$

Forsyth\&Ponce

Lens systems

Lens systems can be designed to correct for aberrations described by $3^{\text {rd }}$ order optics

Other (possibly annoying) phenomena

- Chromatic aberration
- Light at different wavelengths follows different paths; hence, some wavelengths are defocussed
- Machines: coat the lens
- Humans: live with it
- Scattering at the lens surface
- Some light entering the lens system is reflected off each surface it encounters (Fresnel's law gives details)
- Machines: coat the lens, interior
- Humans: live with it (various scattering phenomena are visible in the human eye)

Summary

- Want to make images
- Pinhole camera models the geometry of perspective projection
- Lenses make it work in practice
- Models for lenses
- Thin lens, spherical surfaces, first order optics
- Thick lens, higher-order optics, vignetting.

Find the rotation matrix

Project $\overrightarrow{O P}=\left(\begin{array}{lll}\hat{i}_{A} & \hat{j}_{A} & \hat{k}_{A}\end{array}\right)\left(\begin{array}{c}A_{X} \\ A_{Y} \\ A_{Z}\end{array}\right)$
onto the B frame's coordinate axes.

$$
\left(\begin{array}{l}
B_{X} \\
B_{Y} \\
B_{Z}
\end{array}\right)=\left(\begin{array}{lll}
\hat{i}_{B} \bullet \hat{i}_{A} A_{X} & \hat{i}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{i}_{B} \bullet \hat{k}_{A} A_{Z} \\
\hat{j}_{B} \bullet \hat{i}_{A} A_{X} & \hat{j}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{j}_{B} \bullet \hat{k}_{A} A_{Z} \\
\hat{k}_{B} \bullet \hat{i}_{A} A_{X} & \hat{k}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{k}_{B} \bullet \hat{k}_{A} A_{Z}
\end{array}\right)
$$

$$
\begin{gathered}
\text { Rotation matrix } \\
\left(\begin{array}{c}
B_{X} \\
B_{Y} \\
B_{Z}
\end{array}\right)=\left(\begin{array}{lll}
\hat{i}_{B} \bullet \hat{i}_{A} A_{X} & \hat{i}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{i}_{B} \bullet \hat{k}_{A} A_{Z} \\
\hat{j}_{B} \bullet \hat{i}_{A} A_{X} & \hat{j}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{j}_{B} \bullet \hat{k}_{A} A_{Z} \\
\hat{k}_{B} \bullet \hat{i}_{A} A_{X} & \hat{k}_{B} \bullet \hat{j}_{A} A_{Y} & \hat{k}_{B} \bullet \hat{k}_{A} A_{Z}
\end{array}\right) \\
\text { implies }{ }^{B} P={ }_{A}^{B} R{ }^{A} P \\
\text { where } \quad{ }_{A}^{B} R=\left(\begin{array}{lll}
\hat{i}_{B} \bullet \hat{i}_{A} & \hat{i}_{B} \bullet \hat{j}_{A} & \hat{i}_{B} \bullet \hat{k}_{A} \\
\hat{j}_{B} \bullet \hat{i}_{A} & \hat{j}_{B} \bullet \hat{j}_{A} & \hat{j}_{B} \bullet \hat{k}_{A} \\
\hat{k}_{B} \bullet \hat{i}_{A} & \hat{k}_{B} \bullet \hat{j}_{A} & \hat{k}_{B} \bullet \hat{k}_{A}
\end{array}\right)
\end{gathered}
$$

Translation and rotation

Let's write ${ }^{B} P={ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A}$
as a single matrix equation:
$\left(\begin{array}{c}B_{X} \\ B_{Y} \\ B_{Z} \\ 1\end{array}\right)=\left(\begin{array}{cccc}- & - & - \\ - & { }_{A}^{B} R & - \\ - & - & - \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}\mid \\ { }^{B} O_{A} \\ \mid\end{array}\right)\left(\begin{array}{c}A_{X} \\ A_{Y} \\ A_{Z} \\ 1\end{array}\right)$

