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ABSTRACT

We present an unsupervised technique for visual learning which is based
on density estimation in high-dimensional spaces using an eigenspace de-
composition. Two types of density estimates are derived for modeling the
training data: a multivariate Gaussian (for unimodal distributions) and a
Mizture-of-Gaussians model (for multimodal distributions). These proba-
bility densities are then used to formulate a maximum-likelihood estima-
tion framework for visual search and target detection for automatic object
recognition and coding. Our learning technique is applied to the probabilis-
tic visual modeling, detection, recognition, and coding of human faces and
non-rigid objects such as hands.

1. INTRODUCTION

Visual attention is the process of restricting higher-level processing to a subset of
the visual field, referred to as the focus-of-attention (FOA). The critical compo-
nent of visual attention is the selection of the FOA. In humans this process is not
based purely on bottom-up processing and is in fact goal-driven. The measure of
interest or saliency is modulated by the behavioral state and the demands of the
particular visual task that is currently active.

Palmer [22] has suggested that visual attention is the process of locating the
object of interest and placing it in a canonical (or object-centered) reference frame
suitable for recognition (or template matching). We have developed a computa-
tional technique for automatic object recognition, which is in accordance with
Palmer’s model of visual attention (see section 4.1.). The system uses a proba-
bilistic formulation for the estimation of the position and scale of the object in
the visual field and remaps the FOA to an object-centered reference frame, which
is subsequently used for recognition and verification.

At a simple level the underlying mechanism of attention during a visual search
task can be based on a spatiotopic saliency map S(%,7) which is a function of the
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(a)
Figure 1: (a) input image, (b) face detection, (c) input image, (d) hand detection

image information in a local region R
S(i,5) = FI{IG+ 754 ¢): (r,c) € R}] (1)

For example saliency maps have been constructed which employ spatio-temporal
changes as cues for foveation [1] or other low-level image features such as local
symmetry for detection of interest points [29]. However bottom-up techniques
based on low-level features lack context with respect to high-level visual tasks
such as object recognition. In a recognition task, the selection of the FOA is
driven by higher-level goals and therefore requires internal representations of an
object’s appearance and a means of comparing candidate objects in the FOA to
the stored object models.

In view-based recognition (as opposed to 3D geometric or invariant-based
recognition), the saliency can be formulated in terms of visual similarity using a
variety of metrics ranging from simple template matching scores to more sophis-
ticated measures using, for example, robust statistics for image correlation [5].
In this paper, however, we are primarily interested in saliency maps which have
a probabilistic interpretation as object-class membership functions or likelihoods.
These likelihood functions are learned by applying density estimation techniques
in complementary subspaces obtained by an eigenvector decomposition. Qur ap-
proach to this learning problem is view-based — i.e., the learning and modeling of
the visual appearance of the object from a (suitably normalized and preprocessed)
set of training imagery. Figure 1 shows examples of the automatic selection of
FOA for detection of faces and hands. In each case, the target object’s probability
distribution was learned from training views and then subsequently used in com-
puting likelihoods for detection. The face representation is based on appearance
(normalized grayscale image) whereas the hand’s representation is based on the
shape of its contour. The maximum likelihood (ML) estimates of position and
scale are shown in the figure by the cross-hairs and bounding box, respectively.

1.1. OBJECT DETECTION

The standard detection paradigm in image processing is that of normalized cor-
relation or template matching. However this approach is only optimal in the
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simplistic case of a deterministic signal embedded in additive white Gaussian
noise. When we begin to consider a target class detection problem — e.g, finding
a generic human face or a human hand in a scene — we must incorporate the un-
derlying probability distribution of the object. Subspace methods and eigenspace
decompositions are particularly well-suited to such a task since they provide a
compact and parametric description of the object’s appearance and also automat-
ically identify the degrees-of-freedom of the underlying statistical variability.

In particular, the eigenspace formulation leads to a powerful alternative to
standard detection techniques such as template matching or normalized corre-
lation. The reconstruction error (or residual) of the eigenspace decomposition
(referred to as the “distance-from-face-space” in the context of the work with
“eigenfaces” [32]) is an effective indicator of similarity. The residual error is easily
computed using the projection coefficients and the original signal energy. This
detection strategy is equivalent to matching with a linear combination of eigentem-
plates and allows for a greater range of distortions in the input signal (including
lighting, and moderate rotation and scale). In a statistical signal detection frame-
work, the use of eigentemplates has been shown to yield superior performance in
comparison with standard matched filtering [17][24].

In [24] we used this formulation for a modular eigenspace representation of
facial features where the corresponding residual — referred to as “distance-from-
feature-space” or DFFS — was used for localization and detection. Given an
input image, a saliency map was constructed by computing the DFFS at each
pixel. When using M eigenvectors, this requires M convolutions (which can be
efficiently computed using an FI'T) plus an additional local energy computation.
The global minimum of this distance map was then selected as the best estimate
of the location of the target.

In this paper we will show that the DFFS can be interpreted as an esti-
mate of a marginal component of the probability density of the object and that
a complete estimate must also incorporate a second marginal density based on
a complementary “distance-in-feature-space” (DIFS). Using our estimates of the
object densities, we formulate the problem of target detection from the point of
view of a maximum likelihood (ML) estimation problem. Mainly, given the visual
field, estimate the position (and scale) of the image region which is most repre-
sentative of the target of interest. Computationally this is achieved by sliding an
m-by-n observation window throughout the image and at each location comput-
ing the likelihood that the local subimage x is an instance of the target class Q2
— d.e., P(x|2). After this probability map is computed, we select the location
corresponding to the highest likelihood as our ML estimate of the target location.
Note that the likelihood map can be evaluated over the entire parameter space
affecting the object’s appearance which can include transformations such as scale
and rotation.
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1.2. RELATIONSHIP TO PREVIOUS RESEARCH

In recent years, computer vision research has witnessed a growing interest in
eigenvector analysis and subspace decomposition methods. In particular, eigen-
vector decomposition has been shown to be an effective tool for solving problems
which use high-dimensional representations of phenomena which are intrinsically
low-dimensional. This general analysis framework lends itself to several closely
related formulations in object modeling and recognition which employ the princi-
pal modes or characteristic degrees-of-freedom for description. The identification
and parametric representation of a system in terms of these principal modes is at
the core of recent advances in physically-based modeling [23], correspondence and
matching [30], and parametric descriptions of shape [7].

Eigenvector-based methods also form the basis for data analysis techniques in
pattern recognition and statistics where they are used to extract low-dimensional
subspaces comprised of statistically uncorrelated variables which tend to sim-
plify tasks such as classification. The Karhunen-Loeve Transform (KLT) [18] and
Principal Components Analysis (PCA) [13] are examples of eigenvector-based
techniques which are commonly used for dimensionality reduction and feature
extraction in pattern recognition.

In computer vision, eigenvector analysis of imagery has been used for charac-
terization of human faces [16] and automatic face recognition using “eigenfaces”
[32][24]. More recently, principal component analysis of imagery has also been ap-
plied for robust target detection [24][6], nonlinear image interpolation [3], visual
learning for object recognition [20][34], as well as visual servoing for robotics [21].

Specifically, Murase & Nayar [20] used a low-dimensional parametric eigenspace
for recovering object identity and pose by matching views to a spline-based hyper-
surface. Nayar et al. [21] have extended this technique to visual feedback control
and servoing for a robotic arm in “peg-in-the-hole” insertion tasks. Pentland et
al. [24] proposed a view-based multiple-eigenspace technique for face recognition
under varying pose as well as for the detection and description of facial features.
Similarly, Burl et al. [6] used Bayesian classification for object detection using a
feature vector derived from principal component images. Weng [34] has proposed
a visual learning framework based on the KLT in conjunction with an optimal lin-
ear discriminant transform for learning and recognition of objects from 2D views.

However, these authors (with the exception of [24]) have used eigenvector anal-
ysis primarily as a dimensionality reduction technique for subsequent modeling,
interpolation, or classification. In contrast, our method uses an eigenspace de-
composition as an integral part of an efficient technique for probability density
estimation of high-dimensional data.

2. DENSITY ESTIMATION IN EIGENSPACE

In this section we present our recent work using eigenspace decompositions for
object representation and modeling. Our learning method estimates the complete
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probability distribution of the object’s appearance using an eigenvector decom-
position of the image space. The desired target density is decomposed into two
components: the density in the principal subspace (containing the traditionally-
defined principal components) and its orthogonal complement (which is usually
discarded in standard PCA). We derive the form for an optimal density estimate
for the case of Gaussian data and a near-optimal estimator for arbitrarily complex
distributions in terms of a Mixture-of-Gaussians density model.

We note that this learning method differs from supervised visual learning with
function approximation networks [27] in which a hypersurface representation of
an input/output map is automatically learned from a set of training examples.
Instead, we use a probabilistic formulation which combines the two standard
paradigms of unsupervised learning — PCA and density estimation — to arrive
at a computationally feasible estimate of the class conditional density function.

Specifically, given a set of training images {Xt}i\;Tl, from an object class Q, we
wish to estimate the class membership or likelihood function for this data — i.e.,
P(x|€2). In this section, we examine two density estimation techniques for visual
learning of high-dimensional data. The first method is based on the assumption of
a Gaussian distribution while the second method generalizes to arbitrarily complex
distributions using a Mixture-of-Gaussians density model. Before introducing
these estimators we briefly review eigenvector decomposition as commonly used

in PCA.

2.1. PrincipAL COMPONENT IMAGERY

Given a training set of m-by-n images {It}i\fl, we can form a training set of
vectors {x'}, where x € RV=""_ by lexicographic ordering of the pixel elements
of each image I*. The basis functions for the KLT [18] are obtained by solving
the eigenvalue problem

A = oTno (2)

where Y. is the covariance matrix, ® is the eigenvector matrix of ¥ and A is
the corresponding diagonal matrix of eigenvalues. The unitary matrix ¢ defines a
coordinate transform (rotation) which decorrelates the data and makes explicit the
invariant subspaces of the matrix operator Y. In PCA, a partial KLT is performed
to identify the largest-eigenvalue eigenvectors and obtain a principal component
feature vector y = @ﬁ X, where X = x — X is the mean-normalized image vector
and @37 is a submatrix of ¢ containing the principal eigenvectors. PCA can be
seen as a linear transformation y = 7(x) : RN — RM which extracts a lower-
dimensional subspace of the K. basis corresponding to the maximal eigenvalues.
These principal components preserve the major linear correlations in the data and
discard the minor ones.!

'In practice the number of training images N is far less than the dimensionality of the imagery
N, consequently the covariance matrix % is singular. However, the first M < Nr eigenvectors
can always be computed (estimated) from N, samples using, for example, a Singular Value
Decomposition [11].
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(a)

Figure 2: (a) Decomposition into the principal subspace F and its orthogonal
complement I for a Gaussian density, (b) a typical eigenvalue spectrum obtained

from PCA.

By ranking the eigenvectors of the KL expansion with respect to their eigenval-
ues and selecting the first M principal components we form an orthogonal decom-
position of the vector space RY into two mutually exclusive and complementary
subspaces: the principal subspace (or feature space) F' = {®;}M, containing the
principal components and its orthogonal complement ' = {q)i}f\iM_H. This or-
thogonal decomposition is illustrated in Figure 2(a) where we have a prototypical
example of a distribution which is embedded entirely in F. In practice there is
always a signal component in F’ due to the minor statistical variabilities in the
data or simply due to the observation noise which affects every element of x.

In a partial KL expansion, the residual reconstruction error is defined as

N M
cx) = > oy = IRIP - Do (3)
i=M+1 =1

and can be easily computed from the first M principal components and the L,
norm of the mean-normalized image X. Consequently the Lo norm of every ele-
ment x € RN can be decomposed in terms of its projections in these two sub-
spaces. We refer to the component in the orthogonal subspace I as the “distance-
from-feature-space” (DFFS) which is a simple Euclidean distance and is equivalent
to the residual error €*(x) in Eq.(3). The component of x which lies in the feature
space [’ is referred to as the “distance-in-feature-space” (DIFS) but is generally
not a distance-based norm, but can be interpreted in terms of the probability
distribution of y in F.
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2.2. (GAUSSIAN DENSITIES

We begin by considering an optimal approach for estimating high-dimensional
Gaussian densities. We assume that we have (robustly) estimated the mean X
and covariance ¥ of the distribution from the given training set {x’}.2 Under this
assumption, the likelihood of a input pattern x is given by

exp [—%(X - )Ty (x - )‘()]
2m) N2 51 ®)

P(x|Q) =

The sufficient statistic for characterizing this likelihood is the Mahalanobis dis-
tance

d(x) = ¥Tv7 % (5)

where X = x —X. However, instead of evaluating this quadratic product explicitly,
a much more efficient and robust computation can be performed, especially with
regard to the matrix inverse ¥~!. Using the eigenvectors and eigenvalues of ¥ we
can rewrite ¥~ ! in the diagonalized form

dx) = Ty '%
7 [eA~10T| % (6)
= y'A™ly

where y = ®T% are the new variables obtained by the change of coordinates in
a KLT. Because of the diagonalized form, the Mahalanobis distance can also be
expressed in terms of the sum

Xy
d(x) = X_:A— (7)

In the KLT basis, the Mahalanobis distance in Eq.(5) is conveniently decoupled
into a weighted sum of uncorrelated component energies. Furthermore, the like-
lihood becomes a product of independent separable Gaussian densities. Despite
its simpler form, evaluation of Eq.(7) is still computationally infeasible due to
the high-dimensionality. We therefore seek to estimate d(x) using only M pro-
jections. Intuitively, an obvious choice for a lower-dimensional representation is
the principal subspace indicated by PCA which captures the major degrees of
statistical variability in the data.? Therefore, we divide the summation into two

2In practice, a full rank N-dimensional covariance ¥ can not be estimated from N7 indepen-
dent observations where typically No << N. But as we shall see our estimator does not require
the full covariance, but only its first M principal eigenvectors where M < Np << N.

We will see shortly that given the typical eigenvalue spectra observed in practice (e-g.,
Figure 2(b)), this choice is optimal for a different reason: it minimizes the information-theoretic
divergence between the true density and our estimate of it.
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independent parts corresponding to the principal subspace F' = {@i}f\il and its
orthogonal complement £ = {®;}Y,

M y2 N Z/'Q
dx) = 35+ > T (8)
i=1"" i=M+1 "

We note that the terms in the first summation can be computed by projecting x
onto the M-dimensional principal subspace F. The remaining terms in the second
sum {yi}f\;Mﬂ, however, can not be computed explicitly in practice because of
the high-dimensionality. However, the sum of these terms is available and is in
fact the DFFS quantity ¢?(x) which can be computed from Eq.(3). Therefore,
based on the available terms, we can formulate an estimator for d(x) as follows

) M y_z N
dx) = Y5 + 3| 2
=1 ! i=M+1 (9)
M 2 2
S )
= A P

[ PR

where the term in the brackets is €*(x), which as we have seen can be computed
using the first M principal components. We can therefore write the form of the
likelihood estimate based on d(x) as the product of two marginal and independent

(Gaussian densities

M 2
exp —%Zi—i
P(x|Q) = =1

M
(2m)M/2 HAj‘M
=1

2.,
[(4—)

(zwp)(N—M)/fz]

= Pr(x|?) Pp(x|0)

where Pr(x|Q) is the true marginal density in F-space and Pr(x|Q) is the esti-
mated marginal density in the orthogonal complement F-space. The optimal value
of p can now be determined by minimizing a suitable cost function J(p). From
an information-theoretic point of view, this cost function should be the Kullback-
Leibler divergence or relative entropy [8] between the true density P(x|f) and its
estimate P(x|Q)

J(p) = /P(X|Q) log ig:g; dx = B [10,@; ig:g;] (11)

Using the diagonalized forms of the Mahalanobis distance d(x) and its estimate
d(x) and the fact that E[y?] = ); , it can be easily shown that

i =ty [2 -1 10g 2] (12)
p) = 3 = —1+log +
2, 9 le Ai
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The optimal weight p* can be then found by minimizing this cost function with

respect to p. Solving the equation % = 0 yields

N
1
s — A 13
g N-M i:%:-u =

which is simply the arithmetic average of the eigenvalues in the orthogonal sub-
space I'. In addition to its optimality, p* also results in an unbiased estimate
of the Mahalanobis distance — i.e., E[d(x; p*)] = E[d(x)]. What this derivation
shows is that once we select the M-dimensional principal subspace I’ (as indi-
cated, for example, by PCA), the optimal estimate of the sufficient statistic d(x)
has the form of Eq.(9) with p given by Eq.(13).

It is interesting to consider the minimal cost J(p*)

" 1 P
J(p*) = B E 10%; (14)
i=M+1 ¢

from the point of view of the F-space eigenvalues {\; :4 = M +1,---,N}. It is
easy to show that J(p*) is minimized when the the F-space eigenvalues have the
least spread about their mean p*. This suggests a strategy for selecting the prin-
cipal subspace: choose F’ such that the eigenvalues associated with its orthogonal
complement F have the least absolute deviation about their mean. In practice,
the higher-order eigenvalues typically decay and stabilize near the observation
noise variance. Therefore this strategy is usually consistent with the standard
PCA practice of discarding the higher-order components since these tend to cor-
respond to the “flattest” portion of the eigenvalue spectrum (see Figure 2(b)). In
the limit, as the F-space eigenvalues become exactly equal, the divergence J(p*)
will be zero and our density estimate P(x|Q) approaches the true density P(x|€).

We note that in most applications it is customary to simply discard the F-
space component and simply work with Pr(x|€2). However, the use of the DFF'S
metric or equivalently the marginal density Pg(x|2) is critically important in
formulating the likelihood of an observation x — especially in an object detection
task — since there are an infinity of vectors which are not members of £ which
can have likely F-space projections. Without Pp(x|€2) a detection system can
result in a significant number of false alarms.

2.3. MuLTIMODAL DENSITIES

In the previous section we assumed that probability density of the training im-
ages was Gaussian. This lead to a likelihood estimate in the form of a product of
two independent multivariate Gaussian distributions (or equivalently the sum of
two Mahalanobis distances: DIFS + DFFS). In our experience, the distribution
of samples in the feature space is often accurately modeled by a single Gaussian
distribution. This is especially true in cases where the training images are accu-
rately aligned views of similar objects seen from a standard view (e.g., aligned
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Figure 3: (a) Decomposition into the principal subspace F and its orthogonal
complement F for an arbitrary density.

frontal views of human faces at the same scale and orientation). However, when
the training set represents multiple views or multiple objects under varying il-
lumination conditions, the distribution of training views in F-space is no longer
unimodal. In fact the training data tends to lie on complex and non-separable
low-dimensional manifolds in image space. One way to tackle this multimodality
is to build a view-based (or object-based) formulation where separate eigenspaces
are used for each view [24]. Another approach is to capture the complexity of
these manifolds in a universal or parametric eigenspace using splines [20], or local
basis functions [3].

If we assume that the F-space components are Gaussian and independent of
the principal features in F’ (this would be true in the case of pure observation noise
in F) we can still use the separable form of the density estimate P(x|Q)in Eq.(10)
where Pr(x|€2)is now an arbitrary density P(y) in the principal component vector
y. Figure 3 illustrates the decomposition, where the DFFS is the residual €?(x)
as before. The DIFS, however, is no longer a simple Mahalanobis distance but
can nevertheless be interpreted as a “distance” by relating it to P(y) — e.g., as
DIFS = —log P(y).

The density P(y) can be estimated using a parametric mixture model. Specif-
ically, we can model arbitrarily complex densities using a Mixture-of-Gaussians

Ne
P(y|®) = > mig(y; mi, i) (15)

=1

where ¢g(y;u,Y) is an M-dimensional Gaussian density with mean vector p and
covariance Y, and the w; are the mixing parameters of the components, satis-
fying >~ m; = 1. The mixture is completely specified by the parameter @ =
{mi, i, DY NS, Given a training set {y*}N% the mixture parameters can be esti-
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mated using the ML principle

0" = argmax
=1

Nt
II P(yt|®)} (16)

This estimation problem is best solved using the Expectation-Maximization (EM)
algorithm [10] which consists of the following two-step iterative procedure:

o E-step:
Thg(y's uf, £F)

k
> whg(yhuk, xh)
=1

(17)

e M-step:

Nr

> hE(t)
E+1 . t=1
T ~ N. Np

> D ki)

=1 t=1

N
> hi(t)y!
per = = (19)

Nt
YR

N
YoRE(y = ity - pit”
pEtt = = (20)

Nr
Y k)

The E-step computes the a posteriori probabilities h;(t) which are the ezpectations
of “missing” component labels z;(¢) = {0,1} which denote the membership of y*
in the i-th component. Once these expectations have been computed, the M-step
maximizes the joint likelihood of the data and the “missing” variables z;(¢). The
EM algorithm is monotonically convergent in likelihood and is thus guaranteed to
find a local maximum in the total likelihood of the training set. Further details
of the EM algorithm for estimation of mixture densities can be found in [28].

Given our operating assumptions — that the training data is M-dimensional
(at most) and resides solely in the principal subspace F' with the exception of
perturbations due to white Gaussian measurement noise, or equivalently that
the F-space component of the data is itself a separable Gaussian density — the
estimate of the complete likelihood function P(x|€2) is given by

P(x|Q) = P(y|0") Pp(x|Q) (21)

where Pg(x|Q) is a Gaussian component density based on the DFFS, as before.
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3. MAXIMUM LIKELIHOOD DETECTION

The density estimate P(x|€2) can be used to compute a local measure of target
saliency at each spatial position (¢,7) in an input image based on the vector x
obtained by the lexicographic ordering of the pixel values in a local neighborhood

R
S(i,5:0) = P(x|9), x = | [{I(i+r.j+ec):(r,c)€ R} (22)

where | [e] is the operator which converts a subimage into a vector. The ML
estimate of position of the target  is then given by

(i,j)ML = argmax 5(i,7;9) (23)

This ML formulation can be extended to estimate object scale with multiscale
saliency maps. The likelihood computation is performed (in parallel) on linearly
scaled versions of the input image 100 corresponding to a pre-determined set of
scales {o1,09,---0,}

S(ivg ki Q) = P(L{I(opi+ r,00j+¢): () € RY[ Q) (24)
where the ML estimate of the spatial and scale indices is defined by
(i, 7, )M = argmax §(i,j,k; Q) (25)

One important factor of variability in the appearance of the object in grayscale
imagery is that of lighting and contrast. However, one can normalize for global
illumination changes (as well as the linear response characteristics of the CCD
camera) by normalizing each subimage x by its mean and standard deviation.
This lighting normalization is performed both during training (density estimation)
and also in the operational mode (e.g., in detection).

4. APPLICATIONS

The above ML detection technique has been tested in the detection of complex
natural objects including human faces, facial features (e.g., eyes), as well as non-
rigid and articulated objects such as human hands. In this section we will present
several examples from these application domains.

4.1. FAcEs

Over the years, various strategies for facial feature detection have been proposed,
ranging from edge map projections [14], to more recent techniques using general-
ized symmetry operators [29] and multilayer perceptrons [33]. In any robust face
processing system this task is critically important since a face must be first geo-
metrically normalized by aligning its features with those of a stored model before
recognition can be attempted.
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Figure 4: (a) Framples of facial feature training templates and (b) the resulting
typical detections.

The eigentemplate approach to the detection of facial features in “mugshots”
was proposed in [24], where the DFFS metric was shown to be superior to standard
template matching for target detection. The detection task was the estimation of
the position of facial features (the left and right eyes, the tip of the nose and the
center of the mouth) in frontal view photographs of faces at fixed scale. Figure 4
shows examples of facial feature training templates and the resulting detections
on the MIT Media Laboratory’s database of 7,562 “mugshots”.

We have compared the detection performance of three different detectors on
approximately 7,000 test images from this database: a sum-of-square-differences
(SSD) detector based on the average facial feature (in this case the left eye),
an eigentemplate or DFFS detector and a ML detector based on S(i,7;) as
defined in section 2.2.. Figure 5(a) shows the receiver operating characteristic
(ROC) curves for these detectors, obtained by varying the detection threshold
independently for each detector. The DFFS and ML detectors were computed
based on a 5-dimensional principal subspace. Since the projection coefficients
were unimodal a Gaussian distribution was used in modeling the true distribution
for the ML detector as in section 2.2.. Note that the ML detector exhibits the
best detection vs. false-alarm tradeoff and yields the highest detection rate (of
95%). Indeed, at the same detection rate the ML detector has a false-alarm rate
which is nearly 2 orders of magnitude lower than the SSD.

Figure 5(b) provides the geometric intuition regarding the operation of these
detectors. The SSD detector’s threshold is based on the radial distance between
the average template (the origin of this space) and the input pattern. This leads to
hyperspherical detection regions about the origin. In contrast, the DFF'S detector
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Figure 5: (a) Detection performance of an SSD, DFFS and a ML detector, (b)
geometric interpretation of the detectors.

Figure 6: Framples of multiscale face detection.

measures the orthogonal distance to F’, thus forming planar acceptance regions
about F. Consequently to accept valid object patterns in 2 which are very dif-
ferent from the mean, the SSD detector must operate with high thresholds which
consequently lead to many false alarms. But at the same time, the DFFS de-
tector can not discriminate between the object class 2 and non-Q patterns in F.
The solution is provided by the ML detector which incorporates both the F-space
component (DFFS) and the F-space likelihood (DIFS). The probabilistic inter-
pretation of Figure 5(b) is as follows: SSD assumes a single prototype (the mean)
in additive white Gaussian noise whereas the DFFS assumes a uniform density
in . The ML detector, on the other hand, uses the complete probability density
for detection.

We have incorporated and tested the multiscale version of the ML detection
technique in a face detection task. This multiscale head finder was tested on
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Figure 8: (a) original image, (b) position and scale estimate, (c) normalized head

image, (d) position of facial features.

the ARPA FERET database where 97% of 2,000 faces were correctly detected.
Figure 6 shows examples of the ML estimate of the position and scale on these
images. The multiscale saliency maps S(%, j, k; ) were computed based on the
likelihood estimate P(X|Q) in a 10-dimensional principal subspace using a Gaus-
sian model (section 2.2.). Note that this detector is able to localize the position
and scale of the head despite variations in hair style and hair color, as well as
presence of sunglasses. Illumination invariance was obtained by normalizing the
input subimage x to a zero-mean unit-norm vector.

4.1.1. UsING ML DETECTION FOR CODING

We have also used the multiscale version of the ML detector as the attentional
component of an automatic system for recognition and model-based coding of
faces. The block diagram of this system is shown in Figure 7 which consists of a
two-stage object detection and alignment stage, a contrast normalization stage,
and a feature extraction stage whose output is used for both recognition and
coding. Figure 8 illustrates the operation of the detection and alignment stage on
a natural test image containing a human face. The function of the face finder is
to locate regions in the image which have a high likelihood of containing a face.

The first step in this process is illustrated in Figure 8(b) where the ML estimate
of the position and scale of the face are indicated by the cross-hairs and bounding
box. Once these regions have been identified, the estimated scale and position
are used to normalize for translation and scale, yielding a standard “head-in-the-
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(a) (b) (c)

Figure 9: (a) aligned face, (b) eigenspace reconstruction (85 bytes) (¢) JPEG
reconstruction (530 bytes).

Figure 10: The first 8 eigenfaces.

box” format image (Figure 8(c)). A second feature detection stage operates at
this fixed scale to estimate the position of 4 facial features: the left and right
eyes, the tip of the nose and the center of the mouth (Figure 8(d)). Once the
facial features have been detected, the face image is warped to align the geometry
and shape of the face with that of a canonical model. Then the facial region is
extracted (by applying a fixed mask) and subsequently normalized for contrast.
The geometrically aligned and normalized image (shown in Figure 9(a)) is then
projected onto a custom set of eigenfaces to obtain a feature vector which is then
used for recognition purposes as well as facial image coding.

Figure 9 shows the normalized facial image extracted from Figure 8(d), its
reconstruction using a 100-dimensional eigenspace representation (requiring only
85 bytes to encode) and a comparable non-parametric reconstruction obtained
using a standard transform-coding approach for image compression (requiring 530
bytes to encode). This example illustrates that the eigenface representation used
for recognition is also an effective model-based representation for data compression.
The first 8 eigenfaces used for this representation are shown in Figure 10.

4.1.2. UsING ML DETECTION FOR RECOGNITION

Figure 11 shows the results of a similarity search in an image database tool called
Photobook [25]. Each face in the database was automatically detected and aligned
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Figure 11: Photobook: FERET face database.

by the face processing system in Figure 7. The normalized faces were then pro-
jected onto a 100-dimensional eigenspace. The image in the upper left is the one
searched on and the remainder are the ranked nearest neighbors in the FERET
database. The top three matches in this case are images of the same person taken
a month apart and at different scales. The recognition accuracy (defined as the
percent correct rank-one matches) on a database of 155 individuals is 99% [19].

4.1.3. RECOGNITION ON LARGE DATABASES

In order to have an estimate of the recognition performance on much larger
databases, we have conducted tests on a database of 7,562 images of approxi-
mately 3,000 people. The images were collected in a small booth at a Boston
photography show, and include men, women, and children of all ages and races.
Head position was controlled by asking people to take their own picture when
they were lined up with the camera. Two LEDs placed at the bottom of holes
adjacent to the camera allowed them to judge their alignment; when they could
see both LEDs then they were correctly aligned.

The eigenfaces for this database were approximated using a principal compo-
nents analysis on a representative sample of 128 faces. Recognition and matching
was subsequently performed using the first 20 eigenvectors.

To assess the average recognition rate, 200 faces were selected at random, and
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Figure 12: Some of the images used to test accuracy at face recogmtwn despz'te

wide variations in head orientation. Average recognition accuracy was 92%, the
orientation error had a standard deviation of 15°.

a nearest-neighbor rule was used to find the most-similar face from the entire
database. If the most-similar face was of the same person then a correct recog-
nition was scored. In this experiment the eigenvector-based recognition system
produced a recognition accuracy of 95%. This performance is somewhat surpris-
ing because the database contains wide variations in expression, and has relatively
weak control of head position and illumination. In a wverification task, our system
yielded a false rejection rate of 1.5% at a false acceptance rate of 0.01%.

4.1.4. VIEW-BASED RECOGNITION

The problem of face recognition under general viewing conditions (change in pose)
can also be approached using an eigenspace formulation. There are essentially
two ways of approaching this problem using an eigenspace framework. Given N
individuals under M different views, one can do recognition and pose estimation
in a universal eigenspace computed from the combination of N M images. In this
way a single “parametric eigenspace” will encode both identity as well as pose.
Such an approach, for example, has recently been used by Murase and Nayar [20]
for general 3D object recognition.

Alternatively, given N individuals under M different views, we can build a
“view-based” set of M distinct eigenspaces, each capturing the variation of the
N individuals in a common view. The view-based eigenspace is essentially an
extension of the eigenface technique to multiple sets of eigenvectors, one for each
combination of scale and orientation. One can view this architecture as a set
of parallel “observers” each trying to explain the image data with their set of
eigenvectors (see also Darrell and Pentland [9]). In this view-based, multiple-
observer approach, the first step is to determine the location and orientation
of the target object by selecting the eigenspace which best describes the input
image. This can be accomplished by calculating the likelihood estimate using
each viewspace’s eigenvectors and then selecting the maximum.
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Training View

(b)

Figure 13: (a) parametric vs. view-based eigenspace reconstructions for a train-
ing view and a novel testing view. The input image is shown in the left column.
The middle and right columns correspond to the parametric and view-based re-
constructions, respectively. All reconstructions were computed using the first 10
eigenvectors. (b) a schematic representations of the two approaches.

The key difference between the view-based and parametric representations can
be understood by considering the geometry of facespace. In the high-dimensional
vector space of an input image, multiple-orientation training images are repre-
sented by a set of M distinct regions, each defined by the scatter of N individ-
uals. Multiple views of a face form non-convex (yet connected) regions in image
space [2]. Therefore the resulting ensemble is a highly complex and non-separable
manifold.

The parametric eigenspace attempts to describe this ensemble with a projec-
tion onto a single low-dimensional linear subspace (corresponding to the first n
eigenvectors of the N M training images). In contrast, the view-based approach
corresponds to M independent subspaces, each describing a particular region of
the facespace (corresponding to a particular view of a face). The relevant analogy
here is that of modeling a complex distribution by a single cluster model or by
the union of several component clusters. Naturally, the latter (view-based) repre-
sentation can yield a more accurate representation of the underlying geometry.

This difference in representation becomes evident when considering the qual-
ity of reconstructed images using the two different methods. Figure 13 compares
reconstructions obtained with the two methods when trained on images of faces
at multiple orientations. In Figure 13(a) we see first an image in the training set,
followed by reconstructions of this image using first the parametric eigenspace
and then the view-based eigenspace. Note that in the parametric reconstruction
neither the pose nor the identity of the individual is adequately captured. The



20 MOGHADDAM AND PENTLAND

view-based reconstruction, on the other hand, provides a much better character-
ization of the object. Similarly, in Figure 13(b) we see a novel view (4+68°) with
respect to the training set (—90° to +45°). Here, both reconstructions correspond
to the nearest view in the training set (+45°) but the view-based reconstruction
is seen to be more representative of the individual’s identity. Although the qual-
ity of the reconstruction is not a direct indicator of the recognition power, from
an information-theoretic point-of-view the multiple eigenspace representation is a
more accurate representation of the signal content.

We have evaluated the view-based approach with data similar to that shown in
Figure 12. This data consists of 189 images consisting of nine views of 21 people.
The nine views of each person were evenly spaced from —90° to +90° along the
horizontal plane. In the first series of experiments the interpolation performance
was tested by training on a subset of the available views {£+90°, +£45°,0°} and
testing on the intermediate views {£+68°, +£23°}. A 90% average recognition rate
was obtained. A second series of experiments tested the extrapolation performance
by training on a range of views (e.g., —90° to +45°) and testing on novel views
outside the training range (e.g., +68° and +90°). For testing views separated by
+23° from the training range, the average recognition rates were 83%. For +45°
testing views, the average recognition rates were 50% (see [24] for further details).

4.1.5. MODULAR RECOGNITION

The eigenface recognition method is easily extended to facial features as shown
in Figure 14(a). This leads to an improvement in recognition performance by
incorporating an additional layer of description in terms of facial features. This
can be viewed as either a modular or layered representation of a face, where a
coarse (low-resolution) description of the whole head is augmented by additional
(higher-resolution) details in terms of salient facial features.

The utility of this layered representation (eigenface plus eigenfeatures) was
tested on a small subset of our large face database. We selected a representative
sample of 45 individuals with two views per person, corresponding to different
facial expressions (neutral vs. smiling). These set of images was partitioned
into a training set (neutral) and a testing set (smiling). Since the difference
between these particular facial expressions is primarily articulated in the mouth,
this feature was discarded for recognition purposes.

Figure 14(b) shows the recognition rates as a function of the number of eigen-
vectors for eigenface-only, eigenfeature-only and the combined representation.
What is surprising is that (for this small dataset at least) the eigenfeatures alone
were sufficient in achieving an (asymptotic) recognition rate of 95% (equal to that
of the eigenfaces). More surprising, perhaps, is the observation that in the lower
dimensions of eigenspace, eigenfeatures outperformed the eigenface recognition.
Finally, by using the combined representation, we gain a slight improvement in
the asymptotic recognition rate (98%). A similar effect was reported by Brunelli
and Poggio [4] where the cumulative normalized correlation scores of templates for
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Figure 14: (a) facial eigenfeature regions, (b) recognition rates for eigenfaces,
eigenfeatures and the combined modular representation.

the face, eyes, nose and mouth showed improved performance over the face-only
templates.

A potential advantage of the eigenfeature layer is the ability to overcome the
shortcomings of the standard eigenface method. A pure eigenface recognition
system can be fooled by gross variations in the input image (hats, beards, etc.).
Figure 15(a) shows additional testing views of 3 individuals in the above dataset of
45. These test images are indicative of the type of variations which can lead to false
matches: a hand near the face, a painted face, and a beard. Figure 15(b) shows
the nearest matches found based on standard eigenface matching. Neither of the
3 matches correspond to the correct individual. On the other hand, Figure 15(c)
shows the nearest matches based on the eyes and nose, and results in correct
identification in each case. This simple example illustrates the potential advantage
of a modular representation in disambiguating false eigenface matches.

4.1.6. RECOGNITION USING EDGE-BASED FEATURES

We have also extended the normalized eigenface representation into an edge-based
domain for facial description. We simply run the normalized facial image through
a Canny edge detector to yield an edge map. Unfortunately binary edge maps,
are highly uncorrelated with each other due to their sparse nature, and therefore
result in a very high-dimensional principal subspace. Therefore, to reduce the
intrinsic dimensionality, we induced spatial correlation via a diffusion process on
the binary edge map, which effectively broadens and “smears” the edges, yielding
a continuous-valued edge map as shown in Figure 16(a). Such an edge map is
simply an alternative representation which imparts mostly shape (as opposed to
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Figure 15: (a) Test views, (b) Eigenface matches, (c) Figenfeature matches.

texture) information and has the advantage of being less susceptible to illumi-
nation changes. The recognition rate of a pure edge-based normalized eigenface
representation (on the same database of 155 individuals) was found to be 95%
which is surprising considering that it utilizes what appears to be (to humans at
least) a rather impoverished representation. The slight drop in recognition rate is
most likely due to the increased dimensionality of this representation space and
its greater sensitivity to expression changes, etc.

Interestingly, we can combine both texture and edge-based representations
of the object by simply performing a KL expansion on the augmented images
shown in Figure 16. The resulting eigenvectors conveniently decorrelate the joint
representation and provide a basis set which optimally spans both domains si-
multaneously. With this bimodal representation, the recognition rate was found
to be 97%. Though still less than a normalized grayscale representation, we be-
lieve a bimodal representation can have distinct advantages for tasks other than
recognition, such as detection and image interpolation.

4.2. HANDS

We have also applied our eigenspace density estimation technique to articu-
lated and non-rigid objects such as hands. In this particular domain, however, the
original intensity image is an unsuitable representation since, unlike faces, hands
are essentially textureless objects. Their identity is characterized by the variety of
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Figure 16: (a) Frxamples of combined texture/edge-based face representations and
(b) few of the resulting eigenvectors.

shapes they can assume. For this reason we have chosen an edge-based represen-
tation of hand shapes which is invariant with respect to illumination, contrast and
scene background. A training set of hand gestures was obtained against a black
background. The 2D contour of the hand was then extracted using a Canny edge-
operator. These binary edge maps, however, are highly uncorrelated with each
other due to their sparse nature. This leads to a very high-dimensional principal
subspace. Therefore to reduce the intrinsic dimensionality, we induced spatial cor-
relation via a diffusion process on the binary edge map, which effectively broadens
and “smears” the edges, yielding a continuous-valued contour image which rep-
resents the object shape in terms of the spatial distribution of edges. Figure 17
shows examples of training images and their diffused edge map representations.
Note that this spatiotopic representation of shape is interesting because it is con-
sonant with our knowledge of biological representations, especially as compared
to approaches motivated purely by computational considerations (e.g., moments
[12], Fourier descriptors [26], “snakes” [15], Point Distribution Models [7], and
modal descriptions [30]).

It is important to verify whether such a representation is valid for modeling
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Figure 17: (a) Fxamples of hand gestures and (b) their diffused edge-based repre-
sentation.
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Figure 18: (a) a random collection of hand gestures (b) images ordered by simi-
larity (left-to-right, top-to-bottom) to the image at the upper left.

hand shapes. Therefore we tested the diffused contour image representation in
a recognition experiment which yielded a 100% rank-one accuracy on 375 frames
from an image sequence containing 7 hand gestures. The matching technique
was a nearest-neighbor classification rule in a 16-dimensional principal subspace.
Figure 18(a) shows some examples of the various hand gestures used in this ex-
periment. Figure 18(b) shows the 15 images that are most similar to the “two”
gesture appearing in the top left. Note that the hand gestures judged most similar
are all objectively the same gesture.

Naturally, the success of such a recognition system is critically dependent
on the ability to find the hand (in any of its articulated states) in a cluttered
scene, to account for its scale and to align it with respect to an object-centered
reference frame prior to recognition. This localization was achieved with the same
multiscale ML detection paradigm used with faces, with the exception that the
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(a) (b)

Figure 19: (a) Distribution of training hand shapes (shown in the Ist two dimen-
sions of the principal subspace) (b) Mizture-of-Gaussians fit using 10 components.

underlying image representation of the hands was the diffused edge map rather
the grayscale image.

The probability distribution of hand shapes in this representation was auto-
matically learned using our eigenspace density estimation technique. In this case,
however, the distribution of training data is multimodal due to the different hand
shapes for each gesture. Therefore the multimodal density estimation technique in
section 2.3. was used. Figure 19(a) shows a projection of the training data on the
first two dimensions of the principal subspace F’ (defined in this case by M = 16)
which exhibit the underlying multimodality of the data. Figure 19(b) shows a
10-component Mixture-of-Gaussians density estimate for the training data. The
parameters of this estimate were obtained with 20 iterations of the EM algorithm.
The orthogonal F-space component of the density was modeled with a Gaussian
distribution as in section 2.3..

The resulting complete density estimate P(x|Q) was then used in a detection
experiment on test imagery of hand gestures against a cluttered background scene.
In accordance with our representation, the input imagery was first pre-processed
to generate a diffused edge map and then scaled accordingly for a multiscale
saliency computation. Figure 20 shows two examples from the test sequence,
where we have shown the original image, the negative log-likelihood saliency map,
and the ML estimates of position and scale (superimposed on the diffused edge
map). Note that these examples represent two different hand gestures at slightly
different scales.

To better quantify the performance of the ML detector on hands we carried
out the following experiment. The original 375-frame video sequence of training
hand gestures was divided into 2 parts. The first (training) half of this sequence
was used for learning, including computation of the KL basis and the subse-
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Figure 20: (a) Original grayscale image, (b) negative log-likelihood map (at most
likely scale) and (c) ML estimate of position and scale superimposed on edge map.

quent EM clustering. For this experiment we used a 5-component mixture in a
10-dimensional principal subspace. The 2nd (testing) half of the sequence was
then embedded in the background scene, which contains a variety of shapes. In
addition, severe noise conditions were simulated as shown in Figure 21(a).

We then compared the detection performance of an SSD detector (based on
the mean edge-based hand representation) and a probabilistic detector based on
the complete estimated density. The resulting negative-log-likelihood detection
maps were passed through a valley-detector to isolate local minimum candidates
which were then subjected to a ROC analysis. A correct detection was defined
as a below-threshold local minimum within a 5-pixel radius of the ground truth
target location. Figure 21(b) shows the performance curves obtained for the two
detectors. We note, for example, that at an 85% detection probability the ML
detector yields (on the average) 1 false alarm per frame, where as the SSD detector
yields an order of magnitude more false alarms.

5. DISCUSSION

In this paper we have described an eigenspace density estimation technique for
unsupervised visual learning which exploits the intrinsic low-dimensionality of the
training imagery to form a computationally simple estimator for the complete like-
lihood function of the object. Our estimator is based on a subspace decomposition
and can be evaluated using only the M-dimensional principal component vector.
We have derived the form for an optimal estimator and its associated expected
cost for the case of a Gaussian density. In contrast to previous work on learning
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Figure 21: (a) Fzample of test frame containing a hand gesture amidst severe
background clutter and (b) ROC curve performance contrasting SSD and ML de-
tectors.

and characterization — which uses PCA primarily for dimensionality reduction
and/or feature extraction — our method uses the eigenspace decomposition as an
integral part of estimating complete density functions in high-dimensional image
spaces. These density estimates were then used in a maximum likelihood formu-
lation for target detection. The multiscale version of this detection strategy was
demonstrated in applications in which it functioned as an attentional subsystem
for object recognition. The performance was found to be superior to existing de-
tection techniques in experimental results on a large number of test data (on the
order of thousands).

We conclude by noting that from a probabilistic perspective, the class condi-
tional density P(x|€2) is the most important object representation to be learned.
This density is the critical component in detection, recognition, prediction, inter-
polation and general inference. For example, having learned these densities for
several object classes {4,829, --,9Q,}, one can invoke a Bayesian framework for
classification and recognition:

P(x]2:) P($2:)

P(lx) = =
Z: P(x|Q;)P(;)

(26)

where now a maximum a posteriori (MAP) classification rule can be used for
object/pose identification.

Such a framework is also important in detection. In fact, the ML detection
framework can be extended using the notion of a “not-class” (2, resulting in a



28 MOGHADDAM AND PENTLAND

posteriori saliency maps of the form

_ P)P(Q)
(x[Q)P(Q) + P(x|2)P(L)

S(i,,k: Q) = P(x) = - (27)

where now a maximum a posteriori (MAP) rule can be used to estimate the po-
sition and scale of the object. One difficulty with such a formulation is that the
“not-class” 1 is, in practice, too broad a category and is therefore multimodal
and very high-dimensional. One possible approach to this problem is to use ML
detection to identify the particular subclass of Q which has high likelihoods (e.g.,
false alarms) and then to estimate this distribution and use it in the MAP frame-
work. This can be viewed as a probabilistic approach to learning using positive
as well as negative examples. The use of negative examples has been shown to be
critically important in building robust face detection systems [31].
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