This material takes 1:05.

Hashing

Dictionaries

- Operations.
- makeset, insert, delete, find

Model

- keys are integers in $M=\{1, \ldots, m\}$
- (so assume machine word size, or "unit time," is $\log m$)
- can store in array of size M
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function h mapping M into table of size $n \ll m$
- Note some items get mapped to same place: "collision"
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if n items, then m / n items to same bucket)
- This true even if hash is e.g. SHA1
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose "function" that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time $\Omega(\log n)$.
- "description size" $\Omega(n \log m)$,
- Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

- set S of s items
- If $s=n$, balls in bins
- $O((\log n) /(\log \log n))$ collisions w.h.p.
- And matches that somewhere
- but we care more about average collisions over many operations
- $C_{i j}=1$ if i, j collide
- Time to find i is $\sum_{j} C_{i j}$
- expected value $(n-1) / n \leq 1$
- more generally expected search time for item (present or not): $O(s / n)=O(1)$ if $s=n$ Problem:
- n^{m} functions (specify one of n places for each of n items)
- too much space to specify $(m \log n)$,
- hard to evaluate
- for $O(1)$ search time, need to identify function in $O(1)$ time.
- so function description must fit in $O(1)$ machine words
- Assuming $\log m$ bit words
- So, fixed number of cells can only distinguish poly (m) functions
- This bounds size of hash family we can choose from

Our analysis:

- sloppier constants
- but more intuitive than book

2-universal family: [Carter-Wegman]

- Key insight: don't need entirely random function
- All we care about is which pairs of items collide
- so: OK if items land pairwise independent
- pick p in range $m, \ldots, 2 m$ (not random)
- pick random a, b
- map x to $(a x+b \bmod p) \bmod n$
- pairwise independent, uniform before $\bmod n$
- So pairwise independent, near-uniform after $\bmod n$
- at most 2 "uniform buckets" to same place
- argument above holds: $O(1)$ expected search time.
- represent with two $O(\log m)$-bit integers: hash family of poly size.
- max load may be large is \sqrt{n}, but who cares?
- expected load in a bin is 1
- so $O(\sqrt{n})$ with prob. 1-1/n (chebyshev).
- this bounds expected max-load
- some item may have bad load, but unlikely to be the requested one
- can show the max load is probably achieved for some 2-universal families

perfect hash families

Ideally, would hash with no collisions

- Explore case of fixed set of n items (read only)
- perfect hash function: no collisions
- Even fully random function of n to n has collisions

Alternative try: use more space:

- How big can s be for random s to n without collisions?
- Expected number of collisions is $E\left[\sum C_{i j}\right]=\binom{s}{2}(1 / n) \approx s^{2} / 2 n$
- Markov Inequality: $s=\sqrt{n}$ works with prob. $1 / 2$
- Nonzero probability, so, 2-universal hashes can work in quadratic space.
- Is this best possible?
- Birthday problem: $(1-1 / n) \cdots(1-s / n) \approx e^{-(1 / n+2 / n+\cdots+s / n)} \approx e^{-s^{2} / 2 n}$
- So, when $s=\sqrt{n}$ has $\Omega(1)$ chance of collision
- 23 for birthdays
- even for fully independent

Finding one

- We know one exists-how find it?
- Try till succeed
- Each time, succeed with probability $1 / 2$
- Expected number of tries to succeed is 2
- Probability need k tries is 2^{-k}

Two level hashing for linear space

- Hash s items into $O(s)$ space 2-universally
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_{k}^{2}=\sum_{k}\left(\sum_{i}\left[i \in b_{k}\right]\right)^{2}=\sum C_{i}+C_{i j}$
- expected value $O(s)$.
- So try till get (markov)
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
- Easy: $6 s$ cells
- Hard: $s+o(s)$ cells (bit fiddling)

Define las vegas, compare to monte carlo.
Derandomization

- Probability $1 / 2$ top-level function works
- Only m^{2} top-level functions
- Try them all!
- Polynomial in m (not n), deterministic algorithm

