
BYZANTINE GENERALS

Michael

Hebrew University and'Harvard University

Abstract. We present· a randomized solution
for the Byzantine Generals Problems. The
solution works in the synchronous as well
as the asynchronous case and produces
Byzantine Agreement within a fixed small
expected. number of computational rounds,
independent of the n of
and the bound t on the' number of faulty
processes. The solution ·uses A. Shamir's
method for sharing secrets. It specializes
to produce' a simple solution for the
Distributed Commit problem.

o. INTRODUCTION

We present· a randomized solution for
the well known Byzantine Generals (BG)
problem. This problem was introduced by
Lamport, Pease and [LPS.SO], and was
already the subject of numerous interes.ting
stUdies. In particular, Dolev'and Strong..
[DSSl], have shown, extending.a result ot·
Lynch and Fischer [LFS2J, that for n pro-
cesses with up to t faulty ones, t +1
computing phases are necessary for reaching
Byzantine Agreement. Anotherresult .
[FLP82] shows that the BG problem has no.

in the asynchronous case.

Our randomized. protocol to
achieve Byzantine Agreement, 'and the ex-
pected number of rounds required to do so
is four, independent of nand t. The
total expected number of messages exchanged
is cnt, where c is a small constant.

Another version of .the protocol,
employs a £ixed number R of rounds. to
reach Byzantine agreement,. but there is a
probability 2-R of error.

The algorithms' we use are randomized
in the sense of [Ra76], i.-e., they

chosen numbers. Th.eir properties
.and efficacy .do not depend on an assumption
of random behavior of the faulty processes.

*Research supported in part by

0272-5428/83/0000/0403$01.00 c 1983 IEEE
403

Like some other solutions, see [DS8l],
our solution employs authentication of
messages by digital signatures. This re-
quires that the processes in the system be
supplied in advance by a non-faulty Dealer,
with a directory of public-keys.

A salient novel feature is the use of
randomly chosen secrets which are shared
by the.processes in the manner invented by
A. Shamir [Sh79]. This also requires that
the processes be supplied in advance with
certain information by a non-faulty Dealer.

The solution applies, with appropriate
modifications, to the synchronized version
as well as to the completely asynchronous

of the problem.

A different randomized solution for
the BG problem was given., independently,
by Ben-Or [B083]. the case
of a two-valued. initial message, and the
processes autonomously toss a coin until a
large number of individual outcomes
coincide. This solution .requires, in
general, a number of rounds and messages
exponential in n.

If we restrict, in our solution, the
modes of failure to just breakdowns of pro-
cesses, we-can dispense with authentication
and with Shamir'smethod for sharing a
secret. We then get a very simple' and ro-
bust solution for the Distributed Commit
problem".

Thus, in addition to being quite
simple, our solution has stronger proper-
ties than other existing solutions. It may
well lend itself to practical
tion. The author would like to thank D.
Do1ev and H. Gaifman .for many' helpful con-
versations on the topics of this paper.

1. BASIC CONCEPTS

Let Gi,·l <i <n, be processes (the
"generals"). Assume that every .Gi can
directly exchange messages with every other
Gj.

Every Gi has a message Mi, called
Gils initial message, and they have to
agree on a common value (content) for the
message. To this end, ea.ch Gi executes
a' prqgram Pi called the Agreement
Protocol. The protocols pi involves ex-
changing messages with other processes Gj,
deciding what value to adopt as the common
message, and deciding when to stop.

As long as a Gi computes according
to Pi it is called proper. Once a process
Gi deviates from Pi it is faulty, and is
considered to remain faulty even if, later
on, it reverts back to following Pi.

Each process Gi has a variable,
message(i),local to it. This
holds, at the end of 'Gils execution of
its agreement protocol, Gils version of
the message.

Definition 1. The processes in a set
{Gi : i EP} are said to reach an agreement
about the value of the message if each Gi r
i EP, does stop, and at the end of the
execution of ·their protocols, message (i) =
message(j) for all i, jEP.

Definitien 2. We say that the proper pro-
cesses have reached Byzantine Agreement if

1. All the proper processes reach
agreement.

2. If all proper Gi have the same
initial message Mi =M then the
proper processes agree on M as
the value of the message.

Note that when we talk about Byzantine
Agreement, nothing is assumed about the
faulty processes.

If all the proper processes have the
same initial message then the .system will
be called proper, otherwise faulty.

Definition 3. Let n' and t <n be in-
tegers. A set of·protocols (programs) Pi
for the processes Gi, 1 is a solu-
tion for the Byzan.tine .Generals problem for
(n,t) if the following holds. Let S be
a system of processes Gi computing
according to Pi and assume that no more
than t processes .become faulty. Then
whenever the processes have initial
messages, the proper Gi will reach
Byzantine Agreement.

A solution for the. Byzantine Generals
problem will be called a Byzantine Agree-
ment Protocol (BAP).

It should be noted that in a system
with up to t faulty processes, the pro-
cesses to become faulty are not selected in
advance. Rather, we make the worst case
assumption that at any time during the

404

computation, an adversary can select
further processes which will become faulty,
provided that the total number of faulty
processes will not exceed t.

For randomizing protocols Pi, which
employ randomly chosen numbers in the com-
putation, we have several possible notions
of BAP.

We can talk about protocols which
achieve Byzantine Agreement with a small
probability of error. More precisely,
given 0 < £ we say that randomizing pro-
tocols Pi, i i are a 1 - £ reliable

Agreement Protocol for (n,t), if
for every fixed or randomized behavior of
up to t faulty processes, the proper pro-
cesses will reach Byzantine Agreement with
probability at least 1 - £ •

Another possibility is to demand that
for some constant C, the proper processes
achieve Byzantine Agreement within an ex-
pected number .C· .. ··o·f phases, and this with-
out error. The notion of a computation
phase will be explained shortly.

We shall present randomized BAPIs of
both types.

We shall present the detailed solution
for the completely asynchronous case. In
this situation we make the assumption that
whenever a proper Gi sends a message to
another proper Gj, the message will
'eventually reach Gj. Also, a proper pro-
cess will execute· the instructions of its
protocol within a finite time. In fact,
these requirements could be incorporated
into the definition of a.proper process.
Throughout the following, we denote by t
the upper bound on the number of processes
that may become faulty.

The processes reach agreement on the
common message by exchanging information.
In such an exchange a process Gi will
request certain information from certain
k other processes. In waiting for the
response, Gi should not wait. for more than
k -t replies, because up to t processes
may be· faulty and never respond. So that
waiting for more than k - t responses
could block a process. These considera-
tions.motivatethe following

Definition 4. A phase in the computation
of a proper Gf, is the time interval
between Gils request for information from
k other proces,ses ,and receipt of at least
k.· _. t replies.. Th.e computation time re-
quired by Gi, once the information is
received, is also included in the phase.

The k inthe·above definition is
determined by the current instruction
executed· by the protocol Pi. Th.e actual
duration of a phase may be different for

different processes, and may vary from
phase to phase for the same Gi. Butour
assumptions insure tha.t for a proper pro-
cess, each phase is finite.

from every set {Eil, ..• ,Eik}' the secret
s can be reconstructed. But no collection
of fewer than k values E. determines s.

1

3. LOTTERY

2. AUTHENTICATION

Our algorithm will employ a lottery
procedure by which the proper Gi's can
agree on a randomly chosen s =0 ,I.

Ii=(I.(s) m)
11m '

Thus at the end of the execution of
Lottery{m) by the proper Gi, at least all
the proper processes will share sm. Later
on we shall explain how the proper Gi
ensure that despite their asynchronous
behavior, sm is not revealed prematurely.

4. THE AGREEMENT PROTOCOL

He authenticates all the with his
1

public-key digital signature 0D and hands
to Gi the sequence

We shall describe the BAP by a sequence
of procedures written informally in Pascal
style. Each process has a number of

For our purposes we assume that the
dealer is a non-faulty process D which
prepares in advance the programs for the
individual Gi's. The dealer D takes
k =t + 1, where t is the bound on the
number of faulty processes. It randomly
and independently chooses a sequence
sl,···,sN where each sm =0 or sm =1.
The dealer D then computes

The lottery procedure admits a para-
meter so that Lottery{m) is the
m-th lottery round.

When playing in Lottery{m), Gi re-
quests from 2t other processes their
0o(EJm». Since these messages are signed
by D, Gi is certain of their authenticity.

Since there are at most t faulty
processes who may not answer, Gi will have
at least k =t + 1 messages (Ij 1 (sm) ,m) ,
. .. ,{Ijk{sm) ,m). The value m of the
second coordinate will assure him that he
is dealing with them-th shared secret.
Process Gi will/now compute sm from the
Ij(Sm) he has, using Shamir's method.

At the same time Gi will send his
0o(Elm» to any process G that requests
it.

The number N represents the number of
lottery rounds that the processes are ex-
pected to play during the duration of the
system.°i{M)Gi we shall denote by

authenticate'd by Gi.

We assume that each process Gi has a
local phase-clock p(i), and that pi
assigns p (i) := p (i) + 1 at the end of each
phase.

In [Sh79] A. Shamir gave a method of
sharing a secret s between n
pants so that every k or more cooperating
participants can reconstruct s, but no
fewer than k participants can do so.
Accord.ing to Shamir's scheme, a "dealer"
who chooses the secret s to be shared,
prepares a sequence Ii (s), i n, and
gives E. =1. (s) to Gi. The E., and

11' 1
Shamix's algorithm, have the property that

The public-key directory is part of
the data in each Pi, and must be incorpo-
rated by a !22.!!-faulty "dealer" at ,the
creation of the processes Gi.

Our solution will use digital signatures
for authentication of messages. One imple-
mentation, see [DH76], [RSA78], is' to have
a public directory containing for each
participant B a public key' KB. When the
participant B needs to authenticate a
message M, he employs a secret key DB to
compute another message 0B(M) =N. Every
other user can recover M form N by use
of KB, and the fact that M' was so re-
covered is conclusive proof that it origi-
nated·with B. We omit details of the im-
plementation that ensure that nobody other
than B can produce any message of the
form 0B (M) •

For each
the message M

In order to render it impossible for a
process Gj to reuse another processes'
old authenticated message 0i (M)., we employ
time-stamping. Each Gi will incorporate
the current reading p(i) of its phase-
clock into any message M to be authenti-
cated, thus producing By
keeping track of Gi's most recent time-
stamp, a recipient can distinguish between
messages newly received from Gi, and old
messages. In the. f'uture we shall ass·ume
time-stamping, without explicitly mention-
ing it.

405

variables local to it. By the notation
v(i) we mean that v(i) is local to Gi,
but is global to Gils protocol Pi.

In particular p(i) will denote Gils
current phase-clock The variable
message (i) will hold at any time Gils
current version of the message, which
be one of the init,ial messages Mj or else
the value "system faulty".

The overall structure of BAP will con-
sist of Polling, where Gi polls the other
processes on their value' of the message.
Lottery, where the Gidecide on a common
random bit s. And Decision, where Gi
determines, using s, whether to adopt the

candidate version of the mess.age
obtal.ned through Polling, as his current
version of the message•. This .is repeated
a fixed number R of times. The value of
R is determined by the desired realiabi-
lity, which will turn out to be 1 - 2-R •
Thus the BAP will be

Procedure BAPj {for Gi}

begin
message (i) :=Mij {Gils initial message}
For k = I to k = R do {k local to Pi}
begin
Polling; {k is a parameter of Polling}
Lottery; {k is a parameter of Lottery}
Decision

end {For}
endj {BAP}

Procedure Polling;

begin
send 0i(message(i),k) to all; {Oi is
Gils authentication. The k iridicates
to recipients the version-number.}
request the k-th version of message(j)
from all;
collect incoming 0j(message(j),k),
one from each responding Gj, until
n - tvalues received; {includ.ingown
value}
temp (i) :=that M which occurred most

often among the received
(message(j) ,k)j {the plurality
candidate}

count (i) := I{j : (message (j) ,k) =
(temp (i) ,k) } I
{count of multiplicity of
most populark-th version}

end; {Polling}

Remark. Strictly speaking,the collection
by Gi of incoming communications
OJ (message(j) ,k) is not done just during
the k-th iteration of Polling. Since the
system S is asynchronous, some early Gj
may send its k-th communication to Gi
while the latter is in an earlier iteration
of Polling. Thus Pi incorporate a

406

listening process Li which runs parallel
to all other procedures of Pi, and stores
all incoming communications from' the other
Gj as they arrive. The procedures Polling
and Lottery collect the appropriate
messages from Li.

We come now to the heart of the random-
izing BAP. At the end of polling every
proper Gi has a value' temp (i) which
from his point of view is the plurality
c'andidate for. ·the common message, and a
value count (i) giving the number of times
Gi received the message temp (i) •

We shail see later that for t <n/4,
if the system is proper, i.e. the initial
message of every proper process was M,
then for every proper Gi we shall have
temp (iJ =M' and n - 2t count (i), after
every execution of Polling.

If, however, the system is faulty,
then the up. to t faulty Gj, can cause
the different proper Gi to have differ-
entvalues for temp (i) , and force
count (i) to almost any value in [1,n1.

We must provide Gi with a rule for
deciding whether to adopt temp (i) as the
next candidate for. value of the common
message, or whether the system is faulty.
A fixed rule such as is
not .appropriate, because if the system is
faulty then the faulty Gj can arrange it
so that for proper Gi n/2
and for others count (i) <n/2. This would
foil agreement.

The solution is to base everybodyls
decision on a comparison n/2 ,
or n - 2t (i), depending on whether
a randomly chosen s, which is not known
to" the faulty Gj before the end of
Polling by at least one proper process,
has value Oar 1.

Procedures Lottery; {for Gi}

begin (k)
ask for E· from all;J
send .Elk) to all;
wait until t different values of
have arrived; J

compute sk from .EJk) and the aV.ailable
E •J I

end; {Lottery}

Next we give the procedure for deci-
ding whether to adopt the, value temp (i)
resulting from Polling as the new (but
not necessarily final) candidate for the
value of the message.

6. BOUNDED EXPECTED
ERRORLESS SOLUTION

Once" agreement is reached it persists,
so the probability for not reaching agree-
ment in R rounds is

We turn now to a BAP which ensures a
Byzantine agreement without error, and
reaches agreement within a small expected
number of rounds, independently of nand
t, as long as t <n/lO.

The key observation is that if a pro-
cess Gi finds, during the k-th iteration of
Decision, that sk =0, and n-2t
and sk =0, then necessarily every other
properGj will have n/2 <n-4t
during its k-th round of Decision. Hence
according to the If statement in Decision,
every proper Gj will assign message(j) :=
ternp(j) at the end of this invocation of

Let again Gm be any proper process.
Among the n -t responses aj (message(j) ,k)
it collects there are at least n -3t from
Gj EH. Thus at most 2t responses from
outside of H. Even if all these responses
have the form aR,,(V,k) for some common V,
and this V is the most popular version,
(I) will imply that count (m) < n - 4t +2t
n -2t at the end of the k-th invocation of
Polling.

Thus count (m) <n - 2t holds for every
proper Gm. If now sk =1 then at the end
of the k-th invocation of Decision all the

processes will have message{m) =
"system faulty". This again will happen
with probability 1/2.

I{j : Gj EH, V=Gj 's k-th value of
message (j) } I <n - 4t .

(1)

First assume that there exists a V
so that for at least n -4t (proper) pro-
cesses Gj EH, the k-th version is
message (j) = V• Let now Gm be any proper
process. Atmost t .
aj(message(j) ,k) from proper processes
w1ll not reach Gm by the time it finished
the k-th iteration of Polling. Therefore,
in its k-th round of Polling it receives
responses from at least n -St of the
above mentioned processes, and all these
are of the form aj(V,k). Since n/2 <n-St,
the value V is the majority value. Hence
temp (m) =V and n/2' <n - St (m) at
the end of the k-th invocation of Polling,
for every proper Gm.

If now sk =0, whi.ch. has probability
1/2, independently of the condition on HI
then Gm will assign message (m) := temp fm)
= V at the end of the k-th invocation of
Decision.

The other possibility is that for
every V,

begin
s : = sk; {sk is the current secret

for Gi}
If (s=O and or (s=l and

n -2t then
message (i) :=temp(i)

5. CORRECTNESS

If the system is faulty then at the -R
end of BAP, with probability at ,least 1-2 ,
all proper processes Gi will have the
sarne for message(i).

else
message (i) :=" system faulty"

end; {Decision}

Theorem 1. Let t <n/lO. All the proper
pro.cesses will end their execution of BAP.
If the system is proper and the initial
message of every proper process is M, then
at the end of BAP we shall have message (i)
= M for all proper Gi.

Procedure Decision; {for Gi}

Thus, once the proper Gi reach the
above state, the common value of message (i)
will stay unchanged to the end of the For
statement, and the proper Gi's will have
reached agreement.

In particular, if the system is.proper
and its initial message is M for all
proper all proper Gi will
have message (i) = M at the end of BAP.

Proof. We omit the proof that every proper
process will indeed stop. I.e. we prove
fully only partial correctnes·s.

Observe that if the proper processes
(asynchronously) enter the iteration
of the For statement of BAP in a
state where all have the same value V for
their k-th version of message (i) , then
they will end that iteration with the value
message (i) =V.

This is true because at the end of
Polling, every .proper Gi will have
temp(i)=V and n -2t Hence
irrespective of whether s = 0 or s' = 1 ,
Decision will assign mess'ageti) := temp (i) •

Consider the first proper process, say
it is Gi, to have finished its k-th itera-
tion of Polling. At that time Gi has
accumulated responses of the form
aj(message{j) ,k). Of these, at least n-2t
are from proper.processes. W.l.o.g., let
these be the processes {Gi'·· .,G(n-2t)} t''kr.
Only then does Gi releases its piece E{
of the k-th secret sk. So the faulty pro-
cesses can have sk only after the k-th
version of mess'age(j) has been determined
by·the Gj EH.

407

Decision. By the proof of Theorem 1, all
values temp(j) for proper Gj will then
be the same. Thus if the above condition
holds for some proper Gi, it constitutes
proof for the fact that all proper Gj
will attain the same value for message(j)
at the end of their k-th invocation of
Decision.

To utilize this fact,we modify Deci-
sion. We introduce an integer variable
k(i) which is local to Gi but global
within Pi.

Procedure Decisionproof; {for Gi}

begin
s :=sk("}; {sk(i) is current shared

secret}
If (s = 0 and n/2 (i)) or (s = 1)

and n -2t then
message (i) :=temp(i) {= V}

else
message (i) := "system faulty" i

If (s =0 and n - 2t (i» then
send °i (" agreement reached on V")
to all Gj;

k(i) :=k(i} +1· {update the index of the
secret to be shared}

end; {Decisionproof}

Since there will be no fixed number of
phases before stopping, we shall need a
Boolean-valuedvariable inroundCi) to
provide Pi with a halt-signal. The BAP
(actually Pi) will now read

Procedure ETBAP; {expected time protocol}

begin
inround(i) : = true;
k(i) :=1;
message (i) :=Mi {th.e initial message

for Gi}
repeat
begin
Polling;
Lottery;
Decisionproof {increases kCi) by 1

each. time}
end

end; {ETBAP}

Lemma 2. Within an expected number of four
rounds of iterations of the loop of ETBAP ,
every proper Gj will send 0jC"agreement
reached II on V} for some V.

At the time that any proper Gj sends
0" ("agreement reached on V"), it is
already determined that all the proper Gils
will in fact reach Byzant,ine Agreement on
the value V.

Proof. The procedure Decisionproof is an
extension of Decision. Hence it follows,

408

by the argument in the proof of Theorem I,
that within an expected number of two
iterations of the loop, the .proper
processes will have reached Byzantine
Agreement. This means that for some V,
which if the system is proper is its ori-
ginal common message, for all proper Gi
we have message(i) =V.

Within an expected number of two
additional iterations of the loop, the
value sk =0 for the shared random secret
will appear. At that time (on their asyn-
chronous phase-clocks) all proper Gjls
will send OJ (" agreement reached on V")
during Decis10nproof.

As ETBAP stands it does not include a
stopping rule. It will not do to stipulate
than any Gj which has sent OJ (agree-
ment reached") also assigns inround(j):=
false and stops. For the above state
may be reached by some proper Gj before
others, and the late proper processes will
need cooperation of the early ones in order
to reach that state.

We therefore introduce an additional
procedure Closefinish which simulta-
neously with ETBAP and provides the stopping
rule.

Procedure Closefinish; {for Gi}

begin
repeat
If received new OJ ("agreement reached

on V") {Gils own communication of
this form is included. V may
differ for faulty Gi}

then send OJ ("agreement reached V")
to all

until t +1 communications with the same
V are counted;

message (i) :=V;
inround(i) := false

end; {Closefinish}

Now, the value inround(i) =false is
construed as an interrupt which will cause
immediate termination of, and exit from,
the repeat statement of ETBAP.

Note that if a proper process has
received t +1 communications OJ ("agree-
ment reached on V") then at least one of
these is from a proper Gj. That proper
Gj actually had a proof that agreement
will be 'reached on the value V. Thus Gi
correctly stops. The complete proof of
correctness is omitted here.

7. CONCLUDING REMARKS

We have fully treated in this paper
the asynchronous case of the BGP. In the
synchronized case it is assumed that the
processes Gi have phase-clocks p(i), and
that these phases have the same start and
end-points for all processes; this is the
partially synchronized case. If we further
assume that the processes have the same
clock-reading at any given time, then we
have the fully synchronized case.

The availability of synchronization
enables us to simplify our protocol. It
now suffices to require t <n/4. A new
issue that arises in the synchronized case
is that of coordinated agreement, namely we
may want the proper proce.sses to reach
final decision about the common message at
the same time. The author has an algorithm
for enhancing any BA protocol to one that
produces coordinated agreement. H.
Gaifman produces coordination by use of
randomization along the lines of our paper.

Other formulations of the BGP assume a
sender G (who could also be anyone of the
Gj) who sends each Gi a message which
becomes its initial message Mi. The case
without sender is sometimes called the
Byzantine Consensus Problem. The case
where there is a sender is readily reduced
to the one treated here. All that is
additionally required is a Wakeup protocol
where any proper process, upon first
receiving the sender's message, broadcasts
it.

As written here, our solutions require
a total of 0(n2) messages. But this can
be readily. reduced to O(nt).

Finally, the solution extends to cover
the situation that the system has to re-
peatedly reach agreement on new sender's
messages. Under appropriate assumptions
the solution is resilient. Transient
failures of processes in one agreement
round, do not affect subsequent rounds.

Details of the above work will be
given in the full version of the paper.

BIBLIOGRAPHY

[DS8l] Dolev, D., Strong, H.R., Polynomial
for multiple processor

agreement, IBM Research, San Jose,
1982.

[0821 Dolev, D., The Byzantine Generals
strike again, J. of Algorithms, vol. 3
(1982) •

409

[LF82] Lynch, N., Fischer, M., A lower
bound for the time to assure inter-
active consistency, Inf. Proc. Letters,
Vol. 4 (1982), pp. 183-186.

[LSP80] Lamport, L., Shostak, R., and
M., The Byzantine Generals

problem, Tech. Report 54, Comp. Se.
Lab., SRI Inter., 1980.

[B083] Ben-Or, M., Another advantage of
free choice: Completely asynchronous
agreement protocols, Abstract.

[Ra76] Rabin, M.O., Probabilistic algo-
rithms, Algorithms and Complexity,
J.F. Traub, Editor, Academic Press
(1976), pp . 21- 39 •

[FLP82] Fischer, M., Lynch, N., and
Paterson, M., Impossibility of distri-
buted consensus with one faulty pro-
cess, MIT/LCS/TR-282.

[RSA78] Rivest, R., Shamir, A., and
Adleman, L., A method for obtaining
digital signatures and public-key
cryptosystems, CACM, Vol. 21 (1978),
pp. 120-126.

[Sh79] Shamir, A., How to share a secret,
CACM, Vol. 22 (1979), pp. 612-613.

[DH76] Diffie, W., Hellman, M., New
directions in cryptography, IEEE
Trans. In£. Theory, IT-22 (1976),
pp. 644-655.

