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Hierarchical Ordering of Sequential Processes 

E. W. DIJKSTRA 

Summary.  One of the pr imary functions of an operating system is to rebuild a 
machine tha t  must  be regarded as non-deterministic (on account of cycle stealing and 
interrupts) into a more or less deterministic automaton.  Taming the degree of indeter- 
minacy in steps will lead to a layered operating system. A bot tom layer will be discussed 
and so will the adequacy of the interface i t  presents. An analysis of the requirements 
of the correctness proofs will give us an insight into the logical issues at  hand. A 
"di rec tor -secre tary"  relationship will be introduced to reflect a possible discipline in 
the use of sequencing primitives.  

0~ 

The processing uni t  of a working  compu te r  performs in a shor t  per iod  of 
t ime  a sequence of mil l ions of ins t ruc t ions  and  as far  as the  processing uni t  is 
concerned this  sequence is ex t r eme ly  monotonous :  i t  jus t  per forms ins t ruc t ions  
one af ter  the  other.  A n d  if we dare  to in te rp re t  the  ou tpu t ,  if we dare  to  regard  
the  whole happen ing  a s "  mean ingfu l " ,  we do so because we have  men ta l l y  g rouped  
sequences of ins t ruc t ions  in such a w a y  t h a t  we can dis t inguish a s t ruc ture  in the  
whole happening .  S imi lar  considera t ions  a p p l y  to  the  s tore :  h igh speed stores 
conta in  t yp i ca l ly  mil l ions of bi ts  s tored  in a monotonous  sequence of consecut ive ly  
n u m b e r e d  b u t  otherwise equ iva len t  s torage  locations.  A n d  again,  if we dare  to  
a t t a c h  a mean ing  to such a vas t  amoun t  of bi ts ,  we can only do so b y  grouping  
t h e m  in such a w a y  t h a t  we can dis t inguish  some sort  of s t ruc ture  in the  vas t  
amoun t  of informat ion.  In  bo th  cases the  s t ruc tu re  is our inven t ion  and  not an 
inheren t  p r o p e r t y  of the  equ ipmen t :  wi th  respect  to the  s t ruc tu re  men t ioned  the  
equ ipmen t  i tself  is abso lu te ly  neutra l .  I t  migh t  even be a rgued  t h a t  this  " n e u -  
t r a l i t y "  is v i ta l  for i ts f lexibi l i ty .  On the  o ther  hand,  i t  then  follows t ha t  i t  is the  
p rog rammer ' s  obl iga t ion  to s t ruc tu re  " w h a t  is happen ing  w h e r e "  in a useful  
way.  I t  is wi th  this  obl iga t ion  t h a t  we shall  concern ourselves.  A n d  it  is in view 
of this  obl iga t ion  t h a t  we in tend  to s t a r t  wi th  a r a the r  machine-bound,  h is tor ical  
i n t roduc t ion :  this  gives us the  unorde red  env i ronment  in which we have  to  c rea te  
order,  to inven t  s t ruc tu re  adequa te  for our  purposes.  

In  the  ve ry  old days ,  machines  were s t r i c t ly  sequent ial ,  t h e y  were contro l led  
b y  wha t  was called " a  p r o g r a m "  bu t  could be called ve ry  a de qua t e ly  " a  sequent ia l  
p r o g r a m " .  Character is t ic  for such machines  is t h a t  when the  same p rog ram is 
execu ted  t w i c e - - w i t h  the  same inpu t  da ta ,  if a n y - - b o t h  t imes  the  same sequence 
of ac t ions  will be evoked.  In  pa r t i cu l a r :  t r anspo r t  of in format ion  to  or from 
per iphera ls  was per formed  as a p rogram-cont ro l l ed  a c t i v i t y  of the  cent ra l  
processor.  
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With the advent of higher electronic speeds the discrepancy in speed between 
the central processor on the one hand and the peripheral devices on the other 
became more pronounced. As a result there came for instance a strong economic 
pressure to arrange matters in such a way that two or more peripherals could 
be running simultaneously. 

In the old arrangement one could write a program reading information from 
a paper tape, say at a maximum speed of 50 char/sec. In that case the progress 
through that piece of grogram would be synchronized with the actual movement 
of the paper tape through the reader. Similarly one could write a program punching 
a paper tape, say at a maximum speed of 30 char/sec. To have both peripherals 
running simultaneously and also closely to their maximum speed would require 
a tricky piece of program specifically designed for this mix of activities. This 
was clearly too unattractive and other technical solutions have been found. 
Channels were invented; a channel is a piece of hardware dedicated to the task 
of regulating the information traffic between the store and the peripheral to which 
it is attached, and doing this synchronized to the natural speed of the peripheral 
device, thus doing away with the implicit mutual synchronization of the peripheral 
devices that would be caused if both were controlled by the same sequential 
program execution. 

The introduction of channels created two problems, a microscopic and a 
macroscopic one. The microscopic problem has to do with access to the store. 
In the old arrangement only the central processor required access to the store 
and when the central processor required access to the store it could get it. In 
the new arrangement, with the channels added--channels that can be regarded 
as "special purpose processors"--a number of processors can be competing with 
eachother as regards access to the store because such accesses from different 
processors very often exclude eachother in time (for technical or logical reasons). 
This microscopic problem has been solved by the invention of the "switch", 
granting the competing processors access to the store according to some priority 
rule. Usually the channels have a lower traffic density and a higher priority than 
the central processor: the processor works at full speed until a channel requests 
access to the store, an arrangement which is called "cycle stealing". We draw 
attention to the fact that the unit of information in which this interleaving takes 
place--usually "a word"-- i s  somewhat arbitrary; in a few moments we shall 
encounter a similar arbitrariness. 

The macroscopic problem has to do with the coordination of central processor 
activity and channel activity. The central processor issues a command to a 
channel and from that moment onwards, two activities are going on simultaneously 
and--macroscopically speaking--independent of eachother: the central processor 
goes on computing and the channel transport information. How does the central 
processor discover, when the execution of the channel command has been 
completed ? The answer to this has been the "interrupt". Upon completion of a 
channel command the channel sets an interrupt flip-flop; at the earliest convenient 
moment, (but never sooner that after completion of the current instruction) the 
central processor interrupts the execution of the current program (in such a 
neat way that the interrupted computation can be resumed at a later moment 
as if nothing has happened) and starts executing an interrupt program instead, 
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under control of which all now appropriate actions will be taken. From the point 
of view of the central processor it interleaves the various program executions, the 
unit of interleaving being--similarly arbitrari ly--" the instruction". 

The above scheme can be recognized in all larger, modern computers that I 
ever studied. It  has been embellished in many directions but we don' t  need to 
consider those embellishments now. We go immediately to the next questions: 
given a piece of equipment constructed along the lines just sketched, what are 
the problems when we try to use it and in what direction should we look for their 
solution ? 

What are the problems ? Well the main point is that from the point of view 
of program control such a piece of equipment must me regarded as a non-deter- 
ministic machine. Measured in a grain of time appropriate for the description of 
the activity of the centrol processing unit--clockpulse or instruction execution 
t ime--the time taken by a peripheral transport must be regarded as undefined. 
If completion of such a peripheral is signalled to the central processor by means 
of an interrupt, this means that we must regard the moment when the interrupt 
will take place (or more precisely: the point of progress where the computation 
will be interrupted) as unpredictable. The problem is that in spite of this in- 
determinacy of the basic hardware, we must make a more or less deterministic 
automaton out of this equipment: from the outside world the machine will be 
confronted with a well-defined computational task and it has to produce a well- 
defined result in a microscopically unpredictable way! 

Let me give a simple example to explain what I mean by "a  more or less 
deterministic automaton".  Suppose that offering a program to the machine 
consists of loading a pack of cards into a card reader (and pushing some button 
on the reader in order to signal that  it has been loaded). Suppose now that we 
have a machine with two readers and that we want to load it with two programs, 
A and B, and that we can do this by loading both card readers and pressing both 
buttons. We assume that the two card readers are not mutually synchronized, 
i.e. we regard both speeds as unpredictable. To what extent will the total con- 
figuration be a deterministic automaton ? It  will be fully deterministic in the 
sense that eventually it will produce both output A and output B. If these outputs 
are to be produced by the same printer, they will be produced in some order and 
the system may be such that the order in which the respective outputs appear 
on the printer does depend on the relative speeds of the two readers. As far as 
the operator is concerned, who has to take the output from the printer and to 
dispatch it to the customers, the installation is non-deterministic: what he has 
to do depends on the unpredictable speed ratio of the two readers, which may 
cause output A to precede or to follow output B. For both cases the operator has 
his instructions such that in both cases all output is dispatched to the proper 
customer. The "computat ion centre" --i.e. installation and operator together--are 
deterministic. We can regard the operator's activity as an outer layer, "wrapping 
up the installation", shielding from the outside world a level of interior in- 
determinacy. 

Now, even if the operator is aware of not having a fully deterministic machine, 
we should recognize that he has only to deal with two cases--output A before 
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output B or the other way round--while the number of possible sequences of 
occurrences at cycle time level is quite fantastic. In other words, by far the major 
part of the "shielding of indeterminacy" is done by the installation itself. We 
call the resulting installation "more or less deterministic" because as the case 
may be, a few degrees of limited freedom--here one boolean degree of freedom-- 
may be left unpredictable. 

We have called the operator's activity "an outer layer", shielding a level 
of indeterminacy, and of course we did so on purpose. At the other end we may 
distinguish an inner layer, viz. in the channel signalling (via an interrupt signal) 
that the next card has been read: it tells the central processor that the next 
card image is available in core, regardless which storage cycles have been stolen 
to get it there. The terms "inner layer" and "outer  layer" have been chosen in 
order to suggest that  in the total organization we shall be able to distinguish 
many layers in between. But an important remark is immediately appropriate: 
I assume that with the card read command an area in core has been designated to 
receive this card image: the remark that the interrupt signalled the completed 
transfer of the card image irrespective of which cycles had been stolen to transport 
its constituents is only true, provided that no other access to the designated core 
area took place in the period of time ranging from the moment the command 
was given up to the moment that the completion was signalled! Obvious but 
vital. 

I t  draws our attention to an element of structure that must be displayed 
by the remaining programs if we wish to make the total organization insensitive 
to the exact identity of the cycles stolen by the channel. And from the above 
it is clear that  this insensitivity must be one of our dearest goals. And on next 
levels (of software) we shall have to invent similar elements of structure, making 
the total organization insensitive (or "as  insensitive as possible") to the exact 
moment when interrupts are honoured. Again it is clear that this must be one of 
our dearest goals. And on a next level we must make our organization insensitive 
(or "as insensitive as possible") to the exact number of cards put into the readers 
for program A and B, and so on ... This "layered insensitivity" is, in two words, 
our grand plan. 

I have used the term "layer" on purpose, because it has seemed to provide 
an attractive terminology in terms of which to talk about operating systems and 
their total task. We can regard an operating system as the basic software that 
"rebuilds" a given piece of hardware into a (hopefully) more attractive machine. 
An operating system can then be regarded as a sequence of layers, built on top 
of eachother and each of them implementing a given " improvement" .  Before 
going on, let me digress for a moment and let me try to explain why I consider 
such an approach of ordered layers a fruitful one. 

There is an alternative approach, which I would like to call the approach 
via unordered modules. There one makes a long list of all the functions of the 
operating system to be performed, for each function a module is programmed 
and finally all these modules are glued together in the fervent hope that they 
will cooperate correctly and will not interfere disastrously with eachother's 
activity. It  is such an approach which has given rise to the assumed law of nature, 
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that  complexity grows as the square of the number of program components, i.e. of 
the number  of "functions". 

In the layered approach we start  at the bot tom side with a given hardware 
machine A 0' we add our bot tom layer of software rebuilding A 0 into the slightly 
more at tractive machine A 1, for which the next layer of software is programmed 
rebuilding it into the still more at tractive machine A, etc. As the machines in 
the sequence Ao, A1, A 2 . . . .  get more and more attractive, adding a further 
layer gets easier and easier. This is in sharp contrast to the approach via unordered 
modules, where adding new functions seems to get progressively worse! 

1, 

So much in favour of a layered approach in general. When one wishes to 
design an operating system, however, one is immediately faced with the burning 
question, which"  improvement"  is the most suitable candidate to be implemented 
in the bot tom layer. 

For the purpose of this discussion I will choose a very modest bot tom layer. 
I do so for two reasons. Firstly, it is a choice with which for historical reasons I 
myself am most familiar. Secondly, as a bot tom layer it is very modest and 
neutral, so neutral in fact that  it provides us with a mental  platform from where 
we can discuss various alternatives for the structure of what is going to be built 
on top of it. As a bot tom layer it seems close to the choice of minimal commitment.  
The fact that  this bot tom layer is chosen as a starting point for our discussion is 
by  no means to be interpreted as the suggestion that  this is the best possible 
choice: on the contrary, one of the later purposes of this discussion is the con- 
sideration of alternatives. 

With the hardware taking care of the cycle stealing we felt that  the software's 
first responsibility was to take care of the interrupts, or, to put it a little more 
strongly, to do away with the interrupt, to abstract  from its existence. (Besides 
all rational arguments this decision was also inspired by fear based on the earlier 
experience that,  due to the irreproducibility of the interrupt moments, a program 
bug could present itself misleadingly like an incidental machine malfunctioning.) 
What  does it mean "to do away with the in te r rup t"?  Well, without interrupt  
the central processor continues the execution of the current sequential process 
while it is the function of the interrupt to make the central processor available 
for the continuation of another sequential process. We would not need interrupt 
signals if each sequential process had its own dedicated processor. And here the 
function of the bot tom layer emerged: to create a virtual machine, able to execute 
a number of sequential programs in parallel as if each sequential program had 
its own private processor. The bot tom layer has to abstract  of the existence 
of the interrupt or, what amounts to the same thing, it has to abstract  from the 
identity of the single hardware processor. If this abstraction is carried out rig- 
orously it implies that  everything built on top of this bot tom layer will be equally 
applicable to a multiprocessor installation, provided that  all processors are 
logically equivalent (i.e. have the same access to main memory etc.). The remaining 
part  of the operating system and user programs together then emerges as a set 
of harmoniously cooperating sequential processes. 
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The fact that  these sequential processes out of the family have to cooperate 
harmoniously implies that  they must have the means of doing so, in particular, 
they must be able to communicate with eachother and they must be able to 
synchronize their activities with respect to eachother. For reasons which, in 
retrospect, are not very convincing, we have separated these two obligations. 
The argument was that  we wished to keep the bot tom layer as modest as possible, 
giving it only the duty of processor allocation; in particular it would leave the 
"neutral, monotonous m em ory"  as it stood, it would not rebuild that  part  of 
the machine and immediately above the bot tom layer the processes could 
communicate with eachother via the still available, commonly accessible memory. 

The mutual  synchronization, however, is a point of concern. Closely, related 
to this is the question: given the bot tom layer, what will be known about the 
speed ratios with which the different sequential processes progress ? Again we 
have made the most modest assumption we could think of, viz. that  they would 
proceed witb speed ratios, unknown but for the fact that  the speed ratios would 
differ from zero. I.e. each process (when logically allowed to proceed, see below) 
is guaranteed to proceed with some unknown, but finite speed. In actual fact we 
can say more about the way in which the bot tom layer grants processor time 
to the various candidates: it does it " fa i r ly"  in the sense that  in the long run a 
number of identical processes will proceed at the same macroscopic speed. But 
we don' t  tell, how " long"  this run is and the said fairness has hardly a logical 
function. 

This assumption about the relative speeds is a very " t h i n "  one, but as such 
it has great advantages. From the point of view of the bot tom layer, we remark 
that  it is easy to implement:  to prevent a running program to monopolize the 
processor an interrupting clock is all that  is necessary. From the point of view 
of the structure built on top of it is also extremely attractive:  the absence of 
any knowledge about speed ratios forces the designer to code all synchronization 
measures explicitly. When he has done so he has made a system that  is very robust 
in more than one sense. 

Firstly he has made a system that  will continue to operate correctly when 
an actual change in speed ratios is caused, and this may  happen in a variety of 
ways. The actual s trategy for processor allocation as implemented by the bot tom 
layer, may be changed. In a multiprocessor installation the number of active 
processors may  change. A peripheral may  temporarily work with speed zero, e.g. 
when it requires operator attention. In our case the original line printer was 
actually replaced by a faster model. But under all those changes the system will 
continue to operate correctly (although perhaps not optimally, but that  is quite 
another matter).  

Secondly--and we shall return to this in greater detai l - - the system is robust 
thanks to the relative simplicity of the arguments that  can convince us of its 
proper operation. Nothing being guaranteed about speed rations means that  in 
our understanding of the structure built on top of the bot tom layer we have to 
rely on discrete reasoning and there will be no place for analog arguments, for 
other purposes than overall justification of chosen strategies. I trust  the strength 
of this remark will become apparent as we proceed. 
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2. 

Let us now focus our attention upon the synchronization. Here a key problem 
is the so-called "mutual  exclusion problem". Given a number of cyclic processes 
of the form 

cycle begin entry; 
critical section ; 
exit; 
remainder of cycle 

end 

program "en t ry"  and "ex i t "  in such a way that at any moment at most one of 
the processes is engaged in its critical section. The solution must satisfy the 
following requirements: 

a) The solution must be symmetrical between the processes; as a result we are 
not allowed to introduce a static priority. 

b) Nothing may be assumed about the ratio of the finite speeds of the process- 
es; we may not even assume their speeds to be constant in time. 

c) If any of the processes is stopped somewhere in "remainder of cycle", this 
is not allowed to lead to potential blocking of any of the others. 

d) If more than one process is about to enter its critical section, it must be 
impossible to devise for them such finite speeds, that the decision to determine 
which of them will enter its critical section first is postponed until eternity. In 
other words, constructions in which "After  you " - -"  After you"--blocking,  
although improbable, is still possible, are not to be regarded as valid solutions. 

1 called the mutual axclusion problem "a  key problem". We have met 
something similar in the situation of programs A and B producing their output 
in one of the two possible orders via the same printer: obviously those two printing 
processes have to exclude eachother mutually in time. But this is a mutual 
exclusion on a rather macroscopic scale and in all probability it is not acceptable 
that the decision to grant the printer to either one of the two activities will be 
taken on decount of the requirement of mutual exclusion alone: in all probability 
considerations of efficiency or of smoothness of service require a more sophisticated 
printer granting strategy. The explanation why mutual exclusion must be regarded 
as a key problem must be found at the microscopic end of the scale. The switch 
granting access to store on word basis provides a built in mutual exclusion, but 
only on a small, fixed and rather arbitrary scale. The same applies to the single 
processor installation which can honour interrupts in between single instructions: 
this is a rather arbitrary grain of activity. The problem arises when more compli- 
cated operations on common data have to take place. Suppose that we want to 
count the number of times something has happened in a family of parallel processes. 
Each time such an occurrence has taken place, the program could try to count 
it via 

"n  :-~n + l "  



t22 E.W. Dijkstra: 

If in actual fact such a statement is coded by three instructions 

" R : = n ;  

R : = R + I ;  

n :----R" 

then one of the increases may get lost when two such sequences are executed, 
interleaved on single instruction basis. The desire to compound such (and more 
complicated) operators on commom variables is equivalent to the desire to have 
more explicit control over the degree of interleaving than provided by the neutral, 
standard hardware. This more explicit control is provided by a solution to the 
mutual exclusion problem. 

We still have to solve it. Our solution depends critically on the communication 
facilities available between the individual processes and the common store. We 
can assume that the only mutual exclusion provided by the hardware is to exclude 
a write instruction or a read instruction, writing or reading a single word. Under 
that assumption the problem has been solved for two processes by T. J. Dekker 
in the early sixties. It  has been solved by me for N processes in 1965 (C.A.C.M., 
1965, Vol. 8, nr. 9, p. 569). The solution for two processes was complicated, the 
solution for N processes was terribly complicated. (The program pieces for 
" e n t e r "  and "ex i t "  are quite small, but they are by far the most difficult pieces 
of program I ever made. The solution is only of historical interest.) 

It  has been suggested that the problem could be solved when the individual 
processes had at their disposal an indivisible "add  to store" which would leave 
the value thus created in one of the private process registers as well, so that  this 
value is available for inspection if so desired. Indicating this indivisible operation 
with braces the suggested form of the parallel programs was: 

cycle begin while {x  : = x + t }  4: t do {x  : = x - -  t }; 
critical section; 
{x:=x-t}; 
remainder of cycle 

end. 

Where the " a d d  to store" operation is performed on the common variable " x ' "  
which is initialized with the value zero before the parallel grograms are started. 

As far as a single process is concerned the cumulative A x as effected by this 
process since its start is = 0 or ----t ; in particular, when a process is in its critical 
section, its cumulative d x----1. As a result we conclude that at any moment 
when N processes are in their critical section simultaneously, x ~ N will hold. 

A necessary and sufficient condition for entering a critical section is that  
this process effectuates for x the transition from 0 to t. As long as one process is 
engaged in its critical section (N = 1), x ~ 1 will hold. This excludes the possibility 
of the transition from 0 to I taking place and therefore no other process can enter 
its critical section. We conclude that mutual exclusion is indeed guaranteed. Yet 
the solution must be rejected: it is not difficult to see that even with two processes 
(after at least one succesful execution of a critical section) "After  y o u " - - "  After 
you"--blocking may occur (with the value of x oscillating between I and 2). 
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A correct solution exists when we assume the existence of an indivisible 
operat ion " s w a p "  which causes a common variable (x) and a pr ivate  variable 
(loc) to exchange their values. Wi th  initially x----0 the s tructure of the parallel 
programs is : 

begin integer loc; loc : ---- t ; 
cycle begin repeat swap (x, loc) until loc = 0; 

critical section; 
swap (x, loc) ; 
remainder of cycle 

end 
end. 

The invariant  relation is tha t  of the N + t variables (i.e. the N loc's and the 
single x) always exact ly one will be ----0, the others being =1 .  A process is in its 
critical section if and only if its own loc ~ 0, was a result at most  one process 
can be engaged in its critical section. When none of the processes is in its critical 
section, x = 0 and "Af te r  y o u " - - "  After y o u " - - b l o c k i n g  is impossible. So this 
is a correct solution. 

In  a mul t iprogramming environment,  however, the correct solutions referred 
to or shown have a great  drawback : the program section called "enter"  contains 
a loop in which the process will cycle when it cannot  enter its critical section. 
This so-called " b u s y  form of wai t ing"  is expensive in terms of processing power, 
because in a mul t iprogramming environment  (with more parallel processes than 
processing units) there is a fair chance tha t  there will be a more product ive way  
of spending processing power than  giving it to a process that ,  to all intents any  
purposes, could go to sleep for the time being. 

If we want  to do away with the busy form of waiting we need some sort of 
synchronizing primitives by  means of which we can indicate those program 
points where- -depending  on the c i rcumstances- -a  process m a y  be put  to sleep. 
Similarly we must  be able to indicate tha t  potential  sleepers may  have to be 
woken up. Wha t  form of primitives ? 

Suppose tha t  process I is in its critical section and tha t  process 2 will be the 
next  one to enter it. Now there are two possible cases. 

a) process I will have done " e x i t "  before process 2 has tried to " e n t e r " ;  
in tha t  case no sleeping occurs 

b) process 2 tries to "enter"  before process I has done "ex i t " ;  in tha t  case 
process 2 has to go sleep temporar i ly  until  is woken up as a side-effect of the 
"' ex i t "  done by  process t.  

When both occurrences have taken place, i.e. when process 2 has succesfully 
entered its critical section it is no longer material  whether  we had case a) or 
case b). In  tha t  sense we are looking for primitives (for " e n t e r "  and " e x i t " )  
t ha t  are commutat ive.  W h a t  are the simplest commuta t ive  operations on common 
variables tha t  we can think of ? The simplest operation is inversion of a common 
boolean, but  tha t  is too simple for our purpose" then we have only one operation 
at our disposal and lack the possibility of distinguishing between "enter"  and 
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"ex i t " .  The next  simplest commuta t ive  operations are addition to (and subtrac- 
tion from) a common integer. Fur thermore  we observe tha t  "enter"  and " ex i t "  
have to compensate eachother:  if only the first process passes its critical section 
the common state before its " e n t e r "  equals the common state after its " e x i t "  as 
far as the mutual  exclusion is concerned. The simplest set of operations we can 
think of are increasing and decreasing a common variable by t and we introduce 
the special synchronizing primitives 

P ( s ) : s : = s - - t  
and 

V(s): s :=s  + t 

special in the sense tha t  they are "indivisible" operations: if a number  of P- and 
V-operations on the same common variable are performed "simultaneously" the 
net effect of them is as if the increases and decreases are done "in some order" .  

Now we are very  close to a solution: we have still to decide how we wish to 
characterize tha t  a process m a y  go to sleep. We can do this by  making the P- and 
V-operations operate not on just a common variable, but  on a special purpose 
integer variable, a so-called semaphore, whose value is by  definition non-negative;  
i.e. s=>0. 

With  tha t  restriction, the V-operation can always be performed:  unsynchronized 
execution of the P-operation, however, could violate it. 

We therefore postulate tha t  whenever a process initiates a P-operat ion on a 
semaphore whose current value equals zero, the process in question will go to 
sleep until (another) process has performed a V-operation on tha t  very same 
semaphore. A little bit more precise: if a semaphore value equals zero, one or 
more processes m a y  be blocked by  it, eager to perform a P-operat ion on it. If  a 
V-operation is performed on a semaphore blocking a number  of processes, one 
of them is woken up, i.e. will perform its now admissible P-operat ion and proceed. 
The choice of this latter process is such tha t  no process will be blocked indefinitely 
long. A way to implement this is to decide tha t  no two processes will initiate the 
blocking P-operat ion simultaneously and tha t  they  will be t reated on the basis 
"first come, first served"  (but it need not  be done tha t  way, see below). 

Wi th  the aid of these two primitives the mutual  exclusion problem is solved 
very easily. We introduce a semaphore " m u t e x "  say, with the initial value 

mutex  = 1, 

after which the parallel processes controlled by  the program 

cycle begin P (mutex); 
critical section ; 
V (mutex) ; 
remainder of cycle 

end 

are started. 

Before proceeding with the discussion I would like to insert a remark.  In  
languages specifically designed for process control I have met  two other  primitives, 
called " w a i t "  and " c a u s e " ,  operating on an "even t  var iable" ,  which is a 
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(possibly empty) queue of waiting processes. Whenever a process executes a 
"wait" it attaches itself to the queue until the next "cause" for the same event, 
which empties the queue and signals to all processes in the queue that they should 
proceed. Experience has shown that such primitives are very hard to use. The 
reason for this is quite simple: a "wa i t "  in one process and a "cause" in another 
are non-commutative operations, their net effect depends on the order in which 
they take place and at the level where we need the synchronizing primitives we 
must assume that we have not yet effective control over this ordering. The limited 
usefulness of such "wa i t "  and "cause"  primitives could have been deduced 
a priori. 

3. 

As a next interlude I am going to prove the correctness of our solution. One 
may ask "Why bother about such a proof, for the solution is obviously correct". 
Well, in due time we shall have to prove the correctness of the implementation 
of more sophisticated rules of synchronization and the proof structure of this 
simple case may then act as a source of inspiration. 

With each process "j" we introduce a state variable "C/', characterizing the 
progress of the process. 

C j = 0  processj is in the "remainder of cycle" 

Ci--= t processj is in its "critical section ". 

While process/performs (i.e. "completes") the operation P(mutex)j  the trans- 
ition Cj =- 0--~C~. = t takes place, when it performs the operation V (mutex)i the 
transition C j =  1 --~. Cj-- 0 takes place. (Note that the Cj are not variables occurring 
in the program, they are more like functions defined on the current value of the 
order counters.) In terms of the Cj the number of processes engaged in its critical 
section equals 

N 

Xc;. 
i = 1  

In order to prove that this number will be at most = t, we follow the life history 
of the quantity 

N 

K = mutex +~ .  C i. 
j = l  

The quantity K will remain constant as long as its constituents are constant: 
the only operations changing its constituents are the 2N mutually exclusive 
primitive actions P (mutex) i and V (mutex) i (for t ~< i _< N). 

We have as a result of 

P (mutex),: A K = A m u t e x + A  Cj 

= A mutex + A C i 

= - - t + t = 0  
and similarly, as a result of 

V (mutex) i: A K = A mutex + A C i 

~ + 1 - - t ~ o .  



126 E.W. Dijkstra: 

As these 2N operations are the only ones affecting K's constituents, we 
conclude that K is constant, in particular, that  it is constantly equal to its 
initial value, 

N 

K=l+Y,0=t .  
j=l 

As a result 
N 

Cj = 1 --  mutex. 
j = l  

Because mutex is a semaphore, we have 

0 =< mutex, 

and from the last two relations we conclude 

N 

Y, cj<I .  
j = l  

Because this sum is the sum of non-negative terms we known 

N 

o<Y, cj. 
j = l  

Combining this with 

We conclude 

N 

mutex = t --~, Cj. 
j = l  

mutex ~ t 

i.e. mutex is a so-called "binary semaphore", only taking on the values 0 and 1. 

Finally we observe that no process will be kept out of its critical section 
without justification: if all processes are outside their critical sections, all C/s 
are = 0 and therefore mutex is = 1, thereby allowing the first process that wants 
to enter its critical section to do so. 

For later reference we summarize the structure of this proof. A central role 
is played by an invariant relation among common variables (here only the sem- 
aphore) and "progress variables" (here the Ci's ). Its invariance is proved by 
observing the net effect of the (mutually exclusive) operators operating on its 
constituents, without any further assumptions about their mutual synchroniza- 
tion, about which we can then make assertions on account of the established 
invariance. In the sequel we shall see that this pattern of proof is very generally 
applicable. 

4. 

Before proceeding with more complicated examples of synchronization we 
must make a little detour and make a connection with earlier observations. 
When a process is engaged in its critical section, a great number of other processes 
may go to sleep. When the first one leaves its critical section, it is undefined which 
of the sleepers is woken up, the only requirement being that no single process is 
kept sleeping indefinitely long. (This latter assumption we have to make when, 
later, we wish to prove assertions about the finite progress of individual processes.) 
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In this sense our "family of sequential processes" is still a mechanism of an 
undeterministic nature, but the degree of undeterminacy is a mild one compared 
with the original hardware, in which an interrupt could occur between any pair 
of instructions: the only indeterminacy left is the relative order of much larger 
units of action, viz. the critical sections. In this respect the bottom layer of our 
operating system achieves a step towards our goal of "layered insensitivity". 

I t  is in this connection that I should like to make another remark of quanti- 
tative nature. The choice of the process to be woken up is left undefined because 
it is assumed that it does not matter, i.e. we assume the system load to be such 
that the total period of time that any of the processes will be engaged in its critical 
section will be a negligible fraction of real time, in other words, nearly always 
mutex = 1 will hold. I t  is for that reason that such a neutral policy for waking 
up a sleeper is permissible. This is no longer true for our macroscopic concerns 
regarding so-called "resource allocation". In the case of a number of programs 
producing their output via the same printer, these printing actions have to 
exclude eachother mutually in time, but it is no longer true that the total time 
spent in printing will be a negligible fraction of real time! On the contrary: in a 
well-balanced system the printer will be used with a duty cycle close to 100 per- 
cent! In order to achieve this--and to satisfy other, perhaps conflicting design 
requirements--such a neutral policy which is adequate for granting entrance 
into critical sections will certainly be inadequate for granting a scarce resource 
like a printer. For the implementation of a less neutral granting policy we shall 
use the critical sections, entrance to which is granted on a neutral basis. (For an 
example of a more elaborate synchronization implemented with the aid of critical 
sections we refer to the Problem of the Dining Philosophers to be treated later.) 
This is the counterpart of the "layered insensitivity" : going upwards in levels we 
gain more and more control over the microscopic indeterminacy, but simulta- 
neously macroscopic strategic concerns begin to enter the picture: it seems vital 
that the bottom layer with its microscopic concerns does not bother itself with 
such macroscopic considerations. This observation seems to apply to all well- 
designed systems: I would call it a principle if I had a better formulation for it. 

5.  

We now turn to a slightly more complicated example, viz. a bunch of producers 
and a bunch of consumers, coupled to eachother via an unbounded buffer. In this 
example all producers are regarded as equivalent to eachother and all consumers 
are regarded as quivalent to eachother. Under these assumptions--which are not 
very realistic--the semaphores provide us with a ready-made solution. 

In the commonly accessible universe we have 

a) a buffer, initialized empty 

b) a semaphore "mutex", initialized = l ; this semaphore caters for the mutual 
exclusion of operations changing buffer contents 

c) a semaphore "numqueuepor" ; this gives (a lower bound of) the number of 
portions queueing in the buffer. 

9 Acta Informatica, Vol. I 
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Then a producer may  have the form 

cycle begin produce next portion; 
P (mutex) ; 
add portion produced to buffer; 
V (numqueuepor) ; 
V (mutex) 

end 

with consumers of the following structure 

cycle begin P (numqueuepor) ; 
P (mutex) ; 
take portion from buffer; 
V (mutex) ; 
consume portion taken 

end. 

Note t : The order of the V-operations in the producer is immaterial, the order 
of the P-operations in the consumer is absolutely essential. 

Note 2: The assumption is that  the operations "produce next por t ion"  and 
"consume portion t aken"  are the slow, timeconsuming operations--possible in 
synchronism with other equipment- - for  which parallelism is of interest, while 
the actions "add portion produced to buffer"  and "take portion from buffer"  
are very fast "clerical" operations. 

In the above program the semaphore "numqueuepor" is a so-called "general 
semaphore",  i.e. a semaphore whose possible values are not restricted to 0 and t. 
We shall now give an alternative program, using only binary semaphores. 

In the commonly accessible universe we have 

a) a buffer and an integer "n" ,  counting the number of portions in the buffer. 
The buffer is initialized empty  (incl. n : =  0) 

b) a semaphore"  m u t ex"  initialized = t ; this semaphore caters for the mutual  
exclusion of the operations changing the buffer contents, the value of " n "  and 
the inspection of " n " .  

c) a semaphore "consal", initialized = 0; if this semaphore is = t, a next 
consumption is allowed. 

Then a producer may have the form 

cycle begin produce next portion; 
P (mutex) ; 
add portion to buffer (incl. n : = n + t) ; 
i/ n ~ 1 do V (consal) ; 
V (mutex) 

end 
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with consumers of the following structure 

cycle begin P (consal) ; 
P (mutex) ; 
take portion from the buffer (incl. n : = n --  !) ; 
i / n  > 0 do V (consal) ; 
V (mutex) ; 
consume port ion taken 

end. 

Although it is not  too hard  to convince ourselves " b y  in spec t ion" - -wha teve r  
tha t  m a y  m e a n - -  tha t  the above bunch of programs work properly, it is i l luminat- 
ing to give a somewhat  more formal t rea tment  of their cooperation. (I am now 
used to calling such a more formal t rea tment  of their cooperation "a  correctness 
proof" ,  a l though I did not  formalize the requirements tha t  such a piece of reasoning 
should satisfy in order to be a "valid proof".)  

The proof consists of two steps. The first step uses our earlier result, viz. tha t  
the P (mutex) and V (mutex) establish mutua l  exclusion of the critical sections. 
(Inside these critical sections we find no P-operations, as a result they  cannot  
give rise to deadlock situations.) This observation allows us to regard the critical 
sections as indivisible operations and to confine our a t tent ion to the s tate  of the 
system at the discrete moments  with mutex  = 1 (i.e. no one engaged in its critical 
section). 

In  the second step we define three mutua l ly  exclusive states for the whole 
system and shall show tha t  whenever the system is s tar ted in one of these states, 
it will remain within these states. For  the purpose of state description we introduce 
a function defined on the progress of the consumers, viz. 

K = t h e  number  of consumers tha t  have performed " P ( c o n s a l ) "  but  have 
not  yet  entered the following critical section. 

Now we can introduce our three states 

S l : n = O  and K = O  and 

S 2 : n > 0  and K = 0  and 

S 3 : n > 0  and K = I  and 

consal = 0 

consal = 1 

consal = 0. 

Three operations;  (viz. P (consal) and the two critical sections) operate on the 
consti tuents of these boolean expressions; for each state we investigate all three. 

S 1 : (initial state) 
P (consal) : impossible (on account  of consal = 0) 
critical producer  section : t ransit ion to S 2 
critical consumer section : impossible (on account  of K = 0) 

$ 2 :  
P (consal) : t ransit ion to S 3 
critical producer section : transit ion to S 2 
critical consumer section : impossible (on account  of K = 0) 

9* 
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S 3 :  
P (consal) : impossible (on account of consal ---- 0) 
critical producer section : transition to S 3 
critical consumer section : transition to S I or S 2. 

This concludes the second step, showing the invariance of 

$ t  or $2 or S 3 

(from which we conclude N _--> 0 and consal __< t). 

A few remarks, however, are in order, for we have cheated slightly. Let us 
repair our cheating first and then give our further comments. In our second step 
we have investigated the isolated effect of either P (consal) or the critical producer 
section or the critical consumer section. For the critical sections this is all right 
for they exclude eachother mutually in time; the operation P (consal), however, 
can take place during a critical section, and we did not pay  any attention to such 
coincidence. We can save the situation by observing that  in the case of coincidence 
the net effect is equal to the execution of the critical section immediately followed 
by P (consal). This is really a messy patching up of a piece of reasoning that  was 
intended to be clean. Now our further comments. 

t) The proof shows why the mutual  exclusion problem is worthy of the name 
"a  key problem".  Thanks to the mutual  exclusion of critical sections we only 
need to consider the net effect of each single, isolated section. If these sections 
were not critical, i.e. could take place in arbi trary interleaving, we would have 
to consider the net effect of one section, the net effect of two sections together, of 
three sections together, of four etc. l With N cooperating processes the number of 
cases to be investigated would grow like 2 N (i.e. the powersetl). This is one of the 
strongest examples showing how the amount of intellectual effort needed for a 
correctness proof may depend critically on structural aspects of the program, here 
the aspect of mutual  exclusion. I t  is this observation that  is meant  to justify the 
inclusion of the above proof in this text. 

2) The proof is complicated considerably by the fact that  P(consal) is an 
operation sequentially separate from the following critical section: this caused the 
messy patching up of our piece of reasoning, it called for the introduction of the 
function " K " .  If  the conditional entrance of critical sections is going to be a 
standard feature of the system, a more direct way of expressing this would be 
essential. A minimal departure of the current formation would be the introduction 
of the parallel P-operation, allowing us to combine the two P-operations of the 
consumer into 

P (consal, mutex).  

3) For the sake of completeness we mention that  in the T H E  multiprogramming 
system, were we used general semaphores to control synchronization along 
information streams, each information stream bad at any moment  in time at 
most one consumer attached to it. As a result a general semaphore could block 
at most one process and when a V-operation was performed on it there was never 
the problem which process should be woken up. The absence of the possibility 
that  more than one process is blocked by a general semaphore is not surprising: 
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it is the semaphore" consal" that  may be equal to zero for a long period of time; as 
a result it is not to be expected that  it is irrelevant which of the processes will be 
woken up when a V-operation is performed on it. In the design phase of the T H E  
multiprogramming system the parallel P-operation has been considered but 
finally it has not been implemented because we felt that  it contained the built-in 
solution to an irrealistic problem. But it would have simplified proof procedures. 

6. 

We now turn to the problem of the Five Dining Philosophers. The life of a 
philosopher consists of an alternation of thinking and eating: 

cycle begin think; 
eat 

end. 

Five philosophers, numbered from 0 through 4 are living in a house where the 
table is laid for them, each philosopher having his own place at the table: 

Their only problem--besides those of philosophy--is that  the dish served is 
a very difficult kind of spaghetti, that  has to be eaten with two forks. There are 
two forks next to each plate, so that  presents no difficulty: as a consequence, 
however, no two neighbours may be eating simultaneously. 

A very naive solution associates with each fork a binary semaphore with the 
initial value ~ t (indicating that the fork is free) and, naming in each philosopher 
these semaphores in a local terminology, we could think the following solution 
for the philosopher's life adequate 

cycle begin think; 
P (left hand fork) ; P (right hand fork) ; 
eat ; 
V (left hand fork) ; V (right hand fork) 

end. 

But this solution--although it guarantees that  no two neighbours are eating 
simultaneously--must be rejected because it contains the danger of the deadly 
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embrace.  When  all five philosophers get  hungry  simultaneously,  each will grab  his 
left hand  fork and  f rom tha t  m o m e n t  onwards the group is stuck.  This could be 
overcome b y  the in t roduct ion of the parallel P-operat ion,  combining the two 
P-operat ions  into the single 

P (left hand  fork, r ight  hand  fork). 

For  the  t ime being we assume the parallel P-opera t ion denied to u s - - l a t e r  
we shall reject  the solution using it on other  g r o u n d s - - a n d  we shall show how 
(using only single P-operat ions and b inary  semaphores)  we can derive our solution 
in a reasonably  controlled manner .  

In  order to be able to give a formal  description of our restriction, we associate 
with each philosopher a s ta te  variable,  " C "  say, where 

C [i] = 0 means:  philosopher i is thinking 

C [i] = 2 means:  philosopher i is eat ing.  

In  accordance with their  first act,  all C's will be initialized = 0. In  te rms  of the 
C's we can s ta te  tha t  it is idsallowed 

3 i ( C [ i ] = 2  and C [ ( i + t )  rood 5 ] = 2 ) ,  (t) 

in words:  no philosopher m a y  be eat ing while his left hand  neighbour is eat ing 
as well. F r o m  this formula  i t /ol lows tha t  for a C the t ransi t ion f rom 2 to 0 can 
never  cause violation of the restr ict ion (t), while the  t ransi t ion f rom 0 to 2 can. 
There/ore we introduce for the last  t ransi t ion an in termedia te  s ta te  

C [i] = t means :  philosopher i is hungry .  

Now each philosopher will go cyclically through the s ta tes  0, t ,  2, 0 . . .  The  next  
question to ask is: when has the (dangerous) t ransi t ion f rom I to 2 to take  place 
for philosopher K ? Well, three conditions have  to be satisfied 

1) C [K] ----t, i.e. he himself mus t  be hungry  

2) C [K + 1 )  mod 5] 4=2, because otherwise 

C [K] : = 2  would cause violation of (I) for i----K 

3) C [ K - - t )  mod 5] =#2, because otherwise 

C [K] :----2 would cause violation of (t) for i = ( K -  1) rood 5. 

As a result  we have  to see to it t ha t  the s ta te  

3K (C [ ( K -  1) mod 5] 4= 2 and C [K] = I and C [(K + t) rood 5] =4 = 2) (2) 

is unstable:  whenever  it occurs, it has to be resolved b y  assigning C [K] : = 2 and 
sending philosopher K to the table. 

In  a similar analysis we ask: which transi t ions in the life of philosopher w can 
cause the unstable  s i tuat ion and for which values of K ? 

t) when C[w] : =  t is executed,  instabi l i ty  m a y  be created for K = w  

2) when C [w] : = 0 - - i . e .  when C [w] loses the value 2 - - ins tab i l i ty  m a y  be 
created for K = (w + t) rood 5 and for K ---- (w - -  1) rood 5. 
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In words: when philosopher w gets hungry, the test whether he himself should 
be sent to table is appropriate, when he leaves the table the test should be done 
for both his neighbours. 

In the universe we assume declared 

t) the semaphore mutex, initially----1 

2) the integer array C [0: 4], with initially all element = 0 

3) the semaphore array prisem [0: 4] with initially all elements = 0 

4) procedure test (integer value K); 

i] C [ ( K - - t )  mod 5] ~ 2 and C [K] = t  and C [ ( K + t )  rood 5] ~ 2 do 
begin C [K] : = 2 ;  V(prisem [K]) end; 

(This procedure, which resolves unstability for K when present, will only be 
called from within a critical section). 

In this universe the life of philosopher w can now be coded 

cycle begin think; 
P (mutex) ; 

C [w] : = t ; test (w) ; 
V (mutex) ; 
P (prisem [w]) ; eat 
P (mutex) ; 

C[w] : = 0 ;  test [ ( w + t )  mod 5]; test [ (w-- t )  rood 5]; 
V (mutex) 

end. 

And this concludes the solution I was aiming at. I have shown it, together with the 
way in which it was derived, for the following reasons. 

t) The arrangement with the private semaphore for each process and the 
common semaphore for mutual exclusion in order to allow for unambiguous 
inspection and modification of common state variables is typical for the way in 
which in the T H E  multiprogramming system all synchronization restrictions have 
been implemented that were more complicated than straightforward mutual 
exclusion or synchronization along an information stream (the latter synchroni- 
zation has been implemented directly with the aid of a general semaphore). 

2) The solution (inclusive the need for the introduction of the intermediate 
state called "hungry") has been derived by means of a formal analysis of the 
synchronization restriction. I t  is exemplar for the way in which the flows of 
mutual obligations for waking up have been derived in the design phase of the 
T H E  multiprogramming system. It  is this analysis that I have called "A  con- 
structive approach to the problem of program correctness". 

With respect to this particular solution I would like to make some further 
remarks. 
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Firstly the solution as presented is free from the danger of deadlock, as it 
should be. Yet it is highly improbable that  a solution like this can be accepted 
because it contains possibility of a particular philosopher being starved to death 
by a conspiration of his two neighbours. This can be overcome by more sophisti- 
cated rules (introducing besides the state " h u n g r y "  also the s t a t e "  very hungry")  ; 

this requires a more complicated analysis but by and large it follows the same 
pat tern as the derivation shown. This was another reason not to introduce the 
parallel P-operation: for the solution with the parallel P-operation we did not see 
an automatic way of avoiding the danger of individual starvation. 

Secondly we could have made a more crude solution: the procedure " t e s t "  
has a parameter  indicating for which philosopher the test has to be done; also 
in the critical sections we call the procedure"  t e s t "  precisely for those philosophers 
for whom there is a chance that  they should be woken up and for no others. This 
is very refined: we could have made a test procedure without parameter  that  
would simply test for any K if there was an unstability to be removed. But the 
problem could have been posed for 9 or 25 philosophers and the larger the number 
of philosophers, the more prohibitive the overhead of the crude solution would get. 

Thirdly, I have stated that  we "derived our solution in a reasonably con- 
trolled manner" :  although the formal analysis has been carried out almost 
mechanically, I would not like to suggest that  it should be done automatically, 
because in real life, whether we like it or not, the situation can be more compli- 
cated. 

We consider two classes of processes, class A and class B, sharing the same 
resource from a large pool. (The situation occurred in the T H E  mult iprogramming 
system with the total  pool of pages in the system.) Suppose now that  processes 
from class A ask and return items from this pool at high frequency, while those 
from class B do so at low frequency only. In that  case it is highly unattract ive 
to pose upon the highly frequent i tem releases of class A the (possibly) considerable 
overhead involved in the analysis of whether it is necessary to wake up one or 
more blocked processes. This high-frequency overhead was avoided by  delegating 
the waking-up obligation to (some) processes of class B and by garanteeing that  
at least one of these processes would be active when the boundary of the resource 
restriction was in danger of being approached. In other wirds, in order to reduce 
system overhead we removed the highly frequent inspection whether processes 
had to be woken up at the price of increasing the "react ion t ime"  there where 
an ultra short " response"  was not required. The taking of such decisions seems a 
basic responsibility of the system designer and I don't  see how they could be 
taken automatically. 

The above concludes my discussion of the chosen bot tom layer. In the final 
part  of this paper I would like to discuss briefly an alternative solution. 

7. 

The chosen bot tom layer implements a family of sequential processes plus a 
few synchronizing primitives, the remaining part  of the system, to be composed 
on top of it, will exist of a set of harmoniously cooperating sequential processes. 
The interface is characterized by a number of features 
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a) the bottom layer treats all sequential processes on the same footing 

b) the sequential processes communicate to eachother via commonly accessible 
variables 

c) critical sections ensure the unambiguous interpretation and modification 
of these common variables. 

One or two objections can be raised to this organisation; they center around 
the observation that each sequential process can be in one of two mutually 
exclusive, radically different states: either the process is inside its critical section 
or it is not. Inside its critical section it is allowed to access the common variables, 
outside it is not. In actual fact this difference does not only pertain to accessibility 
of information, it has also a bearing on processor allocation as implemented in the 
bottom layer. Given a process without hurry it is permissible to take the processor 
away from it for longer periods of time, but it is unattractive to do so in the middle 
of a critical section: if a process is stopped within a critical section it blocks 
for the other processes the mechanism needed for their cooperation and the 
remaining processes are bound to come to a grinding halt. In the THE multi- 
programming system this has been overcome by giving processes two colours--red 
or whi te- -by making each process red while it is in a critical section and by never 
granting the processor to a white process if a red one is logically allowed to 
proceed. 

Furthermore there is the aspect of reproducibility. To an individual user, 
offering a strictly sequential program to the system, we should like to present a 
strictly deterministic automation. In the system a number of sequential processes. 
are dedicated to the processing of user programs, they act as slots into which a 
user program can be inserted; whenever the user program refers to a shared 
resource the translator effectively inserts--via a subroutine call--the critical 
section required for this cooperation. As a result, what happens in this slot is 
perfectly reproducible as long as the sequential process remains outside critical 
sections. But if we wish to charge our user and also insist that the charge be 
reproducible, we can only charge him for the activity of the slot outside critical 
sections! What happens inside the critical sections is situation dependent system 
overhead: it does not really "belong" to the activity of the process in which the 
critical section occurs. 

Finally, we know how to interpret the evolution of a sequential process as a 
path through " i t s "  state space as is spanned by " i t s "  variables. But for this 
interpretation to be valid, it is necessary that all variables "belong" uniquely to 
one sequential process. 

It  is this collection of observations that was an incentive to redo some of our 
thinking about sequential processes and to reorder the total activity taking 
place in the system. Instead of N sequential processes cooperating in critical 
sections via common variables, we take out the critical sections and combine 
them into a N + t st process, called " a  secretary";  the remaining N processes 
are called "directors".  Instead of N equivalent processes, we now have N directors 
served by a common secretary. (We have used the metaphor of directors and a 
common secretary because in the director-secretary relation in real-life organisation 
its also unclear who is the master and who is the slave!) 
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What used to be critical sections in the N processes are in the directors "calls 
upon the secretary". 

The relation between a set of directors and their common secretary shows 
great resemblance to the relation between a set of mutually independent programs 
and a common library. What is regarded as a single, unanalysed action on the 
level of a director, is a finite sequential process on the level of the secretary, 
similar to the relation between main program and subroutines. 

But there is also a difference. In the case of a common library of re-entrant 
procedures, the library does not need to have a private state space: whenever a 
library procedure is called its local state space can be embedded (for the duration 
of the call) in the (extendable) state space of the calling program. 

A secretary, however, has her own private state space, comprising al l"  common 
variables". One of the main reasons to introduce the concept of "a secretary" 
is that  now we have identified a process to which the "common variables" 
belong: they belong to the common secretary. 

To stress the specific nature of a secretary, I call her "a semi-sequential 
process". A fully sequential process consists of a number of actions to be per- 
formed one after the other in an order determined by the evolution of this process. 
A secretary is a bunch of actions--" operators in her state space" -- to be performed 
one after the other, but in an undefined order, i.e. depending on the calls of 
her directors. 

A secretary presents itself primarily as a bunch of non-reentrant routines 
with a common state space. But as far as the activity of the main program is 
concerned there is a difference between the routine of a secretary and a normal 
subroutine. During normal subroutine call we can regard the main program 
"asleep", while the return from the subroutine "wakes" the main program again. 
When a director calls a secretary--for instance when a philosopher wishes to 
notify the secretary that now he is hungry-- the  secretary may decide to keep 
him asleep, a decision that implies that she should wake him up in one of her later 
activities. As a result the identity of the calling program cannot remain anonymous 
as in the case of the normal subroutine. The secretary must have variables of 
the type "process identi ty" whenever she is called the identity of the calling 
process is handed over in an implicit input parameter, when she signals a release 
--analogous to the return of the normal subroutine--she will supply the identity 
of the process to be woken up. 

In real time a director can be in three possible states with respect to his 
secretaries 

a) "act ive" ,  i.e. his progress is allowed 

b) "calling", i.e. he has tried to initiate a call on a secretary, but the call 
could not be honoured, e.g. because the secretary was busy with another call 

c) "sleeping", i.e. a call has been honoured but the secretary's activity in 
which he will be released has not ended. 

The state "calling" has hardly any logical significance: it would not occur 
if the director was stopped just before the call that  could not be honoured. 
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With respect to her directors a secretary can be 

a) " b u s y " ,  i.e. engaged in one for her (finite) algorithms 

b) " id le" ,  i.e. ready to honour a next call from one of her directors. 

Note that  a secretary may  be simultaneously busy with respect to her directors 
and calling or sleeping with respect to one of her subsecretaries. 

In two respects, the above scheme asks for embellishments. Firstly, a secretary 
may  be in such a state that  certain calls on her service are inconvenient. With each 
call we can associate a masking bit, stating whether with respect to that  call she 
is " responding"  or "deaf". A secretary managing an unbounded buffer could 
be deaf for the consumer's call when her buffer is empty.  Here we have another 
reason why a director may  be in the state "cal l ing":  besides being busy the 
secretary could be deaf for the call concerned. For the reasons stated I have my  
doubts as to whether this embellishment is very useful, but I mention it because 
it seems more useful than similar embellishments that  have been suggested, e.g. 
making a secretary responding to an enumerated list of directors. The secretary 
has to see to it that  certain constraints will not be violated, i.e. she may be in such 
a state that  she can not allow certain of her possible actions to take place. This 
has nothing to do with the identity of the director calling for such an action. 

A more vital embellishment is parameter  passing: in general a director will 
like to send a message to his secretary when calling he r - - a  producing director 
will wish to hand over the portion to be buffered; in general a director will require 
an answer back from his secretary when she has released his cal l - -a  consuming 
director will wish to receive the portion to be unbuffered. 

Note that  this message passing system is much more modest than various mail 
box systems that  have been suggested in which processes can send messages 
(and proceed !) to other processes. In such systems elaborate message queues can 
be built up. Such systems suffer from two possible drawbacks. Firstly, imple- 
mentation reasons are apt to impose upper limits to lengths of message queues: 
"message queue full" may  be another reason to delay a process and to show 
the absence of the danger of deadly embraces may  prove to be very difficult. 
Secondly, and that  seems worse, with the queueing messages we have reintroduced 
state information that  cannot be associated with an individual process. 

From an esthetic point of view the relation director-secretary is very pleasing 
because it allows secretaries to act as directors with respect to subsecretaries. 
This places our processes in a hierarchy which avoids deadly embraces as far 
as mutual  exclusion is concerned in exactly the same way in which mutual  exclu- 
sion semaphores would need to be ordered in the case of nested critical sections. 
Whether, however, actual systems can be built up with a meaningful hierarchy 
of secretaries of reasonable dep th - - say  larger than two-- remains  to be seen. 
That  is why I called this point of view "esthetically pleasing". 

Finally: I can only view a well-structured system as a hierarchy of layers 
and in the design process the interface between these layers has to be designed 
and decided upon each time. I am not so much bothered by  designer's willingness 
and ability to propose such interfaces, I am seriously bothered by the lack of 
commonly accepted yardsticks along which to compare and evaluate such propos- 
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als. My "playing" with a bo t tom layer should therefore not  be regarded as a 
definite proposal for yet  another  interface, it  was mean t  to i l lustrate a way of 
thinking.  

Acknowledgement is due to my former students J. Bomhoff and W. H. J. Feyen 
and to Professor C. A. R. Hoare from the Queen's University of Belfast. 
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