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While evidence indicates that neural systems may be employing sparse
approximations to represent sensed stimuli, the mechanisms underlying
this ability are not understood. We describe a locally competitive algo-
rithm (LCA) that solves a collection of sparse coding principles minimiz-
ing a weighted combination of mean-squared error and a coefficient cost
function. LCAs are designed to be implemented in a dynamical system
composed of many neuron-like elements operating in parallel. These al-
gorithms use thresholding functions to induce local (usually one-way) in-
hibitory competitions between nodes to produce sparse representations.
LCAs produce coefficients with sparsity levels comparable to the most
popular centralized sparse coding algorithms while being readily suited
for neural implementation. Additionally, LCA coefficients for video se-
quences demonstrate inertial properties that are both qualitatively and
quantitatively more regular (i.e., smoother and more predictable) than
the coefficients produced by greedy algorithms.

1 Introduction

Natural images can be well approximated by a small subset of elements
from an overcomplete dictionary (Field, 1994; Olshausen, 2003; Candès &
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Sparse Coding in Neural Circuits 2527

Donoho, 2004). The process of choosing a good subset of dictionary elements
along with the corresponding coefficients to represent a signal is known as
sparse approximation. Recent theoretical and experimental evidence indicates
that many sensory neural systems appear to employ similar sparse repre-
sentations with their population codes (Vinje & Gallant, 2002; Lewicki, 2002;
Olshausen & Field, 1996, 2004; Delgutte, Hammond, & Cariani, 1998), en-
coding a stimulus in the activity of just a few neurons. While sparse coding
in neural systems is an intriguing hypothesis, the challenge of collecting
simultaneous data from large neural populations makes it difficult to eval-
uate its credibility without testing predictions from a specific proposed
coding mechanism.

Unfortunately, we currently lack a proposed sparse coding mechanism
that is realistically implementable in the parallel architectures of neural
systems and produces sparse coefficients that efficiently represent the time-
varying stimuli important to biological systems. Sparse approximation is
a difficult nonconvex optimization problem that is at the center of much
research in mathematics and signal processing. Existing sparse approxima-
tion algorithms suffer from one or more of the following drawbacks: (1) they
are not implementable in the parallel analog architectures used by neural
systems; (2) they have difficulty producing exactly zero-valued coefficients
in finite time; (3) they produce coefficients for time-varying stimuli that
contain inefficient fluctuations, making the stimulus content more difficult
to interpret; or (4) they use only a heuristic approximation to minimizing a
desired objective function.

We introduce and study a new neurally plausible algorithm based on
the principles of thresholding and local competition that solves a family of
sparse approximation problems corresponding to various sparsity metrics.
In our locally competitive algorithms (LCAs), neurons in a population con-
tinually compete with neighboring units using (usually one-way) lateral
inhibition to calculate coefficients representing an input signal using an
overcomplete dictionary. Our continuous-time LCA is described by the dy-
namics of a system of nonlinear ordinary differential equations (ODEs)
that govern the internal state (membrane potential) and external commu-
nication (short-term firing rate) of units in a neural population. These sys-
tems use computational primitives that correspond to simple analog ele-
ments (e.g., resistors, capacitors, amplifiers), making them realistic for par-
allel implementations. We show that each LCA corresponds to an optimal
sparse approximation problem that minimizes an energy function combin-
ing reconstruction mean-squared error (MSE) and a sparsity-inducing cost
function.

This letter develops a neural architecture for LCAs, shows their corre-
spondence to a broad class of sparse approximation problems, and demon-
strates that LCAs possess three properties critical for a neurally plausible
sparse coding algorithm. First, we show that the LCA dynamical system is
stable, guaranteeing that a physical implementation is well behaved. Next,
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2528 C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen

we show that LCAs perform their primary task well, finding codes for fixed
images that have sparsity comparable to the most popular centralized al-
gorithms. Finally, we demonstrate that LCAs display inertia, coding video
sequences with a coefficient time series that is significantly smoother in time
than the coefficients produced by other algorithms. This increased coeffi-
cient regularity better reflects the smooth nature of natural input signals,
making the coefficients much more predictable and making it easier for
higher-level structures to identify and understand the changing content in
the time-varying stimulus.

Although still lacking in biophysical realism, the LCA methods pre-
sented here represent a first step toward a testable neurobiological model
of sparse coding. As an added benefit, the parallel analog architecture de-
scribed by our LCAs could greatly benefit the many modern signal process-
ing applications that rely on sparse approximation. Although the principles
we describe apply to many signal modalities, we will focus on the visual
system and the representation of video sequences.

2 Background and Related Work

2.1 Sparse Approximation. Given an N-dimensional stimulus s ∈ R
N

(e.g., an N-pixel image), we seek a representation in terms of a dictionary D
composed of M vectors {φm} that span the space R

N. Define the �p norm of
the vector x to be ||x||p = (

∑
m |xm|p)1/p and the inner product between x and

y to be 〈x, y〉 = ∑
m xm ym. Without loss of generality, assume the dictionary

vectors are unit norm, ||φm||2 = 1. When the dictionary is overcomplete
(M > N), there are an infinite number of ways to choose coefficients {am}
such that s = ∑M

m=1 amφm. In optimal sparse approximation, we seek the
coefficients having the fewest number of nonzero entries by solving the
minimization problem,

min
a

||a||0 subject to s =
M∑

m=1

amφm, (2.1)

where the �0 “norm”1 denotes the number of nonzero elements of a =
[a1, a2, . . . , aM]. Unfortunately, this combinatorial optimization problem is
NP-hard (Natarajan, 1995).

In the signal processing community, two approaches are typically used
to find acceptable suboptimal solutions to this intractable problem. The first
general approach substitutes an alternate sparsity measure to convexify the

1While clearly not a norm in the mathematical sense, we will use this terminology
prevalent in the literature.
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�0 norm. One well-known example is basis pursuit (BP) (Chen, Donoho, &
Saunders, 2001), which replaces the �0 norm with the �1 norm:

min
a

||a||1 subject to s =
M∑

m=1

amφm. (2.2)

Despite this substitution, BP has the same solution as the optimal
sparse approximation problem (Donoho & Elad, 2003) if the signal is
sparse compared to the most similar pair of dictionary elements (e.g.,
||a||0 < minm �=n

1
2 [1 + 1/〈φm,φn〉]). In practice, the presence of signal noise

often leads to using a modified approach called basis pursuit denoising
(BPDN) (Chen et al., 2001) that makes a trade-off between reconstruction
mean-squared error (MSE) and sparsity in an unconstrained optimization
problem:

min
a

∣∣∣∣∣
∣∣∣∣∣s −

M∑
m=1

amφm

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ ||a||1

, (2.3)

where λ is a trade-off parameter. BPDN provides the �1-sparsest approxi-
mation for a given reconstruction quality. Many algorithms can be used to
solve the BPDN optimization problem, with interior point-type methods
being the most common choice.

The second general approach employed by signal processing researchers
uses iterative greedy algorithms to constructively build up a signal
representation (Tropp, 2004). The canonical example of a greedy algo-
rithm2 is known in the signal processing community as matching pur-
suit (MP) (Mallat & Zhang, 1993). The MP algorithm is initialized with
a residual r0 = s. At the kth iteration, MP finds the index of the sin-
gle dictionary element best approximating the current residual signal,
θk = arg maxm |〈rk−1,φm〉|. The coefficient dk = 〈rk−1,φθk 〉 and index θk are
recorded as part of the reconstruction, and the residual is updated,
rk = rk−1 − φθk dk . After K iterations, the signal approximation using MP
is given by ŝ = ∑K

k=1 φθk dk . Though they may not be optimal in general,
greedy algorithms often efficiently find good sparse signal representations
in practice.

2Many types of algorithms for convex and nonconvex optimization could be consid-
ered “greedy” in some sense (including systems based on descending the gradient of
an instantaneous energy function). Our use of this terminology will apply to the family
of iterative greedy algorithms such as MP to remain consistent with the majority of the
signal processing literature.
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2530 C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen

2.2 Sparse Coding in Neural Systems. Recent research in neuroscience
suggests that V1 population responses to natural stimuli may be the result
of a sparse approximation of images. For example, it has been shown that
both the spatial and temporal properties of V1 receptive fields may be ac-
counted for in terms of a dictionary that has been optimized for sparseness
in response to natural images (Olshausen, 2003). Additionally, V1 record-
ings in response to natural scene stimuli show activity levels (corresponding
to the coefficients {am}) becoming more sparse as neighboring units are also
stimulated (Vinje & Gallant, 2002). These populations are typically very
overcomplete (Olshausen & Field, 2004), allowing great flexibility in the
representation of a stimulus. Using this flexibility to achieve sparse codes
might offer many advantages to sensory neural systems, including enhanc-
ing the performance of subsequent processing stages, increasing the storage
capacity in associative memories, and increasing the energy efficiency of the
system (Olshausen & Field, 2004).

However, existing sparse approximation algorithms do not have im-
plementations that correspond both naturally and efficiently to plausible
neural architectures. For convex relaxation approaches, a network imple-
mentation of BPDN can be constructed (Olshausen & Field, 1996), following
the common practice of using dynamical systems to implement direct gra-
dient descent optimization (Cichocki & Unbehauen, 1993). Unfortunately,
this implementation has two major drawbacks. First, it lacks a natural math-
ematical mechanism to make small coefficients identically zero. While the
true BPDN solution would have many coefficients that are exactly zero,
direct gradient methods to find an approximate solution in finite time pro-
duce coefficients that merely have small magnitudes. Ad hoc thresholding
can be used on the results to produce zero-valued coefficients, but such
methods lack theoretical justification and can be difficult to use without
oracle knowledge of the best threshold value. Second, this implementation
requires persistent (two-way) signaling between all units with overlapping
receptive fields (e.g., even a node with a nearly zero value would have to
continue sending inhibition signals to all similar nodes). In greedy algo-
rithm approaches, spiking neural circuits can be constructed to implement
MP (Perrinet, 2005). Unfortunately, this type of circuit implementation re-
lies on a temporal code that requires tightly coupled and precise elements
to both encode and decode.

Beyond implementation considerations, existing sparse approximation
algorithms also do not consider the time-varying stimuli faced by neu-
ral systems. A time-varying input signal s(t) is represented by a set of
time-varying coefficients {am(t)}. While temporal coefficient changes are
necessary to encode stimulus changes, the most useful encoding would use
coefficient changes that reflect the character of the stimulus. In particular,
sparse coefficients should have smooth, temporal variations in response
to smooth changes in the image. However, most sparse approximation
schemes have a single goal: select the smallest number of coefficients to
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represent a fixed signal. This single-minded approach can produce co-
efficient sequences for time-varying stimuli that are erratic, with drastic
changes in not only the values of the coefficients but also the selection of
which coefficients are used. These erratic temporal codes are inefficient be-
cause they introduce uncertainty about which coefficients are coding the
most significant stimulus changes, thereby complicating the process of un-
derstanding the changing stimulus content.

In section 3 we develop our LCAs, in which dictionary elements con-
tinually fight for the right to represent the stimulus. These LCAs adapt
their coefficients continually over time as the input changes without hav-
ing to build a new representation from scratch at each time step. This
evolution induces inertia in the coefficients, regularizing the temporal vari-
ations for smoothly varying input signals. In contrast to the problems seen
with current algorithms, our LCAs are easily implemented in analog cir-
cuits composed of neuron-like elements, and they encourage both spar-
sity and smooth temporal variations in the coefficients as the stimulus
changes.

2.3 Other Related Work. There are several sparse approximation meth-
ods that do not fit into the two primary approaches of pure greedy algo-
rithms or convex relaxation. Methods such as sparse Bayesian learning
(Wipf & Rao, 2004; Tipping, 2001), FOCUSS (Rao & Kreutz-Delgado, 1999),
modifications of greedy algorithms that select multiple coefficients on each
iteration (Donoho, Tsaig, Drori, & Starck, 2006; Pece & Petkov, 2000; Fe-
ichtinger, Türk, & Strohmer, 1994), and MP extensions that perform an or-
thogonalization at each step (Davis, Mallat, & Zhang, 1994; Rebollo-Neira &
Lowe, 2002) involve computations that would be very difficult to implement
in a parallel distributed architecture. While FOCUSS can implement both
�1 global optimization and �0 local optimization (Rao & Kreutz-Delgado,
1999) in a dynamical system (Kreutz-Delgado et al., 2003) that uses parallel
computation to implement a competition strategy among the nodes (strong
nodes are encouraged to grow while weak nodes are penalized), it does not
lend itself to forming smooth time-varying representations because coeffi-
cients cannot be reactivated once they go to zero.

There are also several sparse approximation methods built on a par-
allel computational framework that are related to our LCAs (De Mol &
Defrise, 2002; Fischer, Cristóbal, & Redondo, 2004; Kingsbury & Reeves,
2003; Herrity, Gilbert, & Tropp, 2006; Rehn & Sommer, 2007; Hale, Yin, &
Zhang, 2007; Figueiredo & Nowak, 2003; Daubechies, Defrise, & De Mol,
2004; Blumensath & Davies, in press). These algorithms typically start the
first iteration with many superthreshold coefficients and iteratively try to
prune the representation through a thresholding procedure, rather than
charging up from zero as in our LCAs. Appendix A contains a detailed
comparison.
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2532 C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen

3 Locally Competitive Algorithms for Sparse Coding

3.1 Architecture of Locally Competitive Algorithms. Our LCAs as-
sociate each element of the dictionary φm ∈ D with a separate computing
node, or “neuron.” When the system is presented with an input image
s(t), the population of neurons evolves according to fixed dynamics (de-
scribed below) and settles on a collective output {am(t)}, corresponding
to the short-term average firing rate of the neurons.3 The goal is to de-
fine the LCA system dynamics so that few coefficients have nonzero
values while approximately reconstructing the input, ŝ (t) = ∑

m am(t) φm

≈ s(t).
The LCA dynamics are inspired by several properties observed in neural

systems: inputs cause the membrane potential to “charge up” like a leaky
integrator; membrane potentials exceeding a threshold produce “action po-
tentials” for extracellular signaling; and these superthreshold responses in-
hibit neighboring units through horizontal connections. We represent each
unit’s subthreshold value by a time-varying internal state um(t). The unit’s
excitatory input current is proportional to how well the image matches with
the node’s receptive field, bm(t) = 〈φm, s(t)〉. When the internal state um of a
node becomes significantly large, the node becomes “active” and produces
an output signal am used to represent the stimulus and inhibit other nodes.
This output coefficient is the result of an activation function applied to the
membrane potential, am = Tλ(um), parameterized by the system threshold
λ. Though similar activation functions have traditionally taken a sigmoidal
form, we consider activation functions that operate as thresholding devices
(e.g., essentially zero for values below λ and essentially linear for values
above λ).

The nodes best matching the stimulus will have internal state variables
that charge at the fastest rates and become active soonest. To induce the
competition that allows these nodes to suppress weaker nodes, we have
active nodes inhibit other nodes with an inhibition signal proportional to
both their activity level and the similarity of the nodes’ receptive fields.
Specifically, the inhibition signal from the active node m to any other node
n is proportional to amGm,n, where Gm,n = 〈φm,φn〉. The possibility of uni-
directional inhibition gives strong nodes a chance to prevent weaker nodes
from becoming active and initiating counterinhibition, thus making the
search for a sparse solution more energy efficient. Note that unlike the
direct gradient descent methods described in section 2, which require two-
way inhibition signals from all nodes that overlap (i.e., have Gm,n �= 0),
LCAs require only one-way inhibition from a small selection of nodes (only
the active nodes).

3Note that for analytical simplicity, we allow positive and negative coefficients, but
rectified systems could use two physical units to implement one LCA node.
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Figure 1: (a) LCA nodes behave as a leaky integrators, charging with a speed
that depends on how well the input matches the associated dictionary element
and the inhibition received from other nodes. (b) A system diagram shows the
inhibition signals being sent between nodes. In this case, only node 2 is shown
as being active (i.e., having a coefficient above threshold) and inhibiting its
neighbors. Since the neighbors are inactive, the inhibition is one way.

Putting all of the above components together, LCA node dynamics are
expressed by the nonlinear ordinary differential equation (ODE):

u̇m(t) = 1
τ

[
bm(t) − um(t) −

∑
n�=m

Gm,nan(t)

]
. (3.1)

This ODE is essentially the same form as the well-known continuous
Hopfield network (Hopfield, 1984). Figure 1 shows an LCA node circuit
schematic and a system diagram illustrating the lateral inhibition. To ex-
press the system of coupled nonlinear ODEs that govern the whole dy-
namic system, we represent the internal state variables in the vector u(t) =
[u1(t), . . . , uM(t)]t , the active coefficients in the vector a(t) = [a1(t), . . . ,
aM(t)]t = Tλ(u(t)), the dictionary elements in the columns of the (N × M)
matrix � = [φ1, . . . ,φM], and the driving inputs in the vector b(t) =
[b1(t), . . . , bM(t)]t = �t s(t). The function Tλ(·) performs element-by-element
thresholding on vector inputs. The stimulus approximation is ŝ(t) = �a(t),
and the full dynamic system equation is

u̇(t) = f (u(t)) = 1
τ

[
b(t) − u(t) − (

�t� − I
)

a(t)
]
,

(3.2)
a(t) = Tλ(u(t)) .

3.2 Sparse Approximation by Locally Competitive Algorithms. The
LCA architecture described by equation 3.2 solves a family of sparse ap-
proximation problems with different sparsity measures. Specifically, LCAs
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2534 C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen

descend an energy function combining the reconstruction MSE and a
sparsity-inducing cost penalty C(·),

E(t) = 1
2

∣∣∣∣s(t) − ŝ (t)
∣∣∣∣2 + λ

∑
m

C(am(t)) . (3.3)

The specific form of the cost function C(·) is determined by the form of the
thresholding activation function Tλ(·). For a given threshold function, the
cost function is specified (up to a constant) by

λ
dC(am)

dam
= um − am = um − Tλ(um). (3.4)

This correspondence between the thresholding function and the cost func-
tion can be seen by computing the derivative of E with respect to the active
coefficients, {am} (see appendix B). Using the relationship in equation 3.4
and letting the internal states {um} evolve according to u̇m ∝ − ∂ E

∂am
yields the

equation for the internal state dynamics above in equation 3.1. Note that
although the dynamics are specified through a gradient approach, the sys-
tem is not performing direct gradient descent (e.g., u̇m �= − ∂ E

∂um
). As long as

am and um are related by a monotonically increasing function, the {am} will
also descend the energy function E . This method for showing the corre-
spondence between a dynamic system and an energy function is essentially
the same procedure used by Hopfield (1984) to establish network dynamics
in associative memory systems.

We focus specifically on the cost functions associated with thresholding
activation functions. Thresholding functions limit the lateral inhibition by
allowing only “strong” units to suppress other units and forcing most coef-
ficients to be identically zero. For our purposes, thresholding functions Tλ(·)
have two distinct behaviors over their range: they are essentially linear with
unit slope above threshold λ and essentially zero below threshold. Among
many reasonable choices for thresholding functions, we start with a smooth
sigmoidal function,

T(α,γ,λ)(um) = um − αλ

1 + e−γ (um−λ)
, (3.5)

where γ is a parameter controlling the speed of the threshold transition
and α ∈ [0, 1] indicates what fraction of an additive adjustment is made
for values above threshold. An example sigmoidal thresholding func-
tion is shown in Figure 2a. We are particularly interested in the limit of
this thresholding function as γ → ∞, a piecewise linear function we de-
note as the ideal thresholding function. In the signal processing literature,
T(0,∞,λ)(·) = limγ→∞ T(0,γ,λ)(·) is known as a hard thresholding function,
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Figure 2: Relationship between the threshold function T(α,γ,λ)(·) and the sparsity
cost function C(·). Only the positive halves of the symmetric threshold and cost
functions are plotted. (a) Sigmoidal threshold function and (b) cost function for
γ = 5, α = 0 and λ = 1. (c) The ideal hard thresholding function (γ = ∞, α = 0,
λ = 1) and the (d) corresponding cost function. The dashed line shows the limit,
but coefficients produced by the ideal thresholding function cannot take values
in this range. (e) The ideal soft thresholding function (γ = ∞, α = 1, λ = 1) and
the (f) corresponding cost function.

and T(1,∞,λ)(·) = limγ→∞ T(1,γ,λ)(·) is known as a soft thresholding function
(Donoho, 1995).

Combining equations 3.4 and 3.5, we can integrate numerically to deter-
mine the cost function corresponding to T(α,γ,λ)(·), shown in Figure 2b. For
the ideal threshold functions, we derive a corresponding ideal cost function,

C(α,∞,λ)(am) = (1 − α)2λ

2
+ α |am| . (3.6)

Details of this derivation are in appendix C. Note that unless α = 1, the
ideal cost function has a gap because active coefficients cannot take all
possible values, |am| /∈ [0, (1 − α)λ] (i.e., the ideal thresholding function is
not technically invertible).

3.3 Special Case: Soft-Thresholding Locally Competitive Algorithm.
As we see in section 3.2, LCAs can optimize a variety of sparsity measures
depending on the choice of thresholding function. One special case is the
soft thresholding function, corresponding to α = 1 and shown graphically
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Figure 3: (a) The top 200 coefficients from a BPDN solver sorted by magni-
tude. (b) The same coefficients sorted according to the magnitude ordering of
the SLCA coefficients. While there is a gross decreasing trend noticeable, the
largest SLCA coefficients are not in the same locations as the largest BPDN
coefficients. Although the solutions have equivalent energy functions, the two
sets of coefficients differ significantly.

in Figures 2e and 2f. The soft-thresholding locally competitive algorithm
(SLCA) applies the �1 norm as a cost function on the active coefficients,

C(1,∞,λ)(am) = |am|.

Thus, the SLCA is simply another solution method for the general BPDN
problem described in section 2, and simulations confirm that the SLCA
does indeed find solutions with values of E(t) equivalent to the solutions
produced by standard interior-point-based methods. Despite minimizing
the same convex energy function, SLCA and BPDN solvers may find dif-
ferent sets of coefficients, as illustrated in Figure 3. This may be due to the
nonuniqueness of a BPDN solution4 or because the numerical approxima-
tions have not quite converged to a global optimum in the allotted compu-
tation time. The connection between soft thresholding and BPDN is well
known in the case of orthonormal dictionaries (Chen et al., 2001), and recent
results (Elad, 2006) have given some justification for using soft thresholding
in overcomplete dictionaries. The SLCA provides another formal connec-
tion between the soft-thresholding function and the �1 cost function.

Though BPDN uses the �1-norm as its sparsity penalty, we often expect
many of the resulting coefficients to be identically zero (especially when

4With an overcomplete dictionary, it is technically possible to have a BPDN energy
function that is convex (guaranteeing all local minima are global minima) but not strictly
convex (guaranteeing that a global minimum is unique).
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Sparse Coding in Neural Circuits 2537

M � N). However, most numerical methods (including direct gradient de-
scent and interior point solvers) will drive coefficients toward zero but
will never make them identically zero. While an ad hoc threshold could
be applied to the results of a BPDN solver, the SLCA has the advantage of
incorporating a natural thresholding function that keeps coefficients iden-
tically zero during the computation unless they become active. In other
words, while BPDN solvers often start with many nonzero coefficients and
try to force coefficients down, the SLCA starts with all coefficients equal to
zero and lets only a few grow up. This advantage is especially important
for neural systems that must expend energy for nonzero values throughout
the entire computation.

3.4 Special Case: Hard-Thresholding Locally Competitive Algorithm.
Another important special case is the hard thresholding function, corre-
sponding to α = 0 and shown graphically in Figures 2c and 2d. Using
the relationship in equation 3.4, we see that this hard-thresholding locally
competitive algorithm (HLCA) applies an �0-like cost function by using a
constant penalty regardless of magnitude,

C(0,∞,λ)(am) = λ

2
I (|am| > λ),

where I (·) is the indicator function evaluating to 1 if the argument is true
and 0 if the argument is false. Unlike the SLCA, the HLCA energy function
is not convex, and the system will find only a local minimum of the energy
function E(t). As with the SLCA, the HLCA also has connections to known
sparse approximation principles. If node m is fully charged, the inhibition
signal it sends to other nodes would be exactly the same as the update step
when the mth node is chosen in the MP algorithm. However, due to the
continuous competition between nodes before they are fully charged, the
HLCA is not equivalent to MP in general.

As a demonstration of the power of competitive algorithms over greedy
algorithms such as MP, consider a canonical example used to illustrate the
shortcomings of iterative greedy algorithms (Chen et al., 2001; DeVore &
Temlyakov, 1996). For this example, specify a positive integer K < N, and
construct a dictionary D with M = N + 1 elements to have the following
form:

φm =


em if m ≤ N

K∑
n=1

κen +
N∑

n=K+1

(κ/(n − K ))en if m = N + 1,

where em is the canonical basis element (i.e., it contains a single 1 in the
mth location) and κ is a constant to make the vectors have unit norm. In
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Figure 4: (a) The dictionary in this example has one “extra” element that consists
of decaying combinations of all other dictionary elements. (b) The input vector
has a sparse representation in just a few dictionary elements. (c) MP initially
chooses the “extra” dictionary element, preventing it from finding the optimally
sparse representation (coefficients shown after 100 iterations). (d) In contrast,
the HLCA system finds the optimally sparse coefficients. (e) The time dynamics
of the HLCA system illustrate its advantage. The “extra” dictionary element is
the first node to activate, followed shortly by the nodes corresponding to the
optimal coefficients. The collective inhibition of the optimal nodes causes the
“extra” node to die away.

words, the dictionary includes the canonical basis along with one “extra”
element that is a decaying combination of all other elements (illustrated in
Figure 4, with N = 20 and K = 5). The input signal is sparsely represented
in the first K dictionary elements, s = ∑K

m=1
1√
K

em. The first MP iteration
chooses φM, introducing a residual with decaying terms. Although s has
an exact representation in K elements, MP iterates forever, trying to atone
for this poor initial choice. In contrast, the HLCA initially activates the Mth
node but uses the collective inhibition from nodes 1, . . . , K to suppress this
node and calculate the optimal set of coefficients. While this pathological
example is unlikely to exactly occur in natural signals, it is often used as
a criticism of greedy methods to demonstrate their shortsightedness. We
mention it here to demonstrate the flexibility of LCAs and their differences
from pure greedy algorithms.
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4 LCA System Properties

To be a physically viable sparse coding mechanism, LCAs must exhibit
several critical properties: the system must remain stable under normal
operating conditions, the system must produce sparse coefficients that rep-
resent the stimulus with low error, and coefficient sequences must exhibit
regularity in response to time-varying inputs. In this section, we show that
LCAs exhibit good characteristics in each of these three areas. We focus our
analysis on the HLCA because it yields the most interesting results and is
notationally the cleanest to discuss. In general, the analysis principles we
use apply to all LCAs through straightforward (through perhaps laborious)
extensions.

4.1 Stability. Any proposed neural system must remain well be-
haved under normal conditions. While linear systems theory has an
intuitive notion of stability that is easily testable (Franklin, Powell, &
Emami-Naeini, 1986), no such unifying concept of stability exists for non-
linear systems (Khalil, 2002). Instead, nonlinear systems are characterized
in a variety of ways, including their behavior near an equilibrium point u∗

where f (u∗) = 0 and their input-output relationship.
The various stability analyses of sections 4.1.1 and 4.1.2 depend on a

common criterion. Define Mu(t) ⊆ [1, . . . , M] as the set of nodes that are
above threshold in the internal state vector u(t), Mu(t) = {m : |um(t)| ≥ λ}.
We say that the LCA meets the stability criterion at time t if the set of active
vectors {φm}m∈Mu(t) is linearly independent. It makes some intuitive sense
that this condition is important: if a collection of linearly dependent nodes
is active simultaneously, the nodes could have growing coefficients but no
net effect on the reconstruction.

The system is likely to satisfy the stability criterion eventually under
normal operating conditions for two reasons. First, small subsets of dictio-
nary elements are unlikely to be linearly dependent unless the dictionary
is designed with this property (e.g., Tropp, in press). Second, sparse cod-
ing systems are actively trying to select dictionary subsets so that they
can use many fewer coefficients than the dimension of the signal space,∣∣Mu(t)

∣∣ � N � M. While the LCA lateral inhibition signals discourage lin-
early dependent sets from activating, the stability criterion can be violated
when a collection of nodes becomes active too quickly, before inhibition can
take effect. In simulation, we have observed this situation when the thresh-
old is too low compared to the system time constant. As discussed below,
the stability criterion amounts to a sufficient (but not necessary) condition
for good behavior, and we have never empirically observed the simulated
system becoming unstable even when this condition is transiently violated.

4.1.1 Equilibrium Points. In a LCA presented with a static input, we look
to the steady-state response (where u̇ (t) = 0) to determine the coefficients.
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2540 C. Rozell, D. Johnson, R. Baraniuk, and B. Olshausen

The character of the equilibrium points u∗ ( f (u∗) = 0) and the system’s
behavior in a neighborhood around an equilibrium point provides one
way to ensure that a system is well behaved. Consider the ball around an
equilibrium point Bε(u∗) = {u : ||u − u∗|| < ε}. Nonlinear system analysis
typically asks an intuitive question: If the system is perturbed within this
ball, does it then run away, stay where it is, or get attracted back? Specifically,
a system is said to be locally asymptotically stable (Bacciotti & Rosier, 2001)
at an equilibrium point u∗ if one can specify ε > 0 such that

u(0) ∈ Bε(u∗) ⇒ lim
t→∞ u(t) = u∗.

Previous research (Cohen & Grossberg, 1983; Yang & Dillon, 1994; Li,
Michel, & Porod, 1988) has used the tools of Lyapunov functions (Khalil,
2002) to study a Hopfield network (Hopfield, 1984) similar to the LCA
architecture. However, all of these analyses make assumptions that do not
encompass the ideal thresholding functions used in the LCAs (e.g., they
are continuously differentiable or monotone increasing). In section D.1, we
show that as long as the stability criterion is met, the HLCA:

� Has a finite number of equilibrium points.
� Has equilibrium points that are almost certainly isolated (no two

equilibrium points are arbitrarily close together).
� Is almost certainly locally asymptotically stable for every equilibrium

point.

The conditions that hold “almost certainly” are true as long as none of the
equilibria have components identically equal to the threshold, (u∗

m �= λ,∀m),
which holds with overwhelming probability. With a finite number of iso-
lated equilibria, we can be confident that the HLCA steady-state response
is a distinct set of coefficients representing the stimulus. Asymptotic sta-
bility also implies a notion of robustness, guaranteeing that the system
will remain well behaved even under perturbations (theorems 2.8 and 2.9
in Bacciotti & Rosier, 2001).

4.1.2 Input-Output Stability. In physical systems, it is important that the
energy of both internal and external signals remain bounded for bounded
inputs. One intuitive approach to ensuring output stability is to examine the
energy function E . We show in section D.2 that for nondecreasing threshold
functions, the energy function is nonincreasing ( d

dt E(t) ≤ 0) for fixed inputs.
While this is encouraging, it does not guarantee input-output stability. To
appreciate this effect, note that the HLCA cost function is constant for nodes
above threshold—nothing explicitly keeps a node from growing without
bound once it is active.

While there is no universal input-output stability test for general non-
linear systems, we observe that the LCA system equation is linear and
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fixed until a unit crosses threshold. A branch of control theory specifi-
cally addresses these switched systems (Decarlo, Cranicky, Pettersson, &
Lennartson, 2000). Results from this field indicate that input-output stabil-
ity can be guaranteed if the individual linear subsystems are stable and the
system does not switch “too fast” between these subsystems (Hespanha &
Morse, 1999). In section D.2 we give a precise mathematical statement of
this input-output stability and show that the HLCA linear subsystems are
individually stable if and only if the stability criterion is met. Therefore, the
HLCA is input-output stable as long as nodes are limited in how fast they
can change states. We expect that an infinitely fast switching condition is
avoided in practice either by the physical principles of the system imple-
mentation or through an explicit hysteresis in the thresholding function.

4.2 Sparsity and Representation Error. When the sparse approximation
problem is viewed through the lens of rate-distortion theory (Berger, 1971),
the most powerful algorithm produces the lowest reconstruction MSE for
a given sparsity. When the sparsity measure is the �1 norm, the problem
is convex and the SLCA produces solutions with equivalent �1-sparsity to
interior point BPDN solvers. Despite the analytic appeal of the �1 norm
as a sparsity measure, many systems concerned with energy minimization
(including neural systems) likely have an interest in minimizing the �0 norm
of the coefficients. The HLCA is appealing because of its �0-like sparsity
penalty, but this objective function is not convex and the HLCA may find
a local minimum. We will show that while HLCA cannot guarantee the
�0 sparsest solution, it produces coefficients that demonstrate comparable
sparsity to MP for natural images.

Insight about the HLCA reconstruction fidelity comes from rewriting the
LCA system equation:

u̇(t) = 1
τ

[�t(s(t) − ŝ(t)) − u(t) + T(α,∞,λ)(u(t))]. (4.1)

For a constant input, HLCA equilibrium points (u̇(t) = 0) occur when the
residual error is orthogonal to active nodes and balanced with the internal
state variables of inactive nodes:

〈φm, s(t) − ŝ (t)〉 =
{

um(t) if |um| ≤ λ

0 if |um| > λ
.

Therefore, when HLCA converges, the coefficients will perfectly recon-
struct the component of the input signal that projects onto the subspace
spanned by the final set of active nodes. Using standard results from frame
theory (Christensen, 2002), we can bound the HLCA reconstruction MSE in
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terms of the set of inactive nodes,

∣∣∣∣s(t) − ŝ (t)
∣∣∣∣2 ≤ 1

ηmin

∑
m/∈Mu(t)

|〈φm, s(t) − ŝ (t)〉|2 ≤
(
M − |Mu(t)|

)
λ2

ηmin
,

where ηmin is the minimum eigenvalue of (��t).
Though the HLCA is not guaranteed to find the globally optimal �0

sparsest solution, we must ensure that it does not produce unreasonably
nonsparse solutions. While the system nonlinearity makes it impossible to
analytically determine the LCA steady-state coefficients, it is possible to rule
out some coefficients as not being possible. For example, letM ⊆ [1, . . . , M]
be an arbitrary set of active coefficients. Using linear systems theory, we
can calculate the steady-state response ũM = limt→∞ u(t) assuming that M
stays fixed. If |̃uM

m | < λ for any m ∈ M or if |̃uM
m | > λ for any m /∈ M, thenM

cannot describe the set of active nodes in the steady-state response, and we
call it inconsistent. We show in appendix E that when the stability criterion
is met, the following statement is true for the HLCA: If s = φm, then any set of
active coefficients M with m ∈ M and |M| > 1 is inconsistent. In other words,
the HLCA may use the mth node or a collection of other nodes to represent
s, but it cannot use a combination of both. This result extends intuitively
beyond one-sparse signals: each component in an optimal decomposition
is represented by either the optimal node or another collection of nodes,
but not both. While not necessarily finding the optimal representation, the
system does not needlessly employ both the optimal and extraneous nodes.

We have also verified numerically that the LCAs achieve a combination
of error and sparsity comparable with known methods. We employed a dic-
tionary consisting of the bandpass band of a steerable pyramid (Simoncelli
& Freeman, 1995) with one level and four orientation bands (i.e., the dic-
tionary is approximately four times overcomplete with 4096 elements).5

Image patches (32 × 32) were selected at random from a standard set of test
images. The selected image patches were decomposed using the steerable
pyramid and reconstructed using just the bandpass band.6 The bandpass
image patches were also normalized to have unit energy. Each image patch
was used as the fixed input to the LCA system equation, 3.2, using either
a soft or hard thresholding function (with variable threshold values) and
with a biologically plausible membrane time constant of τ = 10 ms (Dayan
& Abbott, 2001). We simulated the system using a simple Euler’s method

5We used the implementation of the steerable pyramid given in the code available
online at http://www.cns.nyu.edu/˜eero/STEERPYR/ with the “circular” boundary
handling option.

6We eliminate the lowpass band because it accounts for a large fraction of the total
image energy in just a few dictionary elements, and it is unlikely that much gain could be
achieved by sparsifying these coefficients.
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Figure 5: Time response of the HLCA and SLCA (τ = 10 ms) for a single fixed
(32 × 32) image patch with a dictionary that is four times overcomplete with
4096 elements. (a) The MSE decay and (b) �0 sparsity for HLCA. (c) The MSE
decay and (d) �0 sparsity for SLCA. The error converges within one to two time
constants, and the sparsity often approximately converges within three to four
time constants. In some cases, sparsity is reduced with a longer running time.

approach (i.e., first-order finite difference approximation; Süli & Mayers,
2003) with a time step of 1 ms.

Figure 5 shows the time evolution of the reconstruction MSE and �0 spar-
sity for SLCA and HLCA responding to an individual image, and Figure 6
shows the mean steady-state trade-off between �0 sparsity and MSE. For
comparison, we also plotted the results obtained from using MP,7 a standard
BPDN interior point solver,8 followed by thresholding to enforce �0 sparsity

7We iterated MP until it had the same MSE as the LCA implementation to compare
the sparsity levels of the results.

8We used the implementation of a primal-dual BPDN solver given in the code available
online at http://sparselab.stanford.edu/.
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Figure 6: Mean trade-off between MSE and �0-sparsity for normalized (32 ×
32) patches from a standard set of test images. The dictionary was four times
overcomplete with 4096 elements. For a given MSE range, we plot the mean (a)
and standard deviation (b) of the �0 sparsity.

(denoted BPDNthr) and SLCA with the same threshold applied (denoted
SLCAthr). Most important, note that the HLCA and MP are almost iden-
tical in their sparsity-MSE trade-off. Though the connections between the
HLCA and MP were pointed out in section 3.4, these are very different
systems, and there is no reason to expect them to produce the same co-
efficients. Additionally, note that the SLCA is producing coefficients that
are nearly as �0-sparse as what we can achieve by oracle thresholding the
results of a BPDN solver even though the SLCA keeps most coefficients
zero throughout the calculation.

4.3 Time-Varying Stimuli

4.3.1 Inertia. Biological sensory systems are faced with constantly chang-
ing stimuli due to both external movement and internal factors (e.g., organ-
ism movement, eye saccades). As discussed in section 2.2, sparse codes
with temporal variations that also reflect the smooth nature of the chang-
ing stimulus would be easier for higher-level systems to understand and
interpret. However, approximation methods that optimize only sparsity at
each time step (especially greedy algorithms) can produce brittle represen-
tations that change dramatically with relatively small stimulus changes. In
contrast, LCAs naturally produce smoothly changing outputs in response
to smoothly changing time-varying inputs. Assuming that the system time
constant τ is faster than the temporal changes in the stimulus, the LCA
will evolve to capture the stimulus change and converge to a new sparse
representation. While local minima in an energy function are typically prob-
lematic, the LCAs can use these local minima to find coefficients that are
“close” to their previous coefficients even if they are not optimally sparse.
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While permitting suboptimal coefficient sparsity, this property allows the
LCA to exhibit inertia that smoothes the coefficient sequences.

The inertia property exhibited in LCAs can be seen by focusing on a
single node in the system equation, 4.1:

u̇m(t) = 1
τ

{
〈φm, (s(t) − ŝ(t))〉 − um(t) when |um(t)| < λ

〈φm, (s(t) − ŝ(t))〉 − αλ when |um(t)| ≥ λ.

A new residual signal drives the coefficient higher but suffers an additive
penalty. Inactive coefficients suffer an increasing penalty as they get closer
to threshold, while active coefficients suffer only a constant penalty αλ that
can be very small (e.g., the HLCA has αλ = 0). This property induces a
“king of the hill” effect: when a new residual appears, active nodes move
virtually unimpeded to represent it, while inactive nodes are penalized
until they reach threshold. This inertia encourages inactive nodes to remain
inactive unless the active nodes cannot adequately represent the new input.

To illustrate this inertia, we applied the LCAs to a sequence of 144 × 144
pixel, bandpass filtered, normalized frames from the standard “fore-
man” test video sequence with the same experimental setup described
in section 4.2. The LCA input is switched to the next video frame every
(simulated) 1/30 seconds. The results are shown in Figure 7, along with
comparisons to MP and BPDN applied independently on each frame. The
changing coefficient locations are nodes that became either active or inac-
tive at each frame. Mathematically, the number of changing coefficients at
frame n is |Mu(n−1) ⊕ Mu(n)|, where ⊕ is the “exclusive OR” operator and
u(n) are the internal state variables at the end of the simulation for frame n.

This simulation highlights that the HLCA uses approximately the same
number of active coefficients as MP but chooses coefficients that more effi-
ciently represent the video sequence. The HLCA is significantly more likely
to reuse active coefficient locations from the previous frame without mak-
ing significant sacrifices in the sparsity of the solution. This difference is
highlighted when looking at the ratio of the number of changing coeffi-
cients to the number of active coefficients, |Mu(n−1) ⊕ Mu(n)|/|Mu(n)|. MP
has a ratio of 1.7, meaning that MP is finding almost an entirely new set
of active coefficient locations for each frame. The HLCA has a ratio of 0.5,
meaning that it is changing approximately 25% of its coefficient locations at
each frame. SLCA and BPDNthr have approximately the same performance,
with regularity falling between HLCA and MP. Though the two systems can
calculate different coefficients, the convexity of the energy function appears
to be limiting the coefficient choices enough so that SLCA cannot smooth
the coefficient time series substantially more than BPDNthr.

4.3.2 Markov State Transitions. The simulation results indicate that the
HLCA is producing time series coefficients that are much more regular
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Figure 7: The HLCA and SLCA systems simulated on 200 frames of the “fore-
man” test video sequence. For comparison, MP coefficients and thresholded
BPDN coefficients are also shown. Average values for each system are noted
in the legend. (a) Per-frame MSE for each coding scheme, designed to be ap-
proximately equal. (b) The number of active coefficients in each frame. (c) The
number of changing coefficient locations for each frame, including the number
of inactive nodes becoming active and the number of active nodes becoming
inactive. (d) The ratio of changing coefficients to active coefficients. A ratio near
2 (such as with MP) means that almost 100% of the coefficient locations are new
at each frame. A ratio near 0.5 (such as with HLCA) means that approximately
25% of the coefficients are new at each frame.

than MP. This regularity is visualized in Figure 9 by looking at the time
series of example HLCA and MP coefficients. Note that though the two
coding schemes produce roughly the same number of nonzero entries, the
HLCA does much better than MP at clustering the values into consecutive
runs of positive or negative values. This type of smoothness better reflects
the regularity in the natural video sequence input.

We can quantify this increased regularity by examining the Markov
state transitions. Specifically, each coefficient time series is Markov chain
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Figure 8: (a) The marginal probabilities denoting the fraction of the time co-
efficients spent in the three states: negative, zero, and positive (−, 0, and +).
(b) The transition probabilities denoting the probability of a node in one state
transitioning to another state on the next frame. For example, P(0|+) is the
probability that a node with an active positive coefficient will be inactive (i.e.,
zero) in the next frame.

(Norris, 1997) with three possible states at frame n:

σm(n) =


− if um(n) < −λ

0 if − λ ≤ um(n) ≤ λ

+ if um(n) > λ.

Figure 8 shows the marginal probabilities P(·) of the states and the condi-
tional probabilities P(·|·) of moving to a state given the previous state. The
HLCA and MP are equally likely to have nonzero states, but the HLCA
is over five times more likely than MP to have a positive coefficient stay
positive (P(+|+)). Also, though the absolute probabilities are small, MP is
roughly two orders of magnitude more likely to have a coefficient swing
from positive to negative (P(−|+)) and vice versa (P(−|+)).

To quantify the regularity of the active coefficient locations, we calculate
the entropy (Cover & Thomas, 1991) of the coefficient states at frame n
conditioned on the coefficient states at frame (n − 1),

H(σm(n) | σm(n − 1)) = − P(+) [P(−|+) + P(0|+) + P(+|+)]

− P(0) [P(−|0) + P(0|0) + P(+|0)]

− P(−) [P(−|−) + P(0|−) + P(+|−)] , (4.2)

plotted in Figure 9. This conditional entropy indicates how much un-
certainty there is about the status of the current coefficients given the
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Figure 9: (a) An example time-series coefficient for the HLCA and MP (top
and bottom, respectively) encodings for the test video sequence. HLCA clusters
nonzero entries together into longer runs while MP switches more often between
states. (b) The empirical conditional entropy of the coefficient states (−, 0, +)
during the test video sequence. (c) The conditional entropy is calculated analyt-
ically while varying P(+|+) and equalizing all other transition probabilities to
the values seen in HLCA and MP. The tendency of a system to group nonzero
states together is the most important factor in determining the entropy.

coefficients from the previous frame. Note that the conditional entropy for
MP is almost double the entropy for the HLCA, while SLCA is again simi-
lar to BPDNthr. The principal contributing factor to the conditional entropy
appears to be the probability a nonzero node remains in the same state
(i.e., P(+|+) and P(−|−)). To illustrate, Figure 9 shows that the change
in conditional entropy is almost linear with varying P(+|+) (assuming
P(−|−) = P(+|+) and all other transition probabilities are kept fixed).
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The substantial decrease in the conditional entropy for the HLCA com-
pared to MP quantifies the increased regularity in time-series coefficients
due to the inertial properties of the LCAs. The HLCA in particular encour-
ages coefficients to maintain their present state (i.e., active or inactive) if it is
possible to find an adequate stimulus representation. While some sparsity
may be sacrificed in this strategy, the smoothness induced in the coeffi-
cients by grouping active states together in time better reflects the character
of the natural time-varying stimuli and could be useful for higher-level
computations.

5 Conclusions and Future Work

Sparse approximation is an important paradigm in neural coding, though
plausible mechanisms to achieve these codes have remained unknown.
We have proposed an architecture for a locally competitive algorithm that
solves a family of sparse approximation problems (including BPDN as
a special case). These LCAs may be readily implemented using a parallel
network of simple analog circuit elements that could potentially be mapped
onto the neural circuitry of sensory cortical areas such as V1. Though these
LCA systems are nonlinear, we have shown that they are well behaved
under nominal operating conditions.

While the LCA systems (other than SLCA) are not generally guaranteed
to find a globally optimal solution to their energy function, we have proven
that the systems will be efficient in a meaningful sense. The SLCA system
produces coefficients with sparsity levels comparable to BPDN solvers,
but uses a natural physical implementation that is more energy efficient
(i.e., it uses fewer nonzero inhibition signals between nodes). Perhaps most
interesting, the HLCA produces coefficients with almost identical sparsity
as MP. This is significant because greedy methods such as MP are widely
used in signal processing practice because of their efficiency, but HLCA
offers a much more natural neural implementation.

LCAs are particularly appropriate for time-varying data such as video
sequences. The LCA ODE not only encourages sparsity but also introduces
an inertia into the coefficient time series that we have quantified using
raw counts of changing coefficient location and through the conditional
entropy of the coefficient states. By allowing slightly suboptimal sparsity
in exchange for more regularity in the set of active coefficients, the LCAs
produce smoother coefficient sequences that better reflect the structure of
the time-varying stimulus. This property could prove valuable for higher
levels of analysis that are trying to interpret the sensory scene from a set of
sparse coefficients. Coefficient regularity could presumably be further im-
proved by incorporating models of spatial dependencies from higher-level
processing areas or models of temporal dynamics in the representation of
natural scenes. Note that this approach differs from previous approaches in
which the dynamics are modeled by the dictionary itself (Olshausen, 2003),
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as that approach also suffers from producing erratic coefficient sequences
that may be difficult to interpret.

The current limitations of neurophysiological recording mean that ex-
ploring the sparse coding hypothesis must rely on testing specific proposed
mechanisms. Though the LCAs we have proposed appear to map well
to known neural architectures, they still lack the biophysical detail neces-
sary to be experimentally testable. We will continue to build on this work
by mapping these LCAs to a detailed neurobiological population coding
model that can produce verifiable predictions. Furthermore, the combina-
tion of sparsity and regularity induced in LCA coefficients may serve as
a critical front-end stimulus representation that enables visual perceptual
tasks, including pattern recognition, source separation, and object tracking.

By using simple computational primitives, LCAs also have the benefit of
being implementable in analog hardware. An imaging system using VLSI
to implement LCAs as a data collection front end has the potential to be
extremely fast and energy efficient. Instead of digitizing all of the sensed
data and using digital hardware to run a compression algorithm, analog
processing would compress the data into sparse coefficients before digiti-
zation. In this system, time and energy resources would be spent only digi-
tizing coefficients that are a critical component in the signal representation.

Appendix A: Detailed Comparison of LCAs to Closely
Related Methods

Several recent sparse approximation methods are closely related to a dis-
crete time approximation of the LCA system described in section 3.4 when
applied to a fixed stimulus. To present a detailed comparison between these
methods, we first introduce the binary thresholding function:

TB(x) =
{

0 if x < 0

1 if x ≥ 0
.

Note the correspondence to the ideal hard thresholding function,
T(0,∞,λ)(x) = xTB(x − λ). To make a direct comparison between HLCA and
these iterative methods, we use this notation to write a discrete time ap-
proximation to the HLCA system equation for a single node at the discrete
time steps {tk},

um(tk+1) = (1 − )um(tk) + 

bm −
∑
n�=m

〈φm,φn〉un(tk) TB(un(tk) − λ)

 ,

am(tk+1) = um(tk+1)TB(um(tk+1) − λ), (A.1)
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where  is a small constant incorporating both the time constant of the
dynamical system and the step size of the discrete time approximation.

The sparse-set coding network (SSCN) in Rehn and Sommer (2007) uses
an iterative method where the update equation for a single node is given by

um(tk+1) = bm −
∑
n�=m

〈φm,φn〉bnTB

(
un(tk) − λ

bn

)
, (A.2)

am(tk+1) = um(tk+1)TB

(
um(tk+1) − λ

bn
dv

)
.

The SSCN can be interpreted as a network implementation of the optimized
orthogonal matching pursuit (OOMP) algorithm (Rebollo-Neira & Lowe,
2002). OOMP is a greedy method that at each iteration selects the dictionary
element that minimizes the residual error when the optimal coefficients are
calculated for the selected dictionary elements. The resulting SSCN update
equation is very similar to the HLCA update term (i.e., the bracketed term)
in equation A.1, with three notable differences:

� The HLCA uses a fixed threshold λ for every node, whereas the SSCN
scales the threshold for each node by that node’s driving term λ

bn
.

� The HLCA uses a graded inhibition term for active coefficients (i.e.,
the magnitude of the inhibition from node m scales with um(tk)),
whereas the SSCN uses a fixed inhibition magnitude for active nodes
based on the driving term bm.

� The HLCA uses a charging circuit approach, whereas the SSCN up-
date directly modifies the current coefficient values.

It is not clear how the variable threshold in the SSCN or the graded
inhibition in the HLCA affects the character of the resulting coefficients.
While the charging circuit approach taken by the HLCA may appear to
be a small implementational difference, it represents a different strategy
for calculating coefficients. This can be seen by considering the first step a
system would take starting from a set of zero-valued coefficients, am(0) =
0,∀m. The HLCA would produce a small change (of magnitude ) based
on the driving terms bm. When some of these coefficients grow just above
threshold (not all the way up to bm), they can begin to inhibit to prevent
other coefficients from becoming active. In the SSCN, the first step produces
coefficient values that are equal to the full driving values bm passed through
a nonuniform hard threshold (i.e., they are either 0 or bm). Thus, unless the
threshold is initially very high, SSCN will need to prune away coefficients
from the thresholded linear projections.
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The algorithm in Kingsbury and Reeves (2003) uses an iterative method
where the update equation for a single node is given by

um(tk+1) = um(tk)TB(um(tk) − λ)

+

bm −
∑
n�=m

〈φ̃n,φm〉un(tk)TB(un(tk) − λ)

 , (A.3)

am(tk+1) = um(tk)TB(um(tk) − λ),

where um(t0) = bm and φ̃m is the canonical dual vector for the dictionary
element φm. The set of canonical dual vectors is calculated by performing a
matrix inverse and essentially captures the calculation of the pseudoinverse
operator. This update equation is also very similar to the HLCA system
equation in equation A.1, with two distinct differences:

� The strength of the inhibition term between two nodes is modulated
by the inner product of the dictionary element with the corresponding
dual vector for the other node, whereas the HLCA uses the inner
product between the dictionary elements.

� The HLCA uses a charging circuit approach whereas the update equa-
tion, equation A.3, has a charging term that is modulated by the binary
thresholding function.

The use of the dual vectors in equation A.3 complicates the implementation
compared to the HLCA, especially in the presence of changes to the dic-
tionary (e.g., with the death of a node in the system, the entire set of dual
vectors would change). While equation A.3 appears to have a similar charg-
ing notion as is seen in the HLCA, the presence of the binary thresholder
in this term changes the strategy for calculating the coefficients. Again, this
can be seen most clearly by considering the first step each system would
take starting from zero-valued coefficients. In the system of equation A.3,
the update term (i.e., the bracketed term) produces a small change based
on the driving terms bm. However, if the values produced at this first step
are below threshold, they will affect only the next step through the inhi-
bition term and will not continue to aggregate in the coefficient values. In
other words, the charging behavior applies only to the nodes that are above
threshold. This characteristic likely results in the observation by the authors
that convergence is improved by efforts to explicitly decrease the sparsity
of the solution during the iterations through techniques such as scaling the
threshold (see section 4 in Kingsbury & Reeves, 2003).

Several authors (Herrity et al., 2006; Hale et al., 2007; Figueiredo &
Nowak, 2003; De Mol & Defrise, 2002; Daubechies et al., 2004; Blumensath
& Davies, 2008) have recently introduced methods based on an iterative
thresholding algorithm (ITA), where the update equation for a single node
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is given by

um(tk+1) = bm −
∑
n�=m

〈φm,φn〉un(tk) TB(un(tk) − λ) ,

(A.4)
am(tk+1) = um(tk+1)TB(um(tk+1) − λ).

The ITA as stated (i.e., using a hard thresholder) converges to a local min-
imum of the �0 optimization problem. It can also be written using a soft
thresholding function to converge to a global minimum of the �1 optimiza-
tion problem (BPDN). The ITA is also very similar to the LCA algorithm,
having the same system equation as the LCA update term. The primary
difference between equation A.4 and the LCA system equation in equa-
tion A.1 is that the LCA uses a charging circuit approach, whereas the ITA
directly updates the coefficients. Again, this difference can be seen most ex-
plicitly by considering the first step each system would take starting from
zero-valued coefficients. In the ITA, the first step produces coefficient val-
ues that are equal to the full driving values bm passed through a uniform
threshold. Thus, unless the threshold is initially very high, ITA also needs
to prune away coefficients from the thresholded linear projections, whereas
the LCA inhibition terms work to keep many coefficients from ever becom-
ing active. This charging circuit behavior also allows the LCA to be easily
written in terms of simple analog computational elements such as resistors,
capacitors, and amplifiers.

An important distinction between the LCAs and all three of these systems
is that the LCAs explicitly correspond to the sparse approximation objective
function, equation 3.3, employing a wide variety of coefficient cost func-
tions. Furthermore, there is a tight and explicit connection between these
cost functions and the thresholding function used by the system. The SSCN
minimizes an objective function that is an approximation to equation 3.3,
and it is designed specifically to use the �0 norm as the coefficient cost func-
tion. The ITA has not been derived for general cost functions but has been
derived separately for �0 and �1 optimization.

Appendix B: Relating Cost Functions and Threshold Functions

To see the correspondence between a particular choice of a threshold func-
tion Tλ(·) and the sparsity-inducing cost function C(·), we begin by assuming
we want to minimize an energy function of the form

E = 1
2

||s − ŝ||2 + λ
∑

m

C(am)

= 1
2

(
st s − 2bt a + at�t�a

) + λ
∑

m

C(am).
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For simplicity, we suppress the time variable in the notation. To find the
changes in the active coefficients {am} that will most significantly minimize
the energy function, we take the derivative of the energy function with
respect to the active coefficients,

d E
dam

=−bm +
∑

n

Gm,nan + λ
dC(am)

dam

=−bm +
∑
n�=m

Gm,nan + am + λ
dC(am)

dam
, (B.1)

where we assume the vectors are unit-norm ||φm||2 = 1. Looking back to the
dynamic system in equation 3.1,

u̇m = 1
τ

bm − um −
∑
n�=m

Gm,nan

 ,

we can see that the dynamics on the internal state variables are proportional
to the derivative of the energy function in equation B.1, u̇m ∝ − d E

dam
, if the

active coefficients are related to the internal state variables by

um = am + λ
dC(am)

dam
.

Appendix C: Cost Functions Corresponding to Ideal Thresholding
Functions

The sigmoidal threshold function specified in equation 3.5 is invertible,
meaning that active coefficients can be related back to their underlying
state variables, um = T−1

(α,γ,λ)(am), though not in closed form. For notational
simplicity and without losing generality, we will assume in this section
positive coefficients (am > 0). Though the ideal thresholding functions are
not technically invertible, we can find the limit of the inverse function:

T−1
(α,∞,λ)(am) = lim

γ→∞ T−1
(α,γ,λ)(am) =

{
λ if am < (1 − α)λ

λ + am − (1 − α)λ if am ≥ (1 − α)λ.

Using the correspondence from appendix B,

λ
dC(am)

dam
= um − am = T−1

(α,γ,λ)(am) − am,
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we integrate to find the ideal cost function

C(am) = 1
λ

∫ am

0

(
T−1

(α,∞,λ)(x) − x
)

dx

= 1
λ

(∫ am

0
(λ − x) dx +

∫ am

(1−α)λ
(x − (1 − α)λ) dx

)

= αam + λ (1 − α)2

2
.

Appendix D: Stability of LCAs

D.1 Equilibrium Points. For a given set of active and inactive co-
efficients, the LCA system equations are linear and change only when a
node crosses threshold (from above or below). A subfield of control theory
specifically addresses these switched systems (Decarlo et al., 2000). To ex-
press the HLCA system as a switched system, we define M ⊆ [1, . . . , M]
as the current set of active nodes (i.e., m ∈ M if |um(t)| ≥ λ). We also define
an (M × M) selection matrix SM as being all zeros except for ones on the
diagonal corresponding to the active nodes,

[SM]m,n =
{

1 if m = n and m ∈ M
0 if m �= n or m /∈ M.

Defining the system matrix AM = 1
τ

[(I − �t�)SM − I ], the HLCA is written
as a switched linear system,9

u̇ (t) = 1
τ

�t s(t) + AMu(t) .

There are only finitely many possible sets M, which we further limit by
allowing only sets satisfying the stability criterion (active nodes must not
form linearly dependent subdictionaries). We also assume that a given fixed
input s induces equilibrium points u∗ that do not have any components
identically equal to threshold u∗

m �= λ. This condition appears true with
overwhelming probability and implies that there exists r > 0 such that
|u∗

m| − r ≥ λ for all m ∈ M and |u∗
m| + r ≤ λ for all m /∈ M.

For a given M, linear systems theory indicates that the system

u̇ = AMu

9All LCA systems can be written as a similar switched system, but the thresholding
functions with additive correction terms require a cumbersome definition of proxy state
variables that we omit here.
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has a single equilibrium point (i.e., is asymptotically stable) only if AM has
negative eigenvalues (Franklin et al., 1986). The matrix AM has no positive
eigenvalues, so we must show that it is full rank (AMu �= 0,∀u ∈ R

M). We
begin by determining the nullspace N (·) of the composite matrix �t�SM.
The nullspace of �t is empty, N (�t) = ∅, because span{φm} = R

N. Because
the collection {φm}m∈M is linearly independent and the matrix �SM consists
of only those selected vectors on the columns, N (�SM) = span{em}m/∈M,
where em are the canonical basis elements. Therefore, the composite matrix
also has a nullspace of N (�t�SM) = span{em}m/∈M. Without losing gen-
erality, we assume that the first |M| entries are active, M = 1, . . . , |M|.
Consider first the case when all nontrivial internal state vectors have only
nonzero values in the first |M| positions, u ∈ span{e1, . . . , e|M|}. In this
case, u /∈ N (�t�SM), implying that AMu = −�t�Su �= 0. Consider next
the case when all nontrivial internal state vectors have only nonzero val-
ues in the last (M − |M|) positions: u ∈ span{e|M|+1, . . . , eM}. In this case,
u ∈ N (�t�SM), meaning that AMu = −u �= 0. Taking these two cases to-
gether, we see that AMu �= 0,∀u ∈ R

M, implying that AM has only negative
eigenvalues so that the system in question has a single equilibrium point.

Given a particular set of active nodes M, we therefore have a single
equilibrium point u∗ defined by the system matrix AM. All other points
within a neighborhood of this equilibrium point correspond to the same set
of active nodes (and therefore the same system matrix). Therefore, since each
system matrix has a single equilibrium, there can be no other equilibrium
points with coordinates within a neighborhood of u∗,

|u∗
m − um| < r for any m ⇒ f (u) �= 0.

We know then that there is a finite number of equilibrium points, and each
equilibrium point is isolated because there can be no other equilibrium
points infinitely close.

Finally we consider the stability of the system in the neighborhood of
the equilibrium point u∗. Because we know that the linear subsystem is
asymptotically stable, we must show that there exists a ε > 0 such that
for any u(0) ∈ Bε(u∗), the set of active nodes M never changes, so AM
stays fixed. We must therefore ensure that we can specify a ε > 0 such
that for a fixed AM the internal states never change state, |um(t) | > λ,∀m ∈
M and |um(t) | < λ,∀m /∈ M. The tools of linear systems theory give this
evolution (Franklin et al., 1986):

u(t) = e AMtu(0) +
∫ t

0
e (t−τ )AM�t sdτ

= e AMtu(0) + e AMt
(∫ t

0
e−AMτ dτ

)
�t s
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= e AMtu(0) + e AMt (−A−1e−AMt + A−1)
�t s

= e AMtu(0) + −A−1�t s + e AMt A−1�t s

= e AMt (u(0) − u∗) + u∗,

where lim u(t) = −A−1�t s = u∗ for a linear system. From this, we bound
the energy of the difference signal

||u(t)−u∗||=||e AMt(u(0)−u∗)|| ≤ eµmaxt||u(0)−u∗|| ≤ ||u(0)−u∗|| ≤ ε,

where µmax is the largest magnitude eigenvector of AM. This energy bound
also serves as a crude bound on the individual elements of the internal state
vector:

|um(0) − u∗
m| ≤ ∣∣∣∣u(t) − u∗∣∣∣∣ ≤ ε.

We conclude that if ε < r , the system will not change state and behaves as
a fixed, asymptotically stable linear system. Therefore, the system is locally
asymptotically stable around each equilibrium point, u(0) ∈ Br (u∗).

D.2 Input-Output Stability. Consider the time derivative of the energy
computed through the chain rule,

d
dt

E(t) = d E
da

da
du

u̇ = −
(

d E
da

)2 da
du

,

where the last equality follows from the definition of the LCA dynamics
u̇ = − d E

da . Therefore, as long as Tλ(·) is nondecreasing, da
du ≥ 0, implying that

the energy function will be nonincreasing with time d
dt E(t) ≤ 0.

To assess input-output stability, define τD to be the average dwell time
between changes to the set of active nodes M. For switched linear systems,
sufficient conditions for input-output stability require each subsystem to be
asymptotically stable and that the system does not switch “too often” (Hes-
panha & Morse, 1999). Specifically, we restate here a theorem from switched
system theory in language corresponding to the LCAs:

Average dwell time theorem (theorem 2 combined with lemma 1 in
Hespanha and Morse, 1999) Given a collection of system matrices AM and
a positive constant ω0 such that AM + ω0 I is asymptotically stable for all t, then,
for any ω ∈ [0 , ω0 ], there is a finite constant τ ∗

D such that as long as τD ≥ τ ∗
D,

the switched system has a bounded internal state for piecewise constant input
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signals s(t):

(∫ t

0
e2ωτ

∣∣∣∣u(τ )
∣∣∣∣2 dτ

)1/2

≤ κ1

(∫ t

0
e2ωτ

∣∣∣∣s(τ )
∣∣∣∣2 dτ

)1/2

+ κ2
∣∣∣∣s(0 )

∣∣∣∣ ,

where κ1 and κ2 are finite constants. Similar statements can be made using �∞

norms instead of �2 norms.

The average dwell time theorem guarantees that the LCA system will
remain stable as long as each subsystem is asymptotically stable and τD is
not too small. Section D.1 shows that the system matrix AM has only strictly
negative eigenvalues. The modified system matrix Ã = AM + ω0 I has a
minimum magnitude eigenvalue of µ̃min = µmin + ω0. Clearly there exists
a ω0 > 0 such that µ̃min > 0 if and only if µmin > 0. In other words, there
exists ω0 > 0 so that Ã is asymptotically stable (thus satisfying the average
dwell time theorem) if the stability criterion is met for every subsystem of
the switched system.

Appendix E: Steady-State Sparsity of LCA Systems

The LCA at steady state looks like a fixed linear system. If we know a priori
the set of active nodes corresponding to the steady-state response M, then
the steady-state internal state variables are given by

ũ = lim
t→∞ u(t) = − 1

τ
A−1
M�t s,

where AM is defined as in appendix D. While we cannot determine the set
of active nodes in the limit, we can distinguish sets of nodes that cannot be
active. When calculating the steady-state values ũ assuming a fixed M, if a
node not in M is above threshold in ũ (or a node in M is below threshold),
the system matrix would have changed. In this case we call M inconsistent.
It is important to note a subtle point: finding an inconsistency does not
indicate the correct steady-state active set; it only indicates that it cannot be
M.

Given a set of candidate active nodesM, we assume (without losing gen-
erality) the active nodes are indexed consecutively from the beginning,M =
1, . . . , |M|. We employ the usual canonical basis elements em ∈ R

M that con-
tain a single nonzero entry in the mth position (e.g., e1 = [1, 0, . . . , 0]t). We
will also employ what we call the Grammian basis elements vm ∈ R

M that
contain the inner products of one dictionary element with all the oth-
ers: vm = [〈φ1,φm〉, 〈φ2,φm〉, . . . , 〈φM,φm〉]t = [G1,m, G2,m, . . . , G M,m]t . The
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system matrix can be expressed entirely in terms of these basis elements,

AM = 1
τ

[(
I − �t�

)
SM − I

] = − 1
τ

[
v1, . . . , v|M|, e|M|+1, . . . , eM

]
,

where SM is the corresponding selection matrix (defined in section D.1).
The inverse of this system matrix has several important properties. First,
for inactive nodes m /∈ M, the corresponding canonical basis vector is an
eigenvector of the inverse system matrix A−1em = −τ em. Similarly, for active
nodes m ∈ M, the inverse system matrix transforms the corresponding
Grammian basis vector into the canonical basis vector, A−1vm = −τ em. We
also note that the set ({vm}|M|

m=1
⋃{em}M

m=|M|+1) is a basis for the space R
M.

For now, let the input signal be proportional to a single dictionary el-
ement, s = αφn, meaning that �t s = αvn. We will assume that the scaling
coefficient is greater than the chosen threshold, α > λ, so the signal strength
is considered significant. There exists a unique set of coefficients {βm} such
that

αvn = β1v1 + · · · + β|M|v|M| + β|M|+1e|M|+1 + · · · + βMeM.

Looking at each element of this expression in turn is illuminating:

α [vn]1 =〈φ1, αφn〉 = 〈
φ1,

(
β1φ1 + · · · + β|M|φ|M|

)〉
...

α [vn]|M| =
〈
φ|M|, αφn

〉 = 〈
φ|M|,

(
β1φ1 + · · · + β|M|φ|M|

)〉
α [vn]|M|+1 = 〈

φ|M|+1, αφn
〉 = 〈

φ|M|+1,
(
β1φ1 + · · · + β|M|φ|M|

+β|M|+1φ|M|+1
)〉

...

α [vn]M =〈φM, αφn〉 = 〈
φM,

(
β1φ1 + · · · + β|M|φ|M| + βMφM

)〉
.

The coefficients β1, . . . , β|M| correspond to the best approximation of s in
the subspace spanned by {φm}|M|

m=1.
Consider first the case when n ∈ M. The coefficients are optimal: βn = 1

and βm = 0 for all m �= n. Assuming the fixed system matrix AM, the steady-
state internal state variables are given by

ũ = − 1
τ

A−1
M�t s = − 1

τ
A−1
Mαvn = αen.
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If the LCA selects the optimal set of nodes, the coefficient values are optimal.
Now consider the case when the vector is not part of the active set, n /∈ M.
The coefficients {βm} correspond to the steady-state values:

− 1
τ

A−1
M�t s = β1e1 + · · · + β|M|e|M| + β|M|+1e|M|+1 + · · · + βMeM.

Looking at the entries of αvn, each index not in the active set, m /∈ M, has
the coefficient

βm = α〈φm,φn〉 − (
β1〈φ1,φ|M|+1〉 + · · · + β|M|〈φ|M|,φ|M|+1〉

)
.

The set M is consistent only if βm > λ for all m ∈ M and βm > λ for all
m /∈ M.

These results lead us to several observations that help qualify the sparsity
of the LCA solutions:

1. When n ∈ M, ũm = 0 < λ for all m �= n means that if the LCA finds
the optimal node, it will not include any extraneous nodes.

2. When n ∈ M, ũn = α means that if the optimal node is correctly
selected by the LCA in the steady state, the system will find the
optimal coefficient for that node.

3. When n /∈ M, βm > λ for all m ∈ M and βm < λ for all m /∈ Mmeans
that the input signal can be represented by dictionary elements
{φm}|M|

m=1 so the residual projection onto any other vector is less than
λ. Any set of active nodes that cannot represent the input signal to
this accuracy is inconsistent.

To minimize notation, we have discussed only one-sparse input signals.
However, the analysis performed here is entirely linear, and the same princi-
ples apply to input signals containing more than one dictionary component.
In particular, a set of active nodes is inconsistent if it cannot represent every
component of the input signal so that the residual projection onto every
other dictionary element is less than λ or it contains every component of the
input signal in addition to other extraneous components. Also, if the active
set recovers the correct indices, the LCA steady-state coefficients will find
the optimal coefficients.
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