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Abstract. Certain types of routing, scheduling, and resource-allocation problems in a dis-
tributed setting can be modeled as edge-coloring problems. We present fast and simple randomized
algorithms for edge coloring a graph in the synchronous distributed point-to-point model of compu-
tation. Our algorithms compute an edge coloring of a graph G with n nodes and maximum degree
∆ with at most 1.6∆ +O(log1+δ n) colors with high probability (arbitrarily close to 1) for any fixed
δ > 0; they run in polylogarithmic time. The upper bound on the number of colors improves upon
the (2∆− 1)-coloring achievable by a simple reduction to vertex coloring.

To analyze the performance of our algorithms, we introduce new techniques for proving upper
bounds on the tail probabilities of certain random variables. The Chernoff–Hoeffding bounds are
fundamental tools that are used very frequently in estimating tail probabilities. However, they
assume stochastic independence among certain random variables, which may not always hold. Our
results extend the Chernoff–Hoeffding bounds to certain types of random variables which are not
stochastically independent. We believe that these results are of independent interest and merit
further study.
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1. Introduction. An important limitation for a distributed network without
global memory is locality of computation: since sending messages to faraway nodes
is expensive, communication should only take place between nearby nodes. Models
of parallel computation like the PRAM abstract this problem of locality away by
assuming the existence of a global shared memory with fast concurrent access. We
are interested in studying how fast individual processors can compute their portion
of the output in a message-passing distributed system with such “local” information
alone. The model we consider is the synchronous distributed point-to-point model,
in which the processors are arranged as the vertices of an n-vertex graph G = (V,E)
and where all communication is via the edges of G alone. In this model, we study
the edge-coloring problem, a basic combinatorial problem with many applications
to distributed computing. Edge colorings can be used to model certain types of
jobshop-scheduling, packet-routing, and resource-allocation problems in a distributed
setting. For example, the problem of scheduling I/O operations in a certain parallel
architecture can be modeled as follows (see Jain et al. [9]). We are given a set of
processes P and a set of resources R such that each process p ∈ P needs a subset
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DISTRIBUTED EDGE COLORING 351

f(p) ⊆ R of the resources where (i) each process p needs every resource in f(p) for
a unit of time each and (ii) p can use the resources in f(p) in any order. From this
we can construct a bipartite graph GP,R = (P,R, EP,R), where EP,R = {(p, r)| p ∈
P ∧ r ∈ f(p)}. An edge coloring of GP,R with c colors yields a schedule for the
processes to use the resources within c time units. Optimal colorings correspond to
optimal schedules.

Edge coloring can also be used in distributed models in situations where broad-
casts are infeasible or undesirable: an edge coloring of the network results in a schedule
for each processor to communicate with at most one neighbor at every step; at time
step i, processors communicate via the edges colored i only. Using a “small” number
of colors reduces the wastage of time in this schedule.

1.1. Related work. Note that ∆ colors are necessary to edge color a graph
with maximum degree ∆. Vizing showed that it is always possible to edge color a
graph with ∆ + 1 colors and gave a polynomial-time algorithm to compute such a
coloring [22] (see, for instance, Bollobás [3]). Efforts to parallelize Vizing’s theorem
have failed so far. The best known algorithm is an RNC algorithm of Karloff and
Shmoys using ∆ + O(∆1/2+ε) colors for any fixed ε > 0; this algorithm has been
derandomized in NC (see Berger and Rompel [2] and Motwani, Naor, and Naor [15]).
In the distributed model, the best edge-coloring algorithm known prior to this work
was to apply a vertex-coloring algorithm to the line graph L(G) of G. There are
fast (polylogarithmic) randomized vertex-coloring algorithms that use (∆ + 1) and ∆
colors, which translate to (2∆−1)- and (2∆−2)-edge-coloring algorithms, respectively
(see Luby [13] and Panconesi and Srinivasan [17]). In the deterministic case, there
are no known (2∆− 1)-edge-coloring algorithms of polylogarithmic running time; the

best running time is 2O(
√

log n), which is asymptotically better than any fixed root of
n but which grows faster than any polylogarithmic function of n [17]. Interestingly,
distributed ∆-edge coloring for bipartite graphs requires Ω(diameter(G)) time even
with randomization [17], whereas this can be done in O(logn) time deterministically
in the PRAM model [11].

1.2. Our contributions. In this paper, we present fast and simple random-
ized algorithms to edge color G with at most 1.6∆ + O(log1+δ n) colors with high
probability for any fixed δ > 0, where ∆ is the maximum degree of the vertices of G.
At the heart of our analysis is an extension of the Chernoff–Hoeffding bounds, which
are key tools in bounding the tail probabilities of the sums of independent random
variables (see Chernoff [4], Hoeffding [8], and Raghavan [18]).

Our edge-coloring algorithm is based on a very simple randomized algorithm to
color bipartite graphs, which can be explained in a few lines. Given a bipartite graph
G = (A,B,E) with maximum degree ∆, each vertex in B picks distinct colors from
{1, 2, . . . ,∆} at random for its edges without replacement, i.e., edges incident to the
same vertex in B get different colors. Then each vertex v ∈ A checks for each color
α if more than one of its incident edges has color α and, if so, chooses one of them
at random as the winner, and all the other edges of color α which are incident to v
are decolored. The key claim is that for every vertex, the number of decolored edges
incident to it is at most ∆(1 + ε)/e with high probability for any fixed ε > 0, where e
is the base of natural logarithms. Assuming that this holds, we can repeat the above
iteration with a set of ∆(1 + ε)/e fresh colors, and so on. In spite of its simplicity,
the algorithm requires an interesting probabilistic analysis; this is based upon an
extension of the Chernoff–Hoeffding bounds to a certain case of dependence among
the random variables, which we call λ-correlation. We believe that these results have
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352 A. PANCONESI AND A. SRINIVASAN

the potential for further applications and merit further study.
A preliminary version of this work appeared in [16], where we showed how to edge

color using at most 1.6∆ +O(log2+δ n) colors. By presenting a tighter analysis of the
tail probabilities, we improve this to 1.6∆ +O(log1+δ n) colors here.

In section 2, we define the basic notation used, and in section 3, we describe
our main analytical tool—the extension of the Chernoff–Hoeffding bounds. Section 4
presents our algorithm, whose performance is analyzed in section 5. Some extensions
and applications of this work are described in section 6.

2. Notation. A message-passing distributed network is an undirected graph G =
(V,E) where vertices, or nodes, correspond to processors and edges correspond to bi-
directional communication links. Each node has its unique ID. There is no shared
memory and processors can communicate only by sending messages through the net-
work. The network is synchronous, i.e., computation takes places in a sequence of
rounds; in each round, each node does any amount of local computation, sends mes-
sages to its neighbors in the graph, and reads messages sent to it by its neighbors.
The time complexity of a distributed algorithm, or protocol, is given by the number
of rounds needed to compute a given function.

Though each node has no knowledge about the topology of the entire network,
it knows upper bounds n and ∆ on the total number of nodes and maximum degree
of the network, respectively. We also sketch an alternative algorithm if ∆ and n are
unknown, but the constant factor in the O(log1+δ n) term in the number of colors
used is higher in this case.

Notice that in this model the cost of sending a message from one vertex to another
is proportional to the length of a shortest path between the two vertices. Hence if
we want a protocol to run for t rounds, then each vertex can communicate only with
vertices at distance at most t from it. This is not so in the PRAM model, where the
shared memory allows any two processors to communicate in one unit of time. Lower
bounds for distributed computation imposed by this locality have been presented by
Linial [12]. Also, as mentioned before, distributed ∆-edge coloring for bipartite graphs
requires Ω(diameter(G)) time, even with randomization [17]. In particular, we cannot
two-color the vertices of a bipartite graph G distributively in o(diameter(G)) time.

Given an undirected graph G = (V,E), we denote by ∆ its maximum degree, i.e.,
the maximum number of edges incident with any node; by du we denote the degree
of vertex u, by N(u) we denote the set of neighbors of u, and by δ(u) we denote the
set of edges incident with u.

Given a positive integer n, [n] denotes the set {1, 2, . . . , n}. The permanent of a
(possibly nonsquare) matrix M with c columns and r rows, where c ≤ r, is defined as
the natural extension of the permanent of square matrices. Let P = {π | π : [c] →
[r], π is one–to–one}. Then

perm(M)
.
=
∑
π∈P

n∏
i=1

Mπ(i),i.

An event A is said to happen with high probability (w.h.p.) if Pr(A) ≥ 1− 1/f(n)
for some superpolynomial function f(n) (i.e., nc = o(f(n)) for all fixed c > 0).

In our algorithms, we will use Luby’s vertex-coloring algorithm [13] as a subrou-
tine. When applied to the line graph of G, the algorithm computes a (2∆(G)−1)-edge
coloring of G, with its running time being O(logn) w.h.p. The algorithm only needs
local information—a vertex only needs to know its own degree. Another property
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DISTRIBUTED EDGE COLORING 353

of the algorithm that we will use is that vertices can be added dynamically to the
graph, each vertex u with its own palette of deg(u) + 1 colors, and the algorithm still
works as claimed (the running time is O(logn) from the time of the last insertion).
Other algorithms could be used as well, but we refer to this algorithm of Luby for
conciseness.

3. The Chernoff–Hoeffding bounds extension. In this section, we introduce
our extension of the Chernoff–Hoeffding bounds, which are important tools used in
estimating the tail probabilities of random variables. Given n independent random
variables X1, X2, . . . , Xn, these bounds are used in deriving an upper bound on the
upper tail probability Pr(X ≥ (1 + ε)µ), where X =

∑n
i=1Xi, µ = E[X], and ε > 0.

We extend these bounds to a certain case of dependency among the Xi’s, which we
call λ-correlation.

Let us review Chernoff’s approach to upper bound the upper tail probability of
a random variable X when X is the sum of independent binary random variables
X1, X2, . . . , Xn [4]. (This idea is apparently originally due to Bernstein [8].) The idea
is to use Markov’s inequality on the random variable etX for an arbitrary t > 0 and
minimize with respect to t, that is, to use the fact that

Pr(X > (1 + ε)µ) = Pr(etX > et(1+ε)µ)

≤ E[etX ]

et(1+ε)µ

and minimize the last ratio for t > 0. This is achieved by finding a good upper bound
for the numerator E[etX ] by using the fact that X is the sum of independent random
variables. It is standard (see, e.g., Raghavan [18]) to use this to show that in this
case, if Xi ∈ {0, 1} for each i, then

min
t>0

E[etX ]

et(1+ε)µ
≤ F (µ, ε)

.
=

[
eε

(1 + ε)1+ε

]µ
.(1)

Hoeffding [8] considered a more general case where X is the sum of n independent
and bounded random variables Xi ∈ [ai, bi], and he used the above approach to show
that if E[X] = µ, then for ε > 0,

min
t>0

E[etX ]

et(1+ε)µ
≤ G(µ, ε,~a,~b)

.
= exp

[
− 2 µ2ε2∑

i∈[n](bi − ai)2

]
.(2)

The bounds (1) and (2) will be used in our proofs. Henceforth, we refer to these
bounds of Chernoff and Hoeffding as the CH bounds. If ε is a fixed positive quantity
no greater than 1 (which will be true in all of our applications), then F (µ, ε) ≤ e−ε2µ/3.
Hence if µ = Ω(log1+δ n), then F (µ, ε) is the inverse of a superpolynomial function

of n, for any fixed δ > 0. (Similar considerations apply to G(µ, ε,~a,~b).) This fact
makes the CH bounds a powerful tool for deriving strong performance guarantees for
randomized algorithms and will be used repeatedly in this paper.

3.1. The general case. We now introduce λ-correlation and prove the general
extension of the CH bounds. In section 3.2, we will then discuss an important special
case of the results of this section.

Our proof is based on the observation that if we can upper bound each termE[Xk]
of the Maclaurin expansion of E[etX ] by λ E[X̂k], where X̂ is the sum of independent
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354 A. PANCONESI AND A. SRINIVASAN

random variables, and if E[etX̂ ] ≤ B, then E[etX ] ≤ λB. We start with the following
definition.

Definition 3.1. Let X1, X2, . . . , Xn be bounded random variables such that Xi ∈
[ai, bi] and let X =

∑
i∈[n]Xi. The Xi’s are λ-correlated if there exists a collection

of independent twin random variables X̂i ∈ [ai, bi] such that
(i) E[X] ≤ E[X̂], where X̂ =

∑
i∈[n] X̂i, and

(ii) for all I ⊆ [n] and positive integers si, i ∈ I,

E

[∏
i∈I

Xsi
i

]
≤ λ

∏
i∈I

E[X̂si
i ].

Our main theorem is now the following.
Theorem 3.2. Let X be the sum of λ-correlated random variables X1, X2, . . . , Xn,

where Xi ∈ [ai, bi], and let X̂ be the sum of the n twin variables X̂i. Then

Pr(X > (1 + ε) E[X̂]) ≤ λG(E[X̂], ε,~a,~b).

Proof. Let µ = E[X̂]. As in the classical proof, we start by introducing a positive
parameter t and by applying Markov’s inequality to the variable etX :

Pr(X > (1 + ε)µ) = Pr(etX > et(1+ε)µ)

≤ E[etX ]

et(1+ε)µ
.

By the hypotheses of the boundedness of X, we may apply linearity of expectation to
an infinite series:

E[etX ] = E

[ ∞∑
k=0

tkXk

k!

]
=
∞∑
k=0

tkE[Xk]

k!
.

Now Xk = (
∑n
i=1Xi)

k is a sum of terms of the form
∏
i∈I X

si
i for some I ⊆ [n]

and positive integers si. Hence by linearity of expectation and the assumption of
λ-correlation,

E[Xk] ≤ λE[X̂k].

Thus

E[etX ] ≤ λ
∞∑
k=0

tkE[X̂k]

k!
= λE[etX̂ ].

By the already discussed result of Hoeffding [8], when X̂ is the sum of n independent
bounded random variables X̂i ∈ [ai, bi],

min
t>0

E[etX̂ ]

et(1+ε)µ
≤ G(µ, ε,~a,~b).

In this paper, we will use the special case of Theorem 3.2 where Xi ∈ [0, 1], i ∈ [n].
In this case, F (µ, ε) is also an upper bound for the upper tail of X.

Corollary 3.3. Let X be the sum of n λ-correlated random variables Xi ∈ [0, 1].
Then

Pr(X > (1 + ε)E[X̂]) ≤ λF (µ, ε).
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DISTRIBUTED EDGE COLORING 355

Proof. Let E[X̂] = µ. When X̂ is the sum of n independent random variables
X̂i ∈ [0, 1], Hoeffding (cf. Theorem 1 of [8]) shows that if t ∈ (0, 1−µ/n) and ε = nt/µ,
then

Pr

(
X̂ − µ
n

≥ t
)
≤ min

s>0

E[esX̂ ]

es(1+ε)µ
≤
(

µ

µ+ nt

)µ+nt(
1 +

n t

n− µ− nt

)n−µ−nt
.

By the proof of Theorem 3.2, we see that E[esX ] ≤ λE[esX̂ ] for any s > 0. Thus by
applying the standard approximation 1 + x ≤ ex for x = nt/(n− µ− nt), we get

Pr(X ≥ (1 + ε)µ) ≤ λ
(

eε

(1 + ε)(1+ε)

)µ
= λF (µ, ε).

3.2. Binary random variables. An important special case of Definition 3.1 is
when Xi ∈ {0, 1}. In this case, the condition on the expectations simplifies consider-
ably to become

Pr

(∧
i∈I

Xi = 1

)
≤ λ

∏
i∈I

Pr(X̂i = 1)

for all I ⊆ [n].1 This special case is interesting in its own right and hence we record
it as the following theorem.

Theorem 3.4. Let X1, X2, . . . , Xn be given 0–1 random variables with X =∑
iXi. If there exist independent random variables X̂1, X̂2, . . . , X̂n with X̂ =

∑
i X̂i

and E[X] ≤ E[X̂] such that for all I ⊆ [n],

Pr

(∧
i∈I

Xi = 1

)
≤ λ

∏
i∈I

Pr(X̂i = 1),

then

Pr(X > (1 + ε)E[X̂]) ≤ λF (E[X̂], ε).

The statement follows immediately from Corollary 3.3. Notice that λ-correlation
follows if the Xi’s are “negatively correlated” in the following sense:

Pr

(∧
i∈I

Xi = 1

)
≤
∏
i∈I

Pr(Xi = 1)

for all I ⊆ [n]. We now present an example where precisely this kind of situation
arises and which will also be used later in this paper.

Suppose we have n balls that are thrown uniformly and independently at random
into n bins, and we want to estimate the number B of empty (missed) bins. Let Bi
be an indicator random variable that is 1 if bin i is empty and 0 otherwise. For any
i ∈ [n],

Pr(Bi = 1) =

(
1− 1

n

)n
≤ 1

e
.

1 This was defined as “self-weakening with parameter λ” in [16].
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356 A. PANCONESI AND A. SRINIVASAN

It follows that E[B] = E[
∑
iBi] ≤ n/e. The Bi’s are 1-correlated. To see this,

consider a subset J ⊆ [n] and any i ∈ [n]− J . Then

Pr

Bi = 1 |
∧
j∈J

Bj = 1

 =

(
1− 1

n− |J |

)n
≤
(

1− 1

n

)n
= Pr(Bi = 1).

By straightforward induction, this implies that for all I ⊆ [n],

Pr

(∧
i∈I

Bi = 1

)
≤
∏
i∈I

Pr(Bi = 1).

Thus the Bi’s are 1-correlated, where we may take the twin variables B̂i to be
i.i.d. 0–1 random variables with Pr(Bi = 1) = 1/e for each i. Hence not only is
E[B] ≤ n/e, but by Theorem 3.4,

Pr

(
B >

(1 + ε)n

e

)
≤ F

(n
e
, ε
)
.

Remarks. The above fact can also be given a completely different (and simple)
proof via the theory of martingales using Azuma’s inequality (see, for example, Alon,
Spencer, and Erdős [1] or McDiarmid [14].) We have presented this proof to illustrate
our techniques. Also, Jain has proved the following lemma [19].

Let a1, a2, . . . , an be n random trials (not necessarily independent) such that the
probability that trial ai “succeeds” is bounded above by p regardless of the outcomes
of the other trials. Then if X is the random variable that represents the number of
“successes” in these n trials and Y is a binomial variable with parameters (n, p), then
Pr[X ≥ k] ≤ Pr[Y ≥ k], 0 ≤ k ≤ n.

The assumptions of Jain’s lemma are strictly stronger than those of 1-correlation.
For instance, in the balls and bins example,

Pr

Bn = 1|
∧

i∈[n−1]

B1 = 0

 =
n− 1

n+ 1
,

which for n ≥ 3 is greater than Pr(Bn = 1) (≈ 1/e). Note, however, that our result
does not subsume Jain’s lemma since his result upper bounds Pr(X ≥ k) by the true
binomial upper bound, while we only upper bound it by the CH bound.

4. The edge-coloring algorithm. We now present our randomized distributed
edge-coloring algorithm. The algorithm uses an idea of Karloff and Shmoys to reduce
the problem of edge coloring general graphs to that of edge coloring a special class of
bipartite graphs [10]. The Karloff–Shmoys scheme uses the fact that bipartite graphs
can be edge colored optimally in the PRAM model of computation, which is provably
impossible in our distributed model [17]. Instead, we use a distributed subroutine that
computes a “good” coloring. Also different is the handling of the “leftover” graphs
at the end of the recursion, which we color by making use of Luby’s vertex-coloring
algorithm.
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DISTRIBUTED EDGE COLORING 357

The input to the algorithm is a distributed network G = (V,E) and some fixed
ε, δ > 0. In addition, each node knows upper bounds n and ∆ on |V | and the maximum
degree ∆(G) of G, respectively. This information is not necessary but yields better
multiplicative constants. The case where ∆ and n are unknown is sketched towards
the end of section 5.1.

The algorithm is recursive and computes an edge coloring of G using at most
1.6∆+O(log1+δ n) colors and runs in O(logn) time; both of these bounds hold w.h.p.

Let threshold = log1+δ n, and new(∆) = ∆/2 +

√
∆ log1+δ/2 n; the algorithm is as

follows.
If ∆ ≤ 16threshold, then edge color G with 2∆− 1 colors using Luby’s algo-

rithm and exit;2 else execute the following:
1. Compute a random partition of V (G) into black and white vertices. (All

vertices flip a fair coin independently and in parallel.) Let G[B] be the subgraph
induced by the black vertices, G[W ] be the subgraph induced by the white vertices,
and G[B,W ] be the bipartite subgraph formed by the edges having endpoints of
different colors.

2. Edge color G[B,W ] using our bipartite edge-coloring algorithm described
below with the parameters new(∆), ε, and δ.

3. Set ∆ := new(∆) and recurse on G[B] and G[W ] using the same set of fresh
new colors on both graphs with the same parameters ε and δ as before. (Remark.
Though the bipartite algorithm modifies its first parameter new(∆) in the course of
its execution, we assume that it is passed “by value,” i.e., that the value of new(∆)
referred to here and in step 2 above is the same.)

Remark. new(∆) is meant to be an upper bound on G[B], G[W ], and G[B,W ]. It
is easily seen via the standard CH bounds that it is indeed so w.h.p. if ∆ ≥ threshold

and hence if ∆ ≥ 16threshold [10].
We now present our main algorithm—a distributed algorithm to color the bipar-

tite graphs produced above.

4.1. Distributed edge coloring of bipartite graphs. Given a bipartite graph
G = (A,B,E), we assume that each vertex knows whether it belongs to A or B.
This is an important assumption because such information cannot be computed fast
distributively as mentioned in section 2, but it is verified for the bipartite graphs
generated by the Karloff–Shmoys scheme. Henceforth, we will refer to vertices in A
as the top vertices and to the vertices in B as the bottom vertices.

Given parameters ∆C , ε, and δ such that ∆C is an upper bound on the degree of
G, the algorithm takes O(logn) time and colors the bipartite graph G with at most
1.6∆C + O(log1+δ n) colors w.h.p., as long as δ > 0 is any constant (ε is used in the
algorithm). During any iteration of the algorithm, ∆C is meant to be an upper bound
on the degree of the current graph; we will prove later that this holds w.h.p. as long
as ∆C ≥ log1+δ n = threshold. From the remark in section 4, we can assume that
this is valid when the bipartite algorithm is called first. As we will briefly discuss in
section 5.1, this is not needed but gives better constants. The algorithm is as follows.

1. Part I. While ∆C ≥ threshold, do the following:
Let GC be the current graph. Pick a set χ of ∆C fresh new colors.
(i) (random proposal of bottom vertices) In parallel and independently of the

other vertices in B, each vertex v ∈ B assigns a temporary color to each edge in δ(v)

2 When ∆ = O(polylog(n)), we can compute a 2∆−1 coloring deterministically in O(polylog(n))
time using an algorithm based on the idea of removing maximal matchings. We prefer to use Luby’s
algorithm here for conciseness.

D
ow

nl
oa

de
d 

07
/2

4/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



358 A. PANCONESI AND A. SRINIVASAN

with uniform probability without replacement, i.e., edge e1 is assigned color α ∈ χ
with probability 1/∆C , e2 is assigned β ∈ χ− {α} with probability 1/(∆C − 1), and
so on.

(ii) (lottery of top vertices) (Remark. The coloring so far is consistent around
any vertex v ∈ B but can be inconsistent around a vertex u ∈ A.) For each u ∈ A, let
Cu(α) be the set of edges in δ(u) with temporary color α. Each vertex u ∈ A selects
a winner uniformly at random in Cu(α) for each nonempty Cu(α). All other edges,
the losers, are decolored and assigned ⊥.

(iii) Set ∆C := ∆C(1+ ε)/e. G⊥, the subgraph of GC induced by the losers (i.e.,
by the ⊥-edges), becomes the new current graph.

2. Part II. Let Gr be the remaining graph. Edge colorGr with at most 2∆(Gr)−
1 colors by executing Luby’s vertex coloring algorithm on the line graph of Gr.

Since we use new colors in each iteration, it is clear that when the algorithm
terminates, G has been edge colored legally. It is also apparent that the algorithm
works based on local information alone. We now turn to placing bounds on the number
of colors used and the running time.

5. Analysis of the algorithm. Since the analysis is fairly involved, we first
present a higher-level description of it.

5.1. The basic structure of the analysis. Our key claim will be that in every
iteration of Part I of the bipartite edge-coloring algorithm, the maximum degree of
the graph shrinks by a factor of at least (1+ε)/e w.h.p., as long as ∆C ≥ threshold.
That is,

∆(G⊥) ≤ (1 + ε)
∆(GC)

e

w.h.p. for any fixed ε > 0. The condition ∆C ≥ threshold ensures that the failure
probability given by the extension of the CH bounds is the inverse of a superpolyno-
mial function. Hence w.h.p., no vertex will violate the degree condition. The reason
for setting threshold = log1+δ n will be apparent from the probabilistic analysis.

Once the key claim is established, we can bound both the total number of colors
used, and the running time of the algorithm. To bound the number of colors used,
observe that if the degree of the graph shrinks at every iteration by at least a (1+ε)/e
factor w.h.p., then the maximum degree of Gr is at most log1+δ n w.h.p.

Hence if ∆C ≥ threshold, then w.h.p., the number of colors used by the bipar-
tite algorithm is at most

BC(∆C) ≤ ∆C +
∆C

e
(1 + ε) + · · ·+ ∆C

ek
(1 + ε)k + 2 log1+δ n,

where k is the smallest integer such that ∆C(1+ε)k/ek ≤ log1+δ n. Thus for a suitable
ε′ > 0 which depends on ε and which can be made arbitrarily small, BC(∆C) is at
most

BC(∆C) ≤
(

e

e− 1
+ ε′

)
∆C +

(
2− e

e− 1
− ε′

)
log1+δ n

< 1.585∆C + 0.4 log1+δ n

< 1.59∆C

when ∆C > 8 log1+δ n. The running time of the algorithm is O(logn) because Part I
takes O(log ∆C) time and Part II, i.e., Luby’s algorithm, takes O(logn) time.
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DISTRIBUTED EDGE COLORING 359

Note that if ∆ ≥ 16threshold in the main algorithm, then ∆C > 8 log1+δ n is
true for the bipartite algorithm and hence the above analysis is valid; also note that
if ∆ ≤ 16 log1+δ n, then we use Luby’s subroutine directly in our main algorithm.

Thus if ∆ ≥ 16threshold in the main algorithm, then the recurrence for the
total number of colors used is

TC(∆) ≤ BC
(

∆

2
+

√
∆ log1+δ/2 n

)
+ TC

(
∆

2
+

√
∆ log1+δ/2 n

)
< 1.59∆ + o(∆)

< 1.6∆.

If ∆ ≤ 16 log1+δ n, then the main algorithm uses Luby’s subroutine directly to get
a 2∆− 1 ≤ 32 log1+δ n edge coloring. Hence the total number of colors to color any
graph is at most 1.6 ∆ + 32 log1+δ n for any fixed δ > 0 w.h.p.

5.1.1. A truly distributed algorithm. We now sketch the modifications needed
to handle the case when both ∆ and n are unknown. Each node u initially computes
the value ∆u = maxv∈N(u) deg(v). The recursion of the Karloff–Shmoys scheme and
the loop of Part I of the bipartite subroutine are then repeated for c log ∆u times for a
constant c > 0 chosen large enough. A vertex u is said to be active as long as no more
than c log ∆u rounds have elapsed; it is inactive otherwise. An edge incident on an
inactive node is inactive. It is convenient to think of Luby’s algorithm as run directly
by the edges. An inactive and yet uncolored edge f will wait until all of its neighboring
edges are either colored or inactive, at which point it starts running Luby’s algorithm
with a palette of deg(f) + 1 fresh colors, where deg(f) denotes the number of inactive
edges incident upon f . There are two main observations to prove the correctness of
and the bounds on the number of colors used by this modified algorithm. First, all of
the neighbors of a vertex u will stay active for at least c log deg(u) rounds. Hence all
vertices such that deg(u) = Ω(log1+δ n) will be able (w.h.p.) to color enough edges
to reduce their degree until it drops to O(log1+δ n). Second, as discussed in section
2, Luby’s algorithm still works correctly when vertices (in our case, edges) are added
dynamically.

The high-probability analysis carries through with these modifications. Simple
calculations show that with these modifications, the total number of colors used in-
creases to at most 1.6∆ + 160 log1+δ n. We omit the calculations for this modified
algorithm, which are similar to those presented here for the case where n and ∆ are
known.

We now return to the case where n and ∆ are known, and we turn to the task
of proving the key claim. We wish to show that given a graph G and ∆ such that
∆ ≥ ∆(G) and ∆ ≥ threshold, then after one iteration of Part I of the bipartite
algorithm, the maximum degree of the new graph, ∆(G⊥), is at most (1 + ε)∆/e
w.h.p. for any fixed ε > 0. It turns out that the analysis is considerably easier for the
top vertices than for the bottom vertices. We begin with the easy part.

5.2. Analysis of the top vertices. Let u be a generic top vertex with incident
edges i = (u, vi). Recall that a loser is an edge which, after having gotten a tentative
color in the random proposal, lost the lottery and got decolored. Therefore, the new
degree of u is given by the number of losers incident with it.

From the point of view of a top vertex, the random proposal and the lottery are
equivalent to the following random experiment. For each edge i incident on u, we
introduce a ball i, and for each color k, we introduce a bin k; the assignment of a
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360 A. PANCONESI AND A. SRINIVASAN

tentative color to an edge by the algorithm is equivalent to throwing each ball into
one of the ∆ bins independently and uniformly at random since the bottom vertices
assign tentative colors with uniform probability and independently of the other bottom
vertices. Recalling that we have at most ∆ balls and exactly ∆ bins,

]losers = ]balls− ]winners

≤ ]bins− ]nonempty bins

= ]empty bins.

Let X be a random variable denoting the number of losers. To estimate X and its tail
distribution, we will study the random variable B = ]empty bins. For this purpose,
we introduce ∆ many indicator random variables Bi, where Bi = 1 if bin i is empty
and 0 otherwise; hence B =

∑
i∈[∆]Bi. Notice that X ≤ B always. The variable B

was studied in section 3, where it was shown that E[B] ≤ ∆/e and that the Bi’s are
1-correlated, which implies that Pr(B > (1+ε)∆/e) ≤ F (∆/e, ε). Since E[X] ≤ E[B]
and Pr(X > (1 + ε)∆/e) ≤ Pr(B > (1 + ε)∆/e), we get the following result.

Theorem 5.1. Let u be a top vertex and X be the random variable denoting the
number of losers incident on it. Then E[X] ≤ ∆/e and

Pr

(
X >

(1 + ε)∆

e

)
≤ F

(
∆

e
, ε

)
.

5.3. Analysis of the bottom vertices. In this section, we analyze what hap-
pens to the new degree of a generic bottom vertex vb. This case is considerably harder
to handle than the previous one because of the way in which the random variables
describing the process are correlated. For a top vertex, the dependency among the
variables was playing for us; given that some edges incident on a top vertex are losers,
the probability of having another loser decreases. For a bottom vertex, the situation
is reversed: having some edges lose the lottery might even make the probability of
having another loser increase. The problem can be seen in the following situation.
Let x1 = vb and x2 be bottom vertices, and let y1 and y2 be top vertices which induce
a four-cycle, i.e., there is an edge ei,j = (xi, yj) for i, j = 1, 2. Suppose we are given
that e1,1 got tentative color α and lost the lottery and that e1,2 got tentative color β;
we will argue intuitively that given this, the probability of e1,2 losing the lottery has
increased. Since e1,1 lost, the probability of e2,1 getting tentative color α increases,
which implies that the probability of e2,2 getting tentative color β also increases, and
this increases the probability of e1,2 losing the lottery.

For the sake of the analysis, we modify the algorithm as follows: instead of per-
forming all random proposals in parallel, suppose that the bottom vertices perform
their random proposals sequentially, in some order. This does not modify the proba-
bility distributions because the choices are still done independently. We want to focus
our attention on the last vertex vb performing the random proposal. We will use the
fact that when vb performs its random proposal, all edges not incident on vb already
have a tentative color. By symmetry, any upper bound on the probabilities we can
find for vb will hold for all bottom vertices.

Let i ∈ [dvb ] denote an edge incident with the bottom vertex vb, with the other
endpoint of i being ui. We introduce the indicator random variables

Xi =

{
1, i loses the lottery,
0 otherwise,
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DISTRIBUTED EDGE COLORING 361

and we want to study the expectation and tail probability distribution of X =∑
i∈[dvb ]Xi. Computing the expectation is easy.

Lemma 5.2. E[X] ≤ ∆/e.
Proof. Let vb be the bottom vertex. It is sufficient to show that Pr(Xi = 1) ≤ 1/e

for all i ∈ [dvb ]. From the analysis of the top vertices, we know that the expected
number of losers incident with ui is at most ∆/e and hence that

∑
j∈δ(ui) Pr(j loses) ≤

∆/e. By symmetry, Pr(j loses) ≤ 1/e for all j ∈ δ(ui), and hence Pr(Xi = 1) ≤
1/e.

We now study the tail probability distribution of X. Our goal is to show that
X ≤ (1 + ε)∆/e w.h.p. for any fixed ε > 0. Establishing this claim will take several
lemmas.

We use a method different from the preliminary version of this work [16] to present
stronger results. We first invoke a result of Schmidt, Siegel, and Srinivasan [20], which
was in fact motivated in part by [16] and in particular by the notion of λ-correlation.

For z = (z1, z2, . . . , zn) ∈ <n, define a family of symmetric polynomials qj(z),
0 ≤ j ≤ n, where q0(z) ≡ 1 and for 1 ≤ j ≤ n,

qj(z)
.
=

∑
1≤i1<i2···<ij≤n

zi1zi2 · · · zij .

Theorem 5.3 (see [20]). Let Y1, Y2, . . . , Yn be arbitrary (not necessarily indepen-
dent) 0–1 random variables with Y =

∑n
i=1 Yi. Then for any a > 0 and any positive

probability event Z,

Pr(Y ≥ a|Z) ≤ min
`=1,...,a

E[q`(Y1, Y2, . . . , Yn)|Z](
a

`

) .

Proof. The actual theorem of [20] is stated unconditionally without reference to
Z, but the above conditional extension is easily derivable from its proof as follows.
Since the Yi’s are binary, it is easily seen that for any ` ≤ a, given that Z occured,
(Y ≥ a) implies (q`(Y1, Y2, . . . , Yn) ≥ (a` )). Thus by Markov’s inequality,

Pr(Y ≥ a|Z) ≤ E[q`(Y1, Y2, . . . , Yn)|Z](
a

`

) .

To bound the upper tail of X, we will define an event A such that A happens
w.h.p. and such that for a suitably chosen k,

E[qk(X1, . . . , Xdvb
)|A](

∆(1 + ε)e−1

k

) = e−Ω(∆ε2).(3)

In combination with Theorem 5.3, this will show that Pr(X ≤ (1+ ε)∆/e) almost
surely because

Pr

(
X >

(1 + ε)∆

e

)
= Pr

(
X >

(1 + ε)∆

e
| A
)

Pr(A)(4)

+ Pr

(
X >

(1 + ε)∆

e
| Ac

)
Pr(Ac)
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362 A. PANCONESI AND A. SRINIVASAN

≤ Pr

(
X >

(1 + ε)∆

e
| A
)

+ Pr(Ac)

≤ min
i∈[dvb ]

E[qi(X1, . . . , Xdvb
)|A](

∆(1 + ε)e−1

i

) + Pr(Ac)

≤
E[qk(X1, . . . , Xdvb

)|A](
∆(1 + ε)e−1

k

) + Pr(Ac),

which is small by assumption. (Note that A happens w.h.p.) To prove the upper
bound (3), we will focus on a generic term Pr(

∧
i∈I Xi = 1|A) in

E[qk(X1, . . . , Xdvb
)|A] =

∑
I⊆[dvb ],|I|=k

E

[∏
i∈I

Xi|A
]

=
∑

I⊆[dvb ],|I|=k
Pr

(∧
i∈I

Xi = 1|A
)
,

which will also suggest to us a suitable choice for the event A.
Consider then a generic subset I = {w1, w2, . . . , wk} ⊆ [dvb ] of edges incident on

the bottom vertex vb (corresponding to the neighbors {uwi} of vb), and let us see
how to compute Pr(

∧
i∈I Xi = 1). Without loss of generality, we assume I = [k].

Recall that we are analyzing the situation where vb is the last vertex to perform its
random proposal. This means that prior to the assignment of a tentative color to
edge i = (vb, ui), all other edges incident on ui already have their tentative color.
Using the balls-and-bins language, we can say that prior to throwing ball i at random
into one of the bins at vertex ui, all balls coming from the other neighbors of ui
have been thrown. We will think of i as a red ball and of the other edges at ui as
white balls. Once the red ball is thrown in, say, bin ` ∈ [∆], a winner is selected
uniformly at random among all (i.e., red and white) balls in bin `. All other balls, the
losers, are discarded. Notice that the probability of discarding the red ball is itself a
random variable which depends on the particular placement of the white balls prior
to throwing the red ball. (Hence we will study the conditional probability that the
red ball loses the lottery, given a placement of white balls.)

Given any placement of white balls at ui, we construct a vector of probabilities
Ci as follows. Let a`,i denote the number of white balls in bin ` ∈ [∆] of vertex ui,
and let p`,i = a`,i/(1 + a`,i) denote the probability that the red ball loses the lottery
given that it was thrown in bin `. (Equivalently, p`,i is the probability that edge i
loses given that it got tentative color `.) For each neighbor ui of our bottom vertex vb,
we construct the corresponding vector Ci = (p1,i, p2,i, . . . , p∆,i). We then construct a
∆ × k matrix MI whose ith column is the vector Ci. The next lemma explains why
this matrix is relevant to us. Henceforth, let p(m, `)

.
= m(m− 1) · · · (m− `+ 1).

Lemma 5.4.

Pr

(∧
i∈I

Xi = 1

)
=

perm(MI)

p(∆, k)
.

Proof. The random proposal of vb restricted to I is equivalent to choosing a
one-to-one function π : I → [∆] uniformly at random among the set P of all such
functions. Recall that the entry Mi,j of MI is the probability pi,j that edge wj loses
given that it is given color i. Hence

Pr(∧i∈IXi = 1) =
∑
π∈P

Pr(∧i∈IXi = 1 | π is selected) Pr(π is selected)
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DISTRIBUTED EDGE COLORING 363

=
∑
π∈P

(
Mπ(1),1Mπ(2),2 · · ·Mπ(k),k

) k−1∏
i=0

1

∆− i

=
perm(MI)

p(∆, k)
.

We now want to find a good upper bound for perm(MI). The following lemma
gives a simple upper bound that is sufficient for our purposes.

Lemma 5.5. Let M be a matrix with c columns and r rows (c ≤ r) and non-
negative entries. Let Si denote the sum of the entries of the ith column of M . Then
perm(M) ≤

∏
i∈[c] Si.

Proof. Let P = {π | π : [c]→ [r], π is one-to-one}. Then

perm(M) =
∑
π∈P

Mπ(1),1Mπ(2),2 · · ·Mπ(c),c

≤ (M1,1 + · · ·+Mr,1)(M1,2 + · · ·+Mr,2) · · · (M1,c + · · ·+Mr,c)

=
∏
i∈[c]

Si.

The next lemma relates the value of Si to that of 1/e ≥ Pr(i loses), i ∈ δ(vb).
It is an application of the general definition of λ-correlation. Before the proof of the
lemma, we establish the following result.

Proposition 5.6. If 0 ≤ p ≤ 1, q = 1− p, and m is a positive integer, then

m∑
r=1

(
m
r

)
prqm−r

r

r + 1
= 1− (1− qm+1)

p(m+ 1)
.

Proof. Let

f(p) =
m∑
r=1

(
m
r

)
prqm−r

k

k + 1

= 1− qm −
m∑
r=1

(
m
r

)
prqm−r

1

k + 1
.

Integrating both sides of the binomial expansion

(x+ q)m =
m∑
r=0

(
m
r

)
xrqm−r

between 0 and p, we get

1− qm+1

m+ 1
= p (1− f(p)),

from which the proposition follows.
We now return to our scenario where vb is the last bottom vertex to pick tentative

colors for its edges. Recall that we are focusing on a set I = {w1, w2, . . . , wk} of edges
incident on vb and that we want a good upper bound on Pr(

∧
i∈I Xi = 1); we had

also assumed that I = [k] without loss of generality. Combining Lemmas 5.4 and 5.5,
we get

Pr

(∧
i∈I

Xi = 1

)
≤ perm(MI)

p(∆, k)
≤ Πk

i=1Si
p(∆, k)

,
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364 A. PANCONESI AND A. SRINIVASAN

where for each i ∈ [dvb ], Si is defined to be the sum of the entries in Ci. Therefore, a
good upper bound on Si for each i will hopefully translate into a good upper bound
for Pr(

∧
i∈I Xi = 1). The next lemma says that Si ≤ ∆(1 + ε1)/e w.h.p. for any fixed

ε1 > 0 and for each i. Thus a good choice for A is

A : “Si ≤ ∆(1 + ε1)/e for each i ∈ [dvb ]”

where ε1 will be fixed later. The next lemma is an application of the general definition
of λ-correlation.

Lemma 5.7. Let i = (vb, ui) be any edge in [dvb ], and let Si be the sum of the
entries of Ci. Then E[Si] ≤ ∆/e = µ and

∀ε1 > 0, Pr(Si > (1 + ε1)µ) ≤ F (µ, ε1).

Proof. Let Z` be the random variable denoting the number of white balls in bin
` of ui, and let Y` = Z`/(Z` + 1) be the random variable denoting the probability
that the red ball loses the lottery given that it lands in bin `. Then Si = Y

.
=
∑
` Y`.

Note that the Y`’s are bounded random variables with values in [0, 1]. We will show
that E[Y ] ≤ ∆/e and that the Y`’s are 1-correlated (under the general definition of
λ–correlation), which will give our claim.

We may assume that the total number d of white balls equals ∆ − 1 (i.e., that
the degree of ui is ∆): Pr(Y > (1 + ε1)∆/e) is maximized at d = ∆− 1 since d varies
from 1 to ∆ − 1. (To see this, assume d = ∆ − 1 − ` < ∆ − 1. Add ` yellow balls
to the white balls and run two experiments. In one experiment, throw the white and
red balls and compute the probability that the red ball loses the lottery. In the other
experiment, throw white, yellow, and red balls and again compute the probability
that the red ball loses. In both experiments, let us look at the bin where the red ball
fell. The probability that the red ball loses is b/(b + 1) for the first experiment and
(b+y)/(b+y+1) for the second, where b and y are, respectively, the number of white
and yellow balls in the bin. Since y ≥ 0, b/(b + 1) ≤ (b + y)/(b + y + 1). If Yi(d)
indicates the variable Yi when ui has degree d, then Yi(d) ≤ Yi(∆) for all i ∈ [∆] and
d ∈ [∆].)

First, we will show that for all i, E[Yi] ≤ 1/e, and then we will show that for any
set of ` indices J ⊆ [∆] and strictly positive integers si,

E

[∏
i∈J

Y sii

]
≤ 1

e`
.(5)

Given this we can apply Corollary 3.3 by introducing n independent twin 0–1
random variables Ŷi such that E[Ŷi] = Pr(Ŷi = 1) = 1/e. Since the Ŷi’s are binary,
inequality (5) is the same as

E

[∏
i∈J

Y sii

]
≤
∏
i∈J

E[Ŷi] =
∏
i∈J

E[Ŷi
si

],

which is to say that the Yi’s are 1-correlated. Noting that 0 ≤ Yi ≤ 1, it suffices to
show that

E

[∏
i∈J

Yi

]
≤ 1

e`
.(6)
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Without loss of generality, we can assume J = [`]. We will prove inequality (6)
by induction on ` ≥ 1; when ` = 1,

E[Y1] =
∆−1∑
r=0

(
∆− 1
r

)(
1

∆

)r (
1− 1

∆

)∆−1−r
r

r + 1

=

(
1− 1

∆

)∆

≤ 1

e
,

where the second equality follows from Proposition 5.6. Notice that for all j ∈ [∆],
E[Yj ] = E[Y1] ≤ 1/e. When ` > 1, the law of conditional probabilities gives

E

∏
i∈[`]

Yi

 = E[Y1Y2 · · ·Y`−1E[Y` | Y1Y2 · · ·Y`−1]](7)

Suppose we show that for all nonzero ci ∈ [0, 1] with i ∈ [`− 1],

E

[
Y` |

`−1∧
i=1

Yi = ci

]
≤ 1

e
;(8)

then since the product Y1Y2 · · ·Y`−1 in equation (7) is zero when any ci is zero, we
see by induction on ` that

E

[∏̀
i=1

Yi

]
= E[Y1Y2 · · ·Y`−1E[Y` | Y1Y2 · · ·Y`−1]]

≤ 1

e
E

[
`−1∏
i=1

Yi

]

≤ 1

e`
.

Hence the claim follows if we can show that inequality (8) holds.
If ai denotes the number of white balls that fell into bin i, then ci = ai/(ai + 1).

Let a =
∑`−1
i=1 ai ≥ `− 1, p = 1/(∆− `+ 1), and q = 1− p. Then

E

[
Y`|

`−1∧
i=1

Yi = ci

]
= E

[
Y`|

`−1∧
i=1

Zi = ai

]

=
∆−1−a∑
r=1

t(r, a),

where

t(r, a)
.
=

(
∆− 1− a

r

)
prq∆−1−a−r r

r + 1
.

It is easy to check that t(r, a) ≥ t(r, a+1). As a consequence, the maximum value

of E[Y`|
∧`−1
i=1 Yi = ci] is attained at a = `− 1, in which case we have

∆−1−a∑
r=1

t(r, a) =
∆−∑̀
r=1

t(r, `− 1)
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=
∆−∑̀
r=1

(
∆− `
r

)
prq∆−`−r r

r + 1

= q∆−`+1 ≤ 1

e

by Proposition 5.6.

We remark that a short proof of Lemma 5.7 can be derived using the elegant work
of [7].

Define ε1
.
= ε/10. Thus defining the event A as “Si ≤ ∆(1 + ε1)/e for each

i ∈ [dvb ]”, Lemma 5.7 gives the bound

Pr(Ac) ≤ ∆F

(
∆

e
, ε1

)
.(9)

Now given that A holds, Lemma 5.5 shows that perm(MI) ≤ (∆(1 + ε1)/e)k and thus
from Lemma 5.4,

Pr

(∧
i∈I

Xi = 1|A
)
≤

(
∆(1 + ε1)

e

)k
p(∆, k)

.(10)

We now turn to defining k suitably to get a good tail bound. Invoking Theorem 5.3
for

X =
∑
i∈[dvb ]

Xi

in conjunction with (10), we see that if a = ∆(1 + ε)/e, then

Pr(X > a|A) ≤
E[qi(X1, . . . , Xdvb

)|A](
a

k

)

≤

(
dvb
k

)(
∆(1 + ε1)

e

)k
p(∆, k)

(
a

k

)

≤

(
∆

k

)(
∆(1 + ε1)

e

)k
p(∆, k)

(
a

k

)

=

(
∆(1 + ε1)

e

)k
p

(
∆(1 + ε)

e
, k

) .(11)

To lower bound p(∆(1 + ε)/e, k), we need the following result.

Lemma 5.8. For positive integers t and `, t`/p(t, `) ≤ e`2/t if ` ≤ t/2.
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Proof. We first note that ln(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2. This is true since if
we define f(x)

.
= ln(1 − x) + 2x, then f(0) = 0 and f ′(x) = (1 − 2x)/(1 − x), which

is nonnegative for 0 ≤ x ≤ 1/2. Now

p(t, `)

t`
=
`−1∏
i=1

(t− i)
t

= exp

(
`−1∑
i=1

ln

(
1− i

t

))

≥ exp

(
−
`−1∑
i=1

2i

t

) (
since ` ≤ t

2

)
= exp

(
− (`− 1)`

t

)
≥ e−`2/t.

We now set k = b∆ε/3ec. Using Lemma 5.8 and the facts ε1 = ε/10, 1 + ε ≥ eε/2,
and 1 + ε1 ≤ eε1 , we see from (11) that

Pr(X ≥ ∆(1 + ε)/e|A) ≤ e−Ω(∆ε2).(12)

Applying bounds (9) and (12) to (4), we finally arrive at

Pr(X ≥ ∆(1 + ε)/e) ≤ e−Ω(∆ε2).(13)

We can now see why the parameter threshold must be Ω(log1+δ n): the failure
probability (13) goes to zero superpolynomially fast if ∆ = Ω(log1+δ n) for any fixed
δ > 0. Using (13), we conclude our analysis with the following result.

Theorem 5.9. The new degree of the graph after one iteration of Part I of the
bipartite algorithm is at most (1 + ε)∆/e w.h.p. for any fixed ε > 0.

6. Extensions and applications of the algorithm. Recently, Panconesi and
Dubhashi have improved our bounds by presenting a randomized distributed edge-
coloring algorithm that runs in polylogarithmic time and uses at most ∆(1 + o(1)) +
O(logn) colors w.h.p. [6]. However, we feel that this work has independent interest
owing to the tools developed to analyze the algorithm. We now describe some recent
applications of this work.

Our results on λ-correlation have been used to prove the performance of a ran-
domized rounding technique for multicommodity flow (Young [23]) and to provide an
elementary method to bound the upper tail of the number of prime factors of ran-
dom integers (Srinivasan [21]). As mentioned in section 5.3, the work of [20], which
expands the applicability of CH-type bounds to more nonindependent scenarios, was
inspired in part by this work. Our results on upper tail bounds for sums of bounded
λ-correlated random variables have been generalized in [20].

Our algorithm has also been used and extended in the context of emulating PRAM
algorithms using a limited number of processors [5].
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