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Abstract

Demarcation of the border between solvable and

unsolvable distributed tdis under various models

is the holy grail of the theory of distributed com-

puting. Oneof the most celebrated of theseresults

is [6] (FLP) which established the impossibility of

asynchronous consensus that can tolerate a single

undetected fail-stop processor. This paper gener-

alizes FLP to multiple faults. It establishes that

k-set consensus proposed by Chaudhuri is impos-

sible, if the protocol is to tolerate k failures, while

there exists a protocol that tolerates k – 1 failures.

Our proof technique is completely different than

the one employed in [6]. We introduce a new model

of computation, the im112ecliate-atoY12 ic-.s?2u~)shot.

We fully characterize the graph of waitfree views

within the model. Applying a variant of Sperner

Lemma to this graph establishes the impossibility

of k + 1 processors achieving waitfree k-set consen-

sus.

Finally, we introduce a new notion of non-

blocking-busy-wait agreement protocol, With this
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protocol we construct a read/write waitfree simu-

lation techniclue by which k + 1 processors can pro-

duce a k-faulty execution of n processors protocol,

{Tsing the simulation we establish the impossibility

of n processors protocol that achieves k-set consen-

sus and tolerates k failures, by reducing it to the

waitfree case.

1 Introduction

One of the most celebrated results in distributed

computing is [6] which established the impossibil-

ity of asynchronous consensus that can tolerate a

single undetected fail-stop processor. That is, from

some point on a processor stops taliing steps. Un-

detected fail-stop failure can be used to model a

slow process. (liven a task the question is then

in what way a single slow process can affect the

execution of the task. Essentially, the FLP result

says that in an asynchronous system using message

passing or read/write shared memory for interpro-

cess communication, even a simple synchronization

task lilie single shot mutual exclusion (a.k,a test-

and-quit ) call be executed only as fast as the slow-

est processor. In the limit, if a single processor

stops taking steps at some critical time, the fail-

ure may prevent any other processor from either

entering the critical section or deciding to give up.

F’LP has given rise to a lively research of the

asynchronous model. The authors of [10] investi-

gated the “amount

introduced into the

of synchrony’) that has to be

system in order to reach con-
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sensus. .4 number of problems are raised in [3]

with a subsequent investigation into ~vhether they

are solvable or not. In [4] a combinatorial charac-

terization is given for the input/output. relation of

thetasks which areso]vable inspite ofa single fail-

ure. Yet, no meaningful problem was showm to be

solvable with k – 1 failures but unsolvable with k

failures. Such a problem and its impossibility proof

would lead the way to characterization of this class

of problems, in as much as FLP lead to [4]. In par-

ticular such a problem will aid in characterization

of which tasks n processors can execute ivaitfree.

that is in spite of 72 – 1 failures. ~~~aitfree conlpu-

tation is investigated and partially characterized in

[8] given a stronger interprocessor coillllltll~icatioll

than is provided by message passing or read/\vrite

model.

To our knolvledge, Chaudhuri in [.5] made the

first serious attempt to provide the FLP coun-

terpart in case of k > 1 failures. She proposed

the k-set ( agreement) consensus problem. That

is, each processor, which holds an initial private

value, must halt ~vith an output value w~llich is one

of the initial values, and the total number of (lis-

tine.t output values of the different processors is to

be bounded by k. She conjectured that there is no

protocol that achieves k-set consensus in spite of

k failures, and has given an algorithm to solve it

when there are at most k – 1 failures. In an attempt

to follow the FLP steps, she successfully general-

ized some of the FLP proof steps, but was unable

to generalize others. Yet in her attempt. she ob-

served something very insightful: namely. that FLP

makes repeated use of the one dimensional Spemer

Lemma, and therefore it st ancls to reason t hat the

generalization of FLP to k > 1 should use higher

dimensional versions of the Lemma.

We proceed along the steps of [.5]. Many of our

ideas can be traced to [.5] where they appear in an

embryonic form. Yet we concluded that, the FLP

proof is too “procedural,”’ referring to low- level no-

tions like critical states and their valency. Follow-

ing [8] \ve first concentrated on the waitfree case,

that is a protocol for k + 1 processors that can tol-

erate k failures. There, what C’haudhuri ~vorked so

hard to obtain, the “(k + 1 )-valency” of the initial

state, is given for free. Our first step is to prove

that k + 1 processors cannot waitfree achieve k-set

consensus.

In ]Jrealiing with the FLP technique, we argue

directly about execution sequences, and views of

processors therein. We define the graph of views

of all possible wraitfree computations. Nodes in

this graph are ~riews of processors after they reach

a “decision” state. Two views of processors are

neighbors if they correspond to the same execu-

tion. In the extreme views of this graph, proces-

sors see only themselves and thus must decide their

own input value as output. Similarly, a processor

may decide only on the input value of a proces-

sor that appears in its view. Using a variant of

Spemer’s Lemma we prove the existence of a sin-

gle run where the view? of every processor in that

uun came.s each processor to decide on his own in-

put value as output, establishing the impossibility

rccluired.

Then. in a step ~vhich is less technically involved

but perhaps even more novel, we extend the result

to show that for any number of processors n, n > k,

there is uo read/write protocol to implement a k-

set consensus in spite of k failures. This is done by

reduction to the previous problem. }\’e let k + 1

processors \vaitfree simulate the protocol and show

they can then wait-free solve the k-set consensus

problem.

The simulation is facilitated by the idea of an

agreement protocol with a property of non-blocking

busy-wait. The idea is to design an agreement pro-

tocol whose code is partitioned into a straight-line

part follo~ved by a busy-wait part, A processor

~{hicll is busy -~vaiting does not block the agree-

ment. Only a processor executing the straight-line

part does, \Vhile busy-waiting a processor may

‘-tin~e-share” and participate in another agreement.

‘rhll~each processor that participates in multiple

agreements is at each point of time executing at the

most the stlaight-line part of a single agreement

protocol, and comequently can block only a single

agreement. To simulate a concurrent read/write

protocol, the simulating processors have to agree

on the outcome of a read step of a simulated code.

Since the simulation is wait-free at most k proces-

sor may fail. blocking the simulation of at most k

codes, and thus giving rise to an execution which

is at most k faulty.

Finally \ve show that the k-set consensus task

is funclament al by defining the new problems of k-

leader election and k-set test-and-set and reducing
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them to consensus,

In other papers in this proceedings [12] has inde-

pendently proven the impossibility of the wait free

k-set consensus in spite of k failures, while [13] has

supplied the counterpart of [4] to t-resilient com-

put ations.

The paper is organized as follows. First we de-

fine precisely our model. Afterwards we show how

the impossibility of the k + 1 processors wait-free

achieving k-set consensus implies the impossibility

of the general k-resilient version of the problem.

Then we prove the impossibility of a waitfree k + 1

processor k-set consensus. And finally we define

and reduce various problems to the set consensus

problem.

2 Model

The equivalence among various distributed com-

putation models has played an important role in

our choice of a model. The equivalence of shared-

memory and message passing is established in [2].

That is, any task computable with no more than

t faults (t < n/2) in the message passing model

is computable in the shared memory model and

vice versa. The equivalence between various shared

memory models is established in [9] and [1] and nn-

merous other papers. Further more, to establish

impossibility one may choose the strongest model

in which the impossibility holds. We introduce

the model of a single-writer / immediate-atomic-

snapshot-reader shared memory. This allows us

to ignore details like message queue discipline, or

which memory cell is being written or read, and

summarize an execution as a sequence of sets of

processors.

An n-processor single writer/immediate atomic

snapshot reader shared memory, is a system of

n processors communicating by atomically writ-

ing into and reading from shared memory. The

memory is divided into n cells, Ci, i = 1, . . . . n.

Processor P, can only write to C,, but reads all of

the memory in one atomic step. Processors submit

write-read requests. That is they have computed

a value to write, they wish it to be written and

they request a snapshot of the memory in order to

compute the next value to be written. The execu-

tion of requests is arbitrated by a scheduler. ‘The

scheduler chooses a set of requesting processors to

first simultaneously write and then simultaneously

read. We call each set a concurrency class since the

order of writes and reads within the set can not be

distinguished. The state of the memory and pro-

cessors after each write and read step changes in

the obvious way.

An execution or run of the system is a sequence

of global states (memory plus processors), starting

at some initial state. One state can be reached

from the previous by specifying the concurrency

class that leads from one to the other. For deter-

ministic processors, as the ones dealt with here,

this sequence of global states is fully specified by

the initial state and the sequence of sets of proces-

sors chosen by the scheduler, Since we deal with

computability we assume w.l,o.g. that a processor

never overwrites what it has written before. When

something new is to be written it rewrites whatever

\vas written there before, together with the new

information to be written. We assume that each

processor has local states in which it is decided. A

decision is associated with an output value. A de-

cided state together with the value associated is

required to be a stable property.

Thus, we do not interpret what a processor

writes, i.e. ~ve deal with a full-information proto-

col [7]. Since the evolution of a run is determined

by the sequence of concurrency classes, we follow

the evolution of the knowledge of this sequence of

classes by the participating processors. A proces-

sor that reads sees all the writes in the run that

preceded its read. Each write by a processor cor-

responds to this processor being scheduled in some

concurrency class. Yet the processor that reads the

writes has some uncertainty as to how these writes

are partitioned into concurrency classes. We later

precisely define this uncertainty. We define the

view of a processor a.fte~ a read to be the set of

all the runs that do not violate this uncertainty.

Consequently, in a full information protocol the

only thing determined by the protocol is which

views are decided and which are not. That is, a

protocol in this model is a mapping of views to a

decided/undecided together with an output value

that is associated with the decision.

M;e now define several variants of “i-resilient”

protocols. An execution of a protocol partitions

processors into four sets. Processors that took infi-

nite number of steps - i?ljnite-step set. Processors
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that took finite number of step but are decided

by their last step - finite-step-decided set. Proces-

sors that took finite number of steps but are un-

decided by their last step - jinite step-undecided

set. Processors that did not take any step - sleepi-

ng set, A protocol is t-resilient if in any execution

the existence of an infinite-step undecided proces-

sor implies that the number of faulty processors is

greater than t. An execution in which no more than

t processors fail is t-faultyexecutio92. We have four

ways to define a set of faulty processors. First by

whether we consider a sleeping processor as faulty

or not, and secondly whether we consider a finite-

step-decided processor to be faulty or not,.

A protocol for n processors is wait-free if it is

(n - 1) resilient. It is easy to see that all models

coincide on the wait-free case in the sense that no

justification exists for an infinite undecided run.

Thus if we halt a processor after it decides then

a wait-free protocol does not have an infinite exe-

cution. For each processor, given an input, there

exists some number of times it may be scheduled

after which the processor must decide, and then

halts without blocking other decisions,

A task is a partial point to set mapping which

for each set of processors with given input asso-

ciates what possible combination of outputs the

processors may decide on. A protocol t-resilently

implements the mapping if in a t-faulty execution

in which only a set S of processors participates.

i.e. the complement set of S is a sleeping set. they

decide on a combined output that agrees with the

mapping for S.

A task is t-solvable if there exists a t-resilient pro-

tocol that implements it. A task A is t-reducible

to task B, if there exist a t-resilient protocol for A,

which on top of writing and reading, may submit

inputs values to versions of B and obtain compat-

ible output values. Two tasks are t-equivalent if

they are t-reducible to each other. Obviously if

two objects or tasks are t-equivalent they are t– 1-

equivalent.

We thus obtain four fault models. The strongest

model, in the sense that every tad{ t-solvable in

it is solvable in all the other models, is the one

in which processors can “wait” on the least num-

ber of other processors. This model is the one in

which a sleeping processor or a finite-step-decided

processor are not considered faulty. i.e. only finite-

step-undecided processor is considered faulty. The

weakest model is the one in which any non-infinite-

step processor is considered faulty. We mention in

passing without a proof that the only material dis-

tinction is whether a sleeping processors is consid-

ered faulty or not, When programming processor

i, since we must take into account the execution

in which a decided processor j may only appear

t oget her \vit h i at the same concurrency class, af-

ter j has decided, we may as well let j halt without

considering it faulty, since it in no way ‘(helps” pro-

cessor i.

Our impossibility result holds for all these mod-

els, JVe pro~’e that in none of them can we solve

k-set consensus k-resilently, while in all of them we

can

3

3.1

\Ve

solve it k – I-resilently.

Wait-Free Simulation of t-

resilient Computation

Non-blocking-Busy-Wait

Agreement Protocol

first design a read-write agreement protocol.

The protocol is O-resilient but it has the property

that waiting is done only in the last step. A wait

is a loop of reads that terminates when the read

returned complied with some condition. Thus the

code of the agreement protocol consist of a straight

line code ending with a single read loop. When

all participating processors have reached the wait

statement they can all decide. Thus if a proces-

sor at the wait statement can not make a decision,

we can attribute it to at least one other processor

which is in the middle of the straight-line part of

the code.

The agreement protocol we use is a one-shot

mutual-exclusion algorithm. Here we state it in

the generality of l-exclusion, with all processors ob-

serving when any processor decides to enter the

critical section. The algorithm presented in fig-

ure 1, is a simple variant of the FIFO l-exclusion

a~gorithm proposed in [1 I]. First take Z to be 1.

.111 the variables are single writer multi-reader (i.e.

none are private, remember that any read or write

is doue atomically, although reading and writing

many variables ).

To agree on a value each processor writes his

proposed value into the shared memory then enters
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Protocol for Processor i:

Initially:

z~=false, Si={l,...,72},l&it= (o,ij.

Xi := true;

read

labelz := (Max{ yl(y,j) = labelj} + Iii);

Si := {.j\$j = true};

read until there exists j such that:

\{k G SjllabeJ~ < labeij}l <1

(* let < denote the lexicographic ordering *)

choose: j

Figure 1: .4greement Protocol

the agreement protocol. The value of the winner is

then taken.

3.2 The Simulation

We simulate the execution of n pieces of read/write

code by k + 1 processors. We use an agreement pro-

tocol for each read statement simulated so that pro-

cessors can agree on what read value is returned in

every read step for each of the n codes. Each code

has to be simulated sequentially thus no processor

can simulate past a read statement without an out-

come to the agreement protocol for that statement,

However, a processor waiting on the outcome of one

simulated read may join or start simulating a read

in another code. Thus a processor may be in the

straight-line part of the agreement protocol for only

a single simulated read. Since at most k simulating

processors may fail. their failure may blocli the sinl-

ulation of at most k pieces of code. All remaining

codes are guaranteed to proceed producing k-faulty

execution.

We now apply this simulation to the Set-

Consensus problem. The simulation will imply that

if the (n, k)- Set-Consensus Task is k-solvable. then

the (k + 1, k)- Set-Consensus task is wait-free solv-

able, which is proved impossible in the next section.

The (n, k)-Set-Consensus Task [5]: Each of n

processors holds a private value initially. Each pro-

cessor decides on a value from among the initial

values of the participating processors, such that the

number of distinct values in the output is at most

k.

Before simulating a code the simulating proces-

sors will agree on which value of their initial condi-

tions to associate with an input to the code (using

an agreement protocol). They then produce a k

faulty execution. Since the code is k-resilient some

simulated codes must decide, A processor that ob-

serves a decided code adopts its decision value as

its out put value and stops, Since the simulated

code will not decide on more than k initial values,

we are done.

3.3 General Ramifications of the Silnu-

lation

We now use this simulation in a more general way.

First we give an explicit proof that an object of con-

sensus number k + 1 is strictly stronger than one of

consensus number k. This result was derived inde-

pendently in [14] in a less direct way. Without loss

of generality [8] we can assume that a protocol that

uses ii-consensus number objects actually use k-

consensus objects. This use is accomplished by al-

lowing the code to have a line involie(consensus ob-

ject, value), followed by a line return(value), where

for each consensus object used this pair of lines ap-

pears in at most k codes. We show that if there is

a protocol for k + 1 processors to reach consensus

using only k-consensus objects, then 2 processors

can reach consensus by read/write. In the sin~u-

lation we now have two simulating processors and

one agreement protocol for each k consensus ob-

ject. A slow simulating processor can block at most

the progress of k codes (through one k-consensus

object ), leaving at least one waitfree code free to

proceed. Thus the faster processor can simulate

this remaining code waitfree and terminate with a

valid consensus value.

lJsing similar reasoning we can infer that five

processors using 2-consensus cannot wait free solve

the 2-set consensus problem, otherwise three pro-

cessors can wait free read/write solve 2-set consen-

sus. Ilotice here that two of the three simulating

processors can block at most four codes through

two separate 2-consensus objects. Thus, again a

single code remains to be simulated without chance

of blocking.

Similarly, nine processors using objects of (4, 2)-

set consensus cannot reach 4-set-consensus. Now

the idea is to use the l-exclusion agreement proto-

col with 1 = 2. Under these constraints, in order to
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block four processors we will need two processors

to failstop. That is, we can reduce this to five pro-

cessor 4-consensus read/write which is impossible.

This leads to the general formula that, if the nunl-

ber of processors is greater than the number of the

set consensus times the n/k value of the object.

then we have impossibility.

4 Impossibility of Wait Free (k+

1, k)-Set-Consensus

4.1 Set-Up for Applying the Sperner

Lemma

Consider the wait-free ( k + 1, k )-Set-Consensus

problem and assume w.1.o.g. that the initial value

of a processor is its own unique ID. A trivial so-

lution by which a processor is programmed to de-

cide an initial pre-a,greed ID is precluded by the

requirement that an initial value of a processor P,

may be a decision value of some processor only if

Pi is participating. Thus ~~e have a single input

problem. Consequently, for each processor P, there

exists some number of steps Ni after which it must

decide. We consider executions in which processor

fails after these ~; steps. Thus we consider the set

S to be all the possible executions of the full in-

formation protocol in the single-writer/imnlediate-

atomic-snapshot-reader model, in which each pro-

cessor Pi takes exactly .Yi steps and stops. In

these executions all processors decide on some in-

put va~ue. We consider the graph of halting views

of s.

Nodes in this graph will be views by processors.

A view It by P, represents a set of runs in S. com-

patible with the view, i.e. the set of runs in which

the halting view of P, is l,;. Two views are neigh-

bors if they share a run in S. We will show that

the existence of a decision function represents a re-

stricted coloring of this graph. We will argue by

Sperner Lemma that such a coloring is impossible.

For the sake of completeness we also outline the

structure of the graph of view G( IV1, . . . . ~1~~+1) in

which Pi halts after taking .Wi steps. Our impos-

sibility proof does not, require the knowledge of

this full structure but rather some properties of the

structure.

4.2 Runs and Views

For a fixed input a run r is a sequence of con-

currency classes C’l, C2, . . . . C’~. Each concurrency

class C;, is a set of labeled processors l’~,k, with the

intended meaning that the k ‘th appearance of Pi

occurs in concurrency class Cj. If Pi,~ G Cm and

Pi,k+l c C’n then m < n. In the set of runs S the

last appearance of .P~ is Pi,Nt.

A view of processor is a set of runs together with

the name of the processor. Given r we now define

VP ,( r), the view associated with P;,k in ?’. Define

P,; after Pj,~ in 1’ if PJ,~ is in the same concur-

rency class with Pi,k or in a concurrency class that

precedes it in r. Define p~,k not-after Pj,m in r,

ot her!vise. 1>,,~ (r) are all the runs r’ E S such

that:

1. P,.~ after P~,nz in r iff Pa,k after Pj,m in r’

2. b’m > 1, j if f’a,k after Pj,m in r then r’

nw,,,,,-,(~)
Le~mma 1 The after/not-ufter relation between

cvc ry pair of processor appearance in a run defines

the run.

Lemma 2 The view I,’P,,, defines for each appear-

ance of Pi,~~, Ill < j exictly

pea ra nee Pz,,7 is after.

Lemma 3 VP,,~, ( r) through

‘r.

which processor ap-

‘pk+l,i’/k+~ (r) define

Proofi By lemma 2, the views imply the relations

between all processor appearances and therefore by

lemma 1 it determines the run uniquely. ❑

From here on we will concentrate on views of the

type P~.,\Tt for all i = l,, ,,k+ 1.

Definition: Two views are adjacent if they share

a run in S.

Lemma 4 A view of Pi is not adjacent to ang

other view of Pi.

Lemma 5 If a set of views is pairwise adjacent

then theg all shave a run in S.

Definition: -4 j-clique is set of j pairwise adjacent

view?s.

Definition: A k-clique is a boundary clique if all

the views in the clique share a single unique run in

s.

96



Lemma 6 A k-clique is boundory clique ifltherc

is no appearance of the missingprocessorin any of

the views in the clique.

Definition: Ak-clique is an interior clique ifit is

not a boundary clique.

Lemma 7 Views of an interior k-clique share ex-

actly two rums in ,9.

Sketch of Proof: Let P7 be the processor ~vhose

view is not in the clique. Let P,1,7~ be the latest

appearance of P~ in any of the k views. It is easy

to see that the relation of being in the same con-

currency class on all the appearances of the L pro-

cessors in the view and all the appearances of pj

are determined, aside from F’l,n,. The concurrency

class C that immediately precedes its appearance

is determined. Thus the only ttvo possibilities are

to put it in a singleton concurrency class follo~ving

C, or to join it to the concurrency class the follows

C’ in its absence.

4.3 Recursive Outline of the Graph of

Views

1:12,..

1:12,.

2:2...

Figure 2: One round C( .V1. ,V2, .V3 ) subdi~ision

We divide the views (in this section thought of as

labels of nodes in a graph) in G( NI,. . . . AT~+l ) ,

With A, > () Vi, illto ~~~~ (:+1) subsets. Each SUb-

set is labeled by a different nonempty subset s, of

the k + 1 processors. The subset of views S5* asso-

ciated with S* is all the views whose corresponding

set of runs includes a. run in which the first concur-

rency class is s..

the set of views,

This grouping does not partition

Due to the ambiguity of which

,12

2:2 3:23 2:23 3:3

Figure 3: Labeled graph of G(2, 1, 1).

is the concurrency class of the last appearance of

another processor in a view, a given view may have

runs with different initial concurrency class.

With respect to the labeled subset of views

/5,, of G’(.TI, . . . . ATk+l ) we identify the graph

G(A’;,. .,, A~~+l ) where .N[ =N~–lif PzCs.

and .V~ = .,~i otherwise. The views of S’S* of

G(A71,. ..> JVk+l ) can be mapped in one-to-one cor-

respondence onto views of G(lVj, . . . . ~~+1) by re-

moving the initial concurrency class s.. Thus we

consicler the subset of views SS* to be the graph

G’(JY:, . . . . Ar~+l ) prefaced by s., and continue di-

viding recursively. This builds up a sequence of

concurrency classes labeling each subset. This se-

quence is a common prefix of all runs yielding views

fill in the subset.

The base of this recursion occurs when Arz = O

for some i. .4t this point all appearances of pro-

cessor P, in the run have been accounted for in the

recursion and this view of P, is compatible with all

the remaining views of its subset. Since Pi does

not appear in the suffix of any of the remaining

views, these views may be subdivided as the graph

G(,Y1 . . . . . AT~_l, Ari+l,. ... lV~+l). The view of F’,

is adjacent to every view of this graph. Eventually,

the graph G(OI, . . . 0., ) is simply m- empty views

which are pairwise adjacent, and the graph G(N~)

is the view of processor Pi in which it writes and

reads alone Nf times.

This graph is properly triangulated due to the

fact that there are exactly one or two views com-

patible ivith each of k pairwise adjacent views, To
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provide help in understanding the structure of this

graph, a one round subdivision for the case oft hree

processors is presented in Figure 2, and the graph

G( 2,1,1) is presented in full in Figure 3.

4.4 Application of the Sperner Lenmna

Definition: A j-k-ciique of a graph G’ is a k-clique

which is contained in exactly j distinct k + l-cliques

of G.

Lemma 8 (Variant of Sperner’s Lelmma)

Given a graph G colored by colors 1,..., k + 1, such

that every node is contuined in a k+l-clique, and

every k-clique is a l-k-clique or a. 2-k-clique, then

if the number of l-k-cliques in G colored by colors 1

through k is odd, then the number of k+l-c[iques in

G colored by colors 1 through k + 1 is odd. In par-

ticular, there must be at least one such k+l-clique.

Lemma 9 The subgraph of G( NI,. . . . Aik+l ) in-

duced by views which do not contain any appear-

ance of processor k + 1 is G( A?l, . . . . Nk).

Proof: For every run of G(~\~l, . . . . IVk ) there is

a boundary clique of G( Nl. . . . . IVk+l ) which can

be completed to form a. k + 1 processor run by

adding IVk+l concurrency classes of .F’k+l after pro-

cessor 1 through k halt. Notice that the views of

G(.Y1, . . . , i~~ ) map in one-to-one correspondence

to the views of G( A’l, . . . . .h~~+l ) containing no ap-

pearance of processor k + 1. ❑

Corollary 1 The k-cliques oj’ G( N1, . . . . .~Tk) are

in one-to-one correspondence with the boundary

cliques of G(N1, . . . . Nk+l ), no view of which con-

tains an (.ZppeCLrCWZCeof Pk+l,

We now assume the existence of decision func-

tion that complies with the requirements of the

(k + 1,k)-Set-Consensus task. Without loss of

generality, let processors initial private values

be their own IDs. Such a function is a k +

1 coloring of G( .N1, . . . . A’k+l ). .4ny boundary

clique in G(JY1, . . . . ~k+l ) not associated with

G(IV1,. ... Nk) cannot be colored by exactly 1,..., k.

If it were then some processor must have chosen the

initial value of a processor it sees no appearance

of, which is not allowed. Thus if inductively we

prove the the number of k-cliques in G( A’l, . . . . A~k)

colored by exactly 1, . . . . k is odd, ~ve can apply

the variant of the Sperner Lemma to get a k + 1

clique in G’(.fi71. . . . . ~k+l ) which is colored by ex-

actly 1, . . . . k + 1, which leads to the required con-

t radict,ion. The base case of the induction is to

notice that there are only two boundary cliques to

G’(.NI, A~2), namely, the two views in which a pro-

cessors observes only itself. One of the two bound-

ary cliques is colored by 1, and the other by 2,

establishing that the number of boundary cliques

colored by 1 is odd.

5 Wait-Free Reductions Among

Various Tasks

5.1 Equivalence of the Set-Consensus

Task and Multiple Leader Election

Task

The (n, k )-Set-Consensus Task [.5]: Each of n pro-

cessors holds a private value initially. Each pro-

cessor decides on a value from among the initial

values such that the number of distinct values in

the output is at most k.

The (n, k)-Leader-Election Task: Each processor

has his own distinct ID as an initial condition. A

processor decides an ID of a participating proces-

sor. The total number of distinct IDs decided on is

at most k.

lf’e w-ill show that the tasks are wait-free equiv-

1a ent.

-A solution for the leader election easily im-

plies solution to the set-consensus. Each processor

writes its private value in shared memory before

starting the election protocol. After deciding on a

leader in the election protocol, a processor decides

on the private value of that leader. This can now

be read from shared memory since by the Leader-

Election specification the leader is participating in

the election protocol.

Set-Consensus solves the leader problem as well.

though the construction is more involved. First

let the private value of each processor be its own

distinct name, and apply the Set-Consensus pro-

tocol. Since the input set may be large it is easy

to see that a decided ID must belong to a partic-

ipating processor. We get a variant of election in

which a processor elected by others might not elect

itself. To remedy this we will add two wait free

phases follo~ving the set consensus protocol. In the
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first phase we will break “cycles” of decided values.

In the second phase, we will force every processor

whose name was decided to decide itself.

In the first phase after a processor i decides a

name j in the consensus protocol it raises an (i, j)-

fla.g (i.e. writes (i, j ) into shared memory). It then

reads other processors flags. If it sees a (x, i )-flag

its first phase decision is i, and otherwise the first

phase decision is j. Observe a cycle of choices in

the consensus protocol. The last processor in that

cycle to raise a flag will choose its own name as

the choice of the first phase. thereby breaking the

cycle. Since each name chosen in the first phase was

already a consensus choice, the size of the decision

set has not increased.

We add now a second phase to remove chains,

The input to the second phase is the choice of the

first phase. Processor i that chose j in the first

phase now raises a second phase (i, j )-flag. If it

sees any first or second phase (x, i )-flag it chooses

itself, otherwise let 1 be at the end of the longest

maximal path of second phase flags of the type

(’i>.ll)> (.11> .12)>...> (j~, J). By the acyclicity of the

first phase choices such simple path must exist.

The choice of i in the second phase is the proces-

sor at the end of the chain it observes. It can be

easily seen that since reading is done in snapshot,

that the chosen processor 1 must see a flag point-

ing to it and will choose itself in the second phase.

The second phase choices are the final choices that

now satisfy the specification of the multiple leaders

task. Obviously a chosen processor must be partic-

ipating since otherwise its iliitial value would Ilot

have been written and thws cannot be decided o]~

in the consensus task,

5.2 The Relation Between Multiple

Leader Election and Set-Test-and-

Set Tasks

The (n, k) Set-Test-and-Set Task: Each of n pro-

cessors has its distinct ID as the initial condition.

Each processor decides leodcr or jollowert The

number of leaders is at least one and at most k,

at least on of the participating processors decides

leader.

When k = 1 this is the standard one shot test-

and-set task.

A solution to the (n, k ) multiple leader election

can be wait-free transformed into a solution to the

(n, k ) test-and-set. After executing the election

protocol, let each leader decide leader and non-

leader decide follower. Notice that this is easily ac-

complished due to the constraint that every leader

must choose itself as leader.

A solution to the (k + 1, k) test-and-set can

be wait-free transformed into a solution to the

(k+ 1. kj hlultiple leader election. Processors that

obtain lecder in the Set-Test-and-Set choose their

own ID. A Processor that obtains follower raises a

flag. It then observes other flags. It chooses the ID

of a participating processor which did not raise a

fiag as a leader. The first processor to raise a flag

~~ill not be chosen by anybody, and thus the total

number of leaders is at most k + 1 – 1 = k. By

the Consensus-Leader wait-free equivalence we can

now guarantee that each chosen processor wait-free

chooses itself.

Using (2, 1 )-Set-Test-and-Set tasks we can form

a networli to implement an (n, l’)-Set-Test-and-

Set task, Likewise, an (n, l)-Set-Test-and-Set task

when used by only two processors implements

(2, 1 )-Set-Test-ad-Set. Thus the two tasks are

equivalent in power. Similarly we have the equiva-

lence of (X, k)-Set-Test-and-Set to (n, k)-Set-Test-

and-Set n z M. We arrange a cascade of n – 2k of

the ( 2k, k ) tasks. The first 2k processors attach to

the first task and the rest one to each task, Out of

the first tad; we get at most k leaders. These can

wait-free rename [3] themselves to the 2k – 1 ports

left free in the next task and continue in this way

through the system.
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