
Distrib. Comput. (2006) 18(4): 235–253
DOI 10.1007/s00446-005-0138-3

SPECIAL ISSUE PODC 0 4

Dana Angluin · James Aspnes · Zoë Diamadi ·
Michael J. Fischer · René Peralta

Computation in networks of passively mobile finite-state sensors

Submitted: 23 September 2004 / Accepted: 2 July 2005 / Published online: 3 January 2006
C© Springer-Verlag 2005

Abstract The computational power of networks of small
resource-limited mobile agents is explored. Two new
models of computation based on pairwise interactions of
finite-state agents in populations of finite but unbounded
size are defined. With a fairness condition on interactions,
the concept of stable computation of a function or predicate
is defined. Protocols are given that stably compute any
predicate in the class definable by formulas of Presburger
arithmetic, which includes Boolean combinations of
threshold-k, majority, and equivalence modulo m. All stably
computable predicates are shown to be in NL. Assuming
uniform random sampling of interacting pairs yields the
model of conjugating automata. Any counter machine with
O(1) counters of capacity O(n) can be simulated with high
probability by a conjugating automaton in a population of
size n. All predicates computable with high probability in
this model are shown to be in P; they can also be computed
by a randomized logspace machine in exponential time.
Several open problems and promising future directions are
discussed.

Keywords Diffuse computation · Finite-state agent ·
Intermittent communication · Mobile agent · Sensor net ·
Stable computation

1 Scenario: A flock of birds

Suppose we have equipped each bird in a particular flock
with a sensor that can determine whether the bird’s temper-

Supported in part by NSF grants CCR-9820888, CCR-0098078, and
CNS-0305258 (Aspnes), by ONR grant N00014-01-1-0795 (Diamadi),
and by NSF grant CSE-0081823 (Fischer and Peralta).

A preliminary version of this paper appeared in the proceedings of the
23rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, St. John’s, Newfoundland, Canada, July 2004.

D. Angluin · J. Aspnes · Z. Diamadi · M. J. Fischer (B) · R. Peralta
Department of Computer Science, Yale University, New Haven,
CT 06520-8285, USA
E-mail: fischer-michael@cs.yale.edu

ature is elevated or not, and we wish to know whether at
least five birds in the flock have elevated temperatures. We
assume that the sensors are quite limited: each sensor has
a constant number of bits of memory and can respond to a
global start signal, and two sensors can communicate only
when they are sufficiently close to each other.

In this scenario, the sensors are mobile but have no con-
trol over how they move, that is, they are passively mobile.
Initially, we assume that the underlying pattern of movement
gives rise to a communication pattern that guarantees a fair-
ness condition on the resulting computation. Intuitively, it is
useful to imagine that every pair of birds in the flock repeat-
edly come sufficiently close to each other for their sensors to
communicate, but it will turn out that this condition is nei-
ther necessary nor sufficient for our results. While this intu-
ition is sufficient for understanding the protocol that follows,
the reader is urged to read carefully the formal definitions in
Sect. 3.

Under these assumptions, there is a simple protocol en-
suring that every sensor eventually contains the correct an-
swer. At the global start signal, each sensor makes a mea-
surement, resulting in a 1 (elevated temperature) or 0 (not
elevated temperature) in a counter that can hold values from
0 to 4. When two sensors communicate, one of them sets its
counter to the sum of the two counters, and the other one
sets its counter to 0. If two counters ever sum to at least 5,
the sensors go into a special alert state, which is then copied
by every sensor that encounters them. The output of a sensor
is 0 if it is not in the alert state, and 1 if it is in the alert state.
If we wait a sufficient interval after we issue the global start
signal, we can retrieve the correct answer from any of the
sensors.

Now consider the question of whether at least 5% of
the birds in the flock have elevated temperatures. Is there a
protocol to answer this question in the same sense, without
assumptions about the size of the flock? In Sect. 4, we show
that such a protocol exists. More generally, we are interested
in fundamental questions about the computational power of
this and related models of interactions among members of a
distributed population of finite-state agents.

236 D. Angluin et al.

2 A wider view

Most work in distributed algorithms assumes that agents in
a system are computationally powerful, capable of storing
non-trivial amounts of data and carrying out complex cal-
culations. But in systems consisting of massive amounts of
cheap, bulk-produced hardware, or of small mobile agents
that are tightly constrained by the systems they run on, the
resources available at each agent may be severely limited.
Such limitations are not crippling if the system designer has
fine control over the interactions between agents; even finite-
state agents can be regimented into cellular automata [20]
with computational power equivalent to linear space Turing
machines. But if the system designer cannot control these in-
teractions, it is not clear what the computational limits are.

Sensor networks are a prime example of this phe-
nomenon. Each sensing unit is a self-contained physical
package including its own power supply, processor and
memory, wireless communication capability, and one or
more sensors capable of recording information about the
local environment of the unit. Constraints on cost and size
translate into severe limitations on power, storage, process-
ing, and communication. Sensing units are designed to be
deployed in large groups, using local low-power wireless
communication between units to transmit information from
the sensors back to a base station or central monitoring site.

Research in sensor networks has begun to explore the
possibilities for using distributed computation capabilities
of such networks in novel ways to reduce communication
costs. Aggregation operations, such as count, sum, average,
extrema, median, or histogram, may be performed on the
sensor data in the network as it is being relayed to the base
station [14, 16]. Flexible groups of sensors associated with
targets in spatial target tracking can conserve resources in in-
active portions of the tracking area [8, 24]. Though sensors
are usually assumed to be stationary or nearly so, permitting
strategies based on relatively stable routing, this assump-
tion is not universal in the sensor-network literature. For ex-
ample, an assumption of random mobility and packet relay
dramatically increases the throughput possible for commu-
nication between source-destination pairs in a wireless net-
work [11].

The flock of birds scenario illustrates the question of
characterizing what computations are possible in a coopera-
tive network of passively mobile finite-state sensors. The as-
sumptions we make about the motion of the sensors are that
it is passive (not under the control of the sensors), too rapid
and unpredictable for stable routing strategies to be feasible,
and that specified pairs of sensors, given by an interaction
graph, will repeatedly be close enough to communicate us-
ing a low-power wireless signal.

There is a global start signal transmitted by the base sta-
tion to all the sensors simultaneously to initiate a compu-
tation. When they receive the global start signal, the sen-
sors take a reading (one of a finite number of possible input
values) and attempt to compute some function or predicate
of all the sensor values. This provides a “snapshot” of the

sensor values, rather than the continuous stream of sensor
values more commonly considered. Sensors communicate
in pairs and do not have unique identifiers; thus, they update
their states based strictly on the pair of their current states
and on the role each plays in the interaction—one acting as
initiator and the other as responder.

In Sect. 3, we define a model of computation by pairwise
interactions in a population of identical finite-state agents.
Assuming a fairness condition on interactions, we define the
concept of stable computation of a function or predicate by
a population protocol.

In Sect. 4, we consider the question of what predicates
can be stably computed when interactions can occur be-
tween all pairs of agents. We show how to construct pro-
tocols for any Presburger-definable predicate. This is a rich
class of arithmetic predicates that includes threshold-k, par-
ity, majority, and simple arithmetic relations. We show that
stably computable predicates are closed under the Boolean
operations. We also show that every predicate computable in
this model is in nondeterministic log space. An open prob-
lem is to give an exact characterization of the computational
power of stable computation in this model.

In Sect. 5, we show that the all-pairs case is the weakest
for stably computing predicates by showing that it can be
simulated by any population that cannot be separated into
non-interacting subpopulations. The questions of what addi-
tional predicates can be computed for reasonable restrictions
on the interactions and what properties of the underlying in-
teraction graph can be stably computed by a population are
considered in [1].

In Sect. 6, we obtain the model of conjugating automata
by adding a uniform sampling condition on interactions to
the assumption that interactions are enabled between all
pairs of agents. This allows us to consider computations that
are correct with high probability and to address questions of
expected resource use. We show that this model has suffi-
cient power to simulate, with high probability, a counter ma-
chine with O(1) counters of capacity O(n). We further show
that Boolean predicates computable with high probability in
this model are in P , and can be computed by a randomized
logspace machine in exponential time. This gives a partial
characterization of the set of predicates computable by such
machines, but finding an exact characterization is still open.

In Sect. 7, we describe other related work, and in Sect. 8
we discuss some of the many intriguing questions raised by
these models.

3 A formal model

We define a model that generalizes the flock of birds sce-
nario from Sect. 1.

3.1 Population protocols

A population protocol A consists of finite input and output
alphabets X and Y , a finite set of states Q, an input function

Computation in networks of passively mobile finite-state sensors 237

I : X → Q mapping inputs to states, an output function
O : Q → Y mapping states to outputs, and a transition
function δ : Q × Q → Q × Q on pairs of states. If
δ(p, q) = (p′, q ′), we call (p, q) �→ (p′, q ′) a transition,
and we define δ1(p, q) = p′ and δ2(p, q) = q ′.
Example As a simple illustration, we formalize a version of
the count-to-five protocol from Sect. 1. The six states are
q0, . . . , q5. The input and output alphabets are X = Y =
{0, 1}. The input function I maps 0 to q0 and 1 to q1. The
output function O maps all states except q5 to 0 and the
state q5 to 1. The transition function δ(qi , q j) is defined as
follows: if i + j ≥ 5, then the result is (q5, q5); if i + j < 5
then the result is (qi+ j , q0).

A population P consists of a set A of n agents1 to-
gether with an irreflexive relation E ⊆ A × A that we in-
terpret as the directed edges of an interaction graph. E de-
scribes which agents may interact during the computation.
Intuitively, an edge (u, v) ∈ E means that u and v are able
to interact, with u playing the role of initiator and v play-
ing the role of responder in the interaction. Note that the
distinct roles of the two agents in an interaction is a funda-
mental assumption of asymmetry in our model; symmetry-
breaking therefore does not arise as a problem within the
model. Though most of the present paper concerns the case
in which E consists of all ordered pairs of distinct elements
from A, which is termed the complete interaction graph, we
give definitions appropriate for general E .

When a population protocol A runs in a population P ,
we think of each agent in P as having a state from A’s state
set QA. Pairs of agents interact from time to time and change
their states as a result. Each agent also has a current output
value determined by its current state. The collection of all
agents’ current outputs is deemed to be the current output
of the computation. These concepts are made more precise
below.

A population configuration is a mapping C : A → Q
specifying the state of each member of the population. Let C
and C ′ be population configurations, and let u, v be distinct
agents. We say that C goes to C ′ via encounter e = (u, v),
denoted C

e→ C ′, if

C ′(u) = δ1(C(u), C(v))

C ′(v) = δ2(C(u), C(v))

C ′(w) = C(w) for all w ∈ A − {u, v}.
We say that C can go to C ′ in one step, denoted C → C ′, if
C

e→ C ′ for some encounter e ∈ E , and we call C → C ′
a transition. We write C

∗→ C ′ if there is a sequence of
configurations C = C0, C1, . . . , Ck = C ′, such that Ci →
Ci+1 for all i , 0 ≤ i < k, in which case we say that C ′ is
reachable from C .

The transition graph G(A,P) of protocol A running in
population P is a directed graph whose nodes are all possible

1 Note that we distinguish typographically between a protocol A
and an agent set A. We hope that context will help the reader distin-
guish between these two similar notations.

population configurations and whose edges are all possible
transitions on those nodes. A strongly connected component
of a directed graph is final iff no edge leads from a node
in the component to a node outside. A configuration is final
iff it belongs to a final strongly connected component of the
transition graph.

An execution is a finite or infinite sequence of popu-
lation configurations C0, C1, C2, . . . such that for each i ,
Ci → Ci+1. An infinite execution is fair if for every pos-
sible transition C → C ′, if C occurs infinitely often in the
execution, then C ′ occurs infinitely often.2 A computation is
an infinite fair execution.

Lemma 1 Let � = C0, C1, C2, . . . be a computation of
population protocol A running in population P . Let F be
the set of configurations that occur infinitely often in �, and
let GF be the subgraph of G(A,P) induced by F . GF is a
final strongly connected component of G(A,P), and every
element of F is final.

Proof Every C ′ ∈ F is reachable from every C ∈ F via
a subsequence of transitions in �, so GF is strongly con-
nected. Suppose C → C ′ and C ∈ F . By fairness, C ′ oc-
curs infinitely often in �, so C ′ ∈ F . Hence, GF is final, so
every element of F is also final.
�

3.2 Input-output behavior of population protocols

As with nondeterministic Turing machines, we define no-
tions of input and output, and we define what it means for
a population protocol to compute a particular output given
a particular input. The input to a population protocol is a
mapping that associates an input value with each agent. The
output of a population protocol is a mapping that associates
an output value with each agent.

Unlike Turing machines, population protocols do not
halt, so there is no obvious fixed time at which to view the
output of the population. Rather, we say that the compu-
tation converges if it reaches a point after which no agent
can subsequently change its output value, no matter how the
computation proceeds. Convergence is a global property of
the population configuration, so individual agents in general
do not know when convergence has been reached. However,
with suitable stochastic assumptions on the rate at which in-
teractions occur, it is possible to bound the expected number
of interactions until the output stabilizes. We explore this
approach in Sect. 6.

Formally, an input assignment is a function x : A → X ,
where A is the set of agents in the population. We let X =

2 Note that this definition is not equivalent to the intuitive notion
of fairness, given in Sect. 1, that every permitted encounter between
agents takes place infinitely often. Our formal definition only requires
that certain configurations appear in a fair execution; it does not specify
which encounters give rise to them. On the other hand, it is also not
sufficient that every permitted encounter take place infinitely often. We
require that infinitely many encounters result in specific configurations
C ′.

238 D. Angluin et al.

X A denote the set of all input assignments. The input as-
signment determines the initial configuration of the protocol.
Namely, if x ∈ X , then the protocol begins in configuration
Cx , where Cx (w) = I (x(w)) for all agents w.

An output assignment is a function y : A → Y . We
let Y = Y A denote the set of all output assignments. Each
configuration C determines an output assignment yC , where
yC (w) = O(C(w)) for all agents w.

A configuration C is said to be output-stable if yC ′ = yC
for all C ′ reachable from C . Note that we do not require that
C ′ = C , only that the output be the same. An infinite compu-
tation converges if it contains an output-stable configuration
C , in which case we say that it converges (or stabilizes) to
output y = yC . It is immediate that an infinite computation
converges to at most one output, which we call the output
of the computation when it exists, and we say that the out-
put is undefined otherwise. Because of the nondeterminism
inherent in the choice of encounters, the same initial config-
uration may lead to different computations that stabilize to
different outputs or do not stabilize at all. We say a proto-
col A is always-convergent if every computation on every
input x converges. In this paper, we are only interested in
always-convergent protocols.

An always-convergent population protocol A running
in a population P stably computes an input-output relation
RA as follows. For each x ∈ X and y ∈ Y , RA(x, y) holds
iff there is a computation of A beginning in configuration
Cx that stabilizes to output y. In the special case that RA is
single-valued,3 we write FA(x) = y for RA(x, y) and say
that A stably computes the function FA.

Example (continued) Continuing our count-to-five illustra-
tion, assume that the agents are u1, . . . , u6 and the interac-
tion graph is complete. Let the input assignment x be de-
scribed by the vector

(0, 1, 0, 1, 1, 1),

assigning input symbols to the agents u1, . . . , u6 in that or-
der. The corresponding input configuration is

I (x) = (q0, q1, q0, q1, q1, q1),

which leads to the following possible computation:

(q0, q1, q0, q1, q1, q1)
(2,4)−→ (q0, q2, q0, q0, q1, q1)

(q0, q2, q0, q0, q1, q1)
(6,5)−→ (q0, q2, q0, q0, q0, q2)

(q0, q2, q0, q0, q0, q2)
(2,6)−→ (q0, q4, q0, q0, q0, q0)

(q0, q4, q0, q0, q0, q0)
(3,2)−→ (q0, q0, q4, q0, q0, q0).

The configurations reachable from the last one above are
those with five agents assigned q0 and one agent assigned
q4, and the outputs of all of them are equal to

(0, 0, 0, 0, 0, 0).

3 A relation R is single-valued if ∀x∀y∀z(R(x, y)∧ R(x, z) ⇒ y =
z).

Therefore, R((0,1,0,1,1,1), (0,0,0,0,0,0)) holds, where R
is the input-output relation computed by this protocol. In
fact, R is single-valued, so we can write

F(0, 1, 0, 1, 1, 1) = (0, 0, 0, 0, 0, 0).

This protocol illustrates the fact that convergence re-
quires only that the outputs, and not necessarily the configu-
rations, eventually stop changing. We could have solved this
particular problem with a protocol in which the configura-
tions themselves also stopped changing, but we do not know
how to do that in general.

3.3 Families of populations

In Sect. 3.2, we defined what it means for a population pro-
tocol A running in a fixed population P to stably compute an
input-output relation. It is natural to extend these definitions
to families of populations {Pn}n∈N, where Pn is a population
over agent set An . Write Xn and Yn for the corresponding in-
put and output assignments on An . Then population protocol
A can be regarded as stably computing a family of input-
output relations {Rn

A}n∈N. Equivalently, letting X = ∪nXn
and Y = ∪nYn , A can be said to stably compute the rela-
tion RA = ∪n Rn

A ⊆ X × Y . In the special case that RA is
single-valued, we write as before FA(x) = y for RA(x, y)
and say that A stably computes the function FA : X → Y .

We now define a family of populations {Pn}n∈N of par-
ticular interest. Let Pn be the population of size n consisting
of the complete interaction graph on the specific agent set
An = {1, . . . , n}. We call An the standard agent set and Pn
the standard population of size n. Because population proto-
cols depend only on the states of agents, not on their names,
there is no loss of generality in assuming a fixed agent set.

3.4 Computation on other domains

As defined in Sects. 3.2 and 3.3, a population protocol A
computes a relation RA on X × Y . We call X the natural
input domain and Y the natural output domain for A.

In order to use population protocols to compute on other
domains, we need suitable input and output encoding con-
ventions. An input encoding convention for domain DI is a
function EI : X → DI , and an output encoding convention
for DO is a function EO : Y → DO . If EI (x) = u (re-
spectively EO(y) = v), we say that x represents u (respec-
tively y represents v). In this terminology, we can define the
natural input and output encoding conventions to be simply
the identity functions on X and Y , respectively.

EI and EO are not required to be either one-to-one
or onto. Thus, a given element of DI (respectively DO)
might have zero, one, or more than one representation in
X (respectively Y). We naturally associate with RA the
represented input-output relation SA ⊆ DI × DO , where
SA(u, v) holds iff there exist x ∈ X and y ∈ Y such that
EI (x) = u, EO(y) = v, and RA(x, y) holds. We say
that RA (under the encoding conventions EI and EO) is

Computation in networks of passively mobile finite-state sensors 239

representative independent iff for all x1, x2 ∈ X such that
EI (x1) = EI (x2),

{EO(y) | R(x1, y)} = {EO(y) | R(x2, y)}.
Thus, if RA is representative independent and SA(u, v)
holds, then for all x representing u, there exists y represent-
ing v such that RA(x, y) holds. We say that A stably com-
putes SA if A is always-convergent and representative inde-
pendent. In the special case that SA is single-valued, we say
that A stably computes a partial function GA : DI → DO .

In words, if A stably computes SA, then SA(u, v) holds
iff for every representation of u, there exists a computation
of A starting from that representation that stabilizes to an
output representing v. Moreover, since every computation
of A stabilizes, if A starts with a representation of some
u ∈ DI , the computation stabilizes to an output that
represents some v ∈ DO . When SA is single-valued, the
computation stabilizes to an output that represents GA(u).

Domain Z
k Integer input and output values are represented

diffusely across the population rather than being stored lo-
cally by individual agents. We describe two natural encoding
conventions for vectors of integers.

The symbol-count input convention assumes an arbitrary
input alphabet X = {σ1, . . . , σk} and DI = N

k . The k-
tuple represented by an assignment x ∈ X is EI (x) =
(n1, . . . , nk), where ni is the number of agents to which x
assigns σi . Note that the k-tuple (n1, . . . , nk) is only repre-
sentable in a population of size n = ∑

i ni .
Similarly, the symbol-count output convention assumes

an arbitrary output alphabet Y = {τ1, . . . , τ�} and DO = N
�

and defines EO(y) = (m1, . . . , m�), where mi is the number
of agents whose current output is τi .

The integer-based input convention can represent O(1)
integers with absolute values bounded by O(n) in a popula-
tion of size n and can represent O(1) integers of any size in
the family of standard populations. It assumes X ⊆ Z

k and
DI = Z

k for some k. Thus, input x ∈ X assigns a k-tuple of
integers x(w) to each agent w. The k-tuple represented by x
is EI (x) = ∑

w∈A x(w), the sum across the population of
all assigned input tuples.

Note that if X contains the zero vector 0 = (0, 0, . . . , 0)
and each of the unit vectors ei = (0, . . . , 1, . . . , 0), where ei
is 0 in all coordinates except for i and 1 at i , then all tuples
in N

k for which the sum of the elements is bounded by n can
be represented in a population of size n. If, in addition, X
contains −ei for each i , then all tuples in Z

k for which the
sum of the absolute values of the elements is bounded by n
can be so represented.

Similarly, the integer-based output convention assumes
Y ⊆ Z

� = DO and defines EO(y) = ∑
w∈A y(w) for

output y ∈ Y .

Example of an integer function We describe a population
protocol A to compute the function f (m) = �m/3�, the in-
teger quotient of m and 3. We take X = Y = {0, 1}. An input
assignment x represents m = EI (x), the number of agents
assigned 1, and similarly for output assignments. Given the

standard population Pn , all values of m ≤ n can be repre-
sented, so the partial integer function Gn

A(m) computed by
A running in Pn is f (m) restricted to m ≤ n. From this, it
easily follows that A computes f over the family of standard
populations.

The states in Q are ordered pairs (i, j) of integers such
that 0 ≤ i ≤ 2 and 0 ≤ j ≤ 1. Let C be a configuration. We
interpret C as a pair of integers (r, q), where r is the sum
over all agents of the first coordinate of the state, and q is
the sum of the second coordinate.

The input map I maps 1 to the state (1, 0) and 0 to the
state (0, 0). The output map O maps state (i, j) to j . The
transition function is defined as follows: δ((1, 0), (1, 0)) =
((2, 0), (0, 0)), and if i +k ≥ 3 then δ((i, 0), (k, 0)) = ((i +
k − 3, 0), (0, 1)). All other transitions are defined to leave
the pair of states unchanged.

By induction, one can show that if C is any reachable
configuration and (r, q) is the integer pair represented
by C , then m = r + 3q . Initially, r = m and q = 0.
Transitions of the first type can accumulate two 1’s to a 2
but do not change either r or q . Transitions of the second
type reduce r by 3 and increase q by 1, leaving the quantity
r + 3q invariant. Eventually, no more transitions of either
type will be possible. At this time, r ≤ 2, in which case
q = �m/3�, as desired. We note that if the output map were
changed to the identity (and the output alphabet Y changed
accordingly), this protocol would compute the ordered pair
(m mod 3, �m/3�).
Domain �∗ Strings inputs are represented diffusely
across the population, with the i th input symbol being
assigned to the i th agent. We assume an ordered agent
set A = {a1, . . . , an} and an arbitrary input alphabet
X = {σ1, . . . , σk}. The string input convention defines
DI = X∗ and EI (x) = x(a1) · . . . · x(an), where x ∈ X .

Predicates A predicate can be regarded as a function whose
output is a truth value. The all-agents predicate output con-
vention assumes Y = {0, 1} and requires every agent to
agree on the output. Formally, let 0(w) = 0 and 1(w) =
1 be constant output assignments in Y , and let DO =
{false, true, ⊥}. We define

EO(y) =

false if y = 0
true if y = 1
⊥ otherwise.

Thus, every output assignment in which the agents do not
agree represents ⊥.

Let EI be an input encoding convention over DI , and
let EO be the all-agents predicate output convention. We
say that protocol A stably computes a predicate on DI if
A stably computes a total function GA : DI → DO and
GA(u) �=⊥ for any u ∈ DI . Thus, every computation of A
converges to an output in which all agents have the same
output value 0 or 1.

Example The formal count-to-five protocol described above
stably computes the predicate of x ∈ X that is true iff x
assigns 1 to at least 5 different agents.

240 D. Angluin et al.

3.5 Symmetry in standard populations

All agents in standard population Pn are identical, so it
makes no difference to which agent each input symbol is
assigned. Under the all-agents predicate output convention,
it also makes no difference which agent produces which out-
put symbol since all agents are required to produce the same
output.

Formally, a predicate F on X is invariant under agent
renaming if F(x) = F(x◦π) for every permutation π on An .

Theorem 1 Every predicate on X that is stably computable
by a population protocol running in standard population Pn
is invariant under agent renaming.

Proof Suppose population protocol A running in Pn com-
putes predicate GA. Let π be a permutation on An and
RA(x, y) the input-output relation stably computed by A.
Then it is easily shown that RA(x ◦ π, y ◦ π). Since GA is
a predicate under the predicate output convention, the out-
put assignment y is a constant function, so y ◦ π = y.
It follows that y ◦ π and y encode the same output, so
GA(x ◦ π) = GA(x) as desired.
�
Language acceptance Let χL be the characteristic function
of L , that is, χL(σ) = true iff σ ∈ L . We say that A accepts
L iff A stably computes χL under the string input conven-
tion.

We say a language is symmetric if it is closed under per-
muting the letters in a word. The following is immediate
from Theorem 1:

Corollary 1 Let L ⊆ �∗ be a language accepted by a pop-
ulation protocol over the family of standard populations.
Then L is symmetric.

All that matters for acceptance of symmetric languages
is the number of occurrences of each input symbol. Let X =
{σ1, . . . , σk} and σ ∈ X∗. The Parikh map 	 takes σ to the
the vector (n1, . . . , nk), where ni is the number of times σi
occurs in σ [21].

Lemma 2 Let L be a symmetric language over alphabet �
of size k. Then L is accepted by population protocol A iff
	(L) is stably computed by A under the symbol-count input
convention.

Proof Immediate from the fact that EI (x) = 	(σ1, . . . , σn),
where x ∈ X , EI is the symbol-count input convention, and
x represents σ1, . . . , σn under the string input convention.
�

In light of Corollary 1 and Lemma 2, we will often iden-
tify a language L with the predicate 	(L) when talking
about population protocols over the family of standard pop-
ulations and talk loosely about L being accepted under the
symbol-count input convention.

3.6 Other predicate output conventions

One might ask whether the class of stably computable predi-
cates on X changes if we adopt a weaker output convention.

For example, suppose we take Y = {0, 1} as in the all-agents
predicate output convention, but we change the output en-
coding function to

EO(y) =
{

false if y = 0
true otherwise.

Call this the zero/non-zero predicate output convention.

Theorem 2 Let ψ be predicate on X and P a population
of size n over the complete interaction graph. There exists
a protocol A that stably computes ψ according to the all-
agents predicate output convention iff there exists a proto-
col B that stably computes ψ according to the zero/non-zero
predicate output convention.

Proof The forward direction is immediate since the all-
agents predicate output convention is more restrictive than
the zero/non-zero predicate output convention.

For the converse, assume B stably computes ψ according
to the zero/non-zero predicate output convention. We con-
struct a protocol A that stably computes ψ according to the
all-agents predicate output convention.

Intuitively, we want A to simulate B step by step. When
B stabilizes, all agents in A should eventually choose output
0 if all agents in B have chosen 0; otherwise, all agents in A
should eventually choose 1. The problem with this approach
is that there is no way for the agents of A to know when
B has stabilized. Hence, we need a subprotocol that runs in
parallel with the simulation of B to monitor B’s outputs and
distribute the correct output bit to the agents of A.

The states of A are triples 〈�, b, q〉, where q is a state of
B and � and b are single bits called “leader” and “output”,
respectively. We call any agent with � = 1 a leader. Initially
� = 1, b = 0, and q is the agent’s initial state in protocol B.
The output function maps 〈�, b, q〉 to b.

When two agents interact, they update their state fields
according to protocol B. The leader fields interact accord-
ing to the usual leader-election protocol, namely, when two
leaders encounter each other, one remains a leader and the
other sets its leader bit to 0. Otherwise, the leader bits do
not change, with one exception: When a non-leader whose
current output in protocol B is 1 encounters a leader whose
current output in protocol B is 0, the two agents swap leader
bits. Finally, the output bit b of a leader always follows its
current output in protocol B, that is, at the end of every en-
counter, the leader updates b accordingly. A non-leader sets
its output bit to the output bit of the last leader that it en-
countered.

This works because eventually B stabilizes to an output
assignment y and there is only a single leader. If one or more
agents stabilize to output 1 in B, then leadership transfers to
one of those agents and does not change subsequently. If all
agents stabilize to output 0 in B, then leadership also does
not change subsequently. The leader’s output value is 1 or
0 depending on whether the output of B is greater than 0 or
equal to 0. After the leadership and the leader’s output value
have stabilized, then every other agent assumes the correct

Computation in networks of passively mobile finite-state sensors 241

output value upon its next encounter with the leader and does
not change it thereafter.
�

Similar leader-based techniques can be used to show that
other natural predicate output conventions are also equiva-
lent to the all-agents convention, e.g., representing false by
the integer 0 and true by the integer 1 (i.e., one agent has
output 1 and the others have output 0).

4 Computing predicates by population protocols

In this section, we explore the predicates that are stably com-
putable by population protocols running in standard pop-
ulations using the predicate output convention. We con-
sider predicates with both the natural input convention and
also the integer input convention. We show that families of
predicates related to the well-studied family of Presburger-
definable predicates over the integers [22] are all stably
computable by population protocols. It is an open problem
whether population protocols can compute more. We con-
clude this section with a theorem that shows our results are
not sensitive to reasonable changes in the conventions used
for representing the output of predicates.

4.1 Boolean closure of population predicates

We begin by showing that the family of population-
computable predicates is closed under the Boolean opera-
tions.

Lemma 3 Let X be an input set, and let EI be an input en-
coding convention over domain DI . Let F and G be predi-
cates over DI that are stably computable by population pro-
tocols over X. Let ξ be any 2-place Boolean function. Then
the predicate ξ(F, G) is stably computable by a population
protocol with input set X.

Proof Let A stably compute F and B stably compute G.
We assume that A and B have the same input set X . We
construct a population protocol C, also with input set X , to
stably compute ξ(F, G).

C is the parallel composition of A and B, together with
a suitably chosen output function. Let QA and QB be the
states of A and B, respectively. Let C have states QC =
QA × QB. The input function IC maps s ∈ X to state
(IA(s), IB(s)). The transition function δC is defined by

δC((p1, p2), (q1, q2)) = ((p′
1, p′

2), (q
′
1, q ′

2))

where

δA(p1, q1) = (p′
1, q ′

1) and δB(p2, q2) = (p′
2, q ′

2).

The output function applies ξ to the outputs of the two com-
ponent protocols. That is,

OC((q1, q2)) = ξ(OA(q1), OB(q2)).

We must show that C stably computes ξ(F, G). Every
fair execution of C projects onto a fair execution of A (re-
spectively B) by erasing the second (respectively first) com-
ponent of each state pair. Since every fair execution of A and
B converges, then also every fair execution of C converges.

Now, suppose a fair execution of C stabilizes to output
assignment yC . Let yA and yB be the stable outputs of the
corresponding embedded computations of A and B, respec-
tively. Since A and B both compute predicates according to
the predicate output convention, then all agents agree on the
output in each embedded computation, and yA and yB each
represent a truth value bA and bB, respectively. By the def-
inition of OC , it follows that yC represents the truth value
ξ(bA, bB). Since A stably computes F and B stably com-
putes G, it follows that C stably computes ξ(F, G), as de-
sired.
�
Corollary 2 Any Boolean formula over stably computable
predicates with a common input set X is stably computable.

Proof Immediate by repeated application of Lemma 3.
�

4.2 Presburger definable predicates

Presburger arithmetic [9, 10, 15, 22] is the first-order theory
of the integers under addition and less than. It is a rich but
decidable theory, enabling one to define predicates such as
parity and majority. In this section, we review the proper-
ties of Presburger arithmetic and the closely-related semilin-
ear sets. In the next section, we show that every predicate
definable in Presburger arithmetic is stably computable by
population protocols.

The usual definition of Presburger arithmetic considers a
first-order logical language with one function symbol “+”,
constants “0” and “1”, predicate symbols “=” and “<”,
the usual logical operators of “∧”, “∨”, and “¬”, variables
x1, x2, . . ., and quantifiers “∀” and “∃”. Formulas are in-
terpreted with quantifiers ranging over the integers. “+” is
usual integer addition. “0” and “1” have their usual mean-
ings as integers. “=” and “<” are interpreted as the integer
relations of equality and less than.

A formula φ(x1, . . . , xk) with free variables x1, . . . , xk
defines a predicate Fφ : Z

k → {0, 1} as follows: For inte-
gers u1, . . . , uk , Fφ(u1, . . . , uk) = 1 if φ(x1, . . . , xk) eval-
uates to true when x1, . . . , xk are interpreted as u1, . . . , uk ,
respectively, and Fφ(u1, . . . , uk) = 0 otherwise.

The predicates definable in Presburger arithmetic are
closely related to the semilinear sets. A set L ⊆ N

k is linear
if there are vectors v0, v1, . . . , vm ∈ N

k such that

L = {v0 + κ1v1 + · · · + κmvm | κ1, . . . , κm ∈ N}.
A set is semilinear if it is the finite union of linear sets.

Theorem 3 (Ginsburg and Spanier) A subset of N
k is

semilinear iff it is definable in Presburger arithmetic.

Proof This was proved originally by Ginsburg and Spanier
[10]. Kracht gives a more recent simplified proof [15].
�

242 D. Angluin et al.

Although Presburger arithmetic seems to talk only about
addition, the use of quantifiers allows some predicates in-
volving multiplication and division to be defined. Let m be
a constant, and let ≡m be the 2-place predicate such that
x ≡m y holds iff x ≡ y (mod m). This can be defined by
a formula ξm(x, y) as follows. For any variable or constant
q , let mq be the expression that adds together m copies of q ,
i.e., mq = q + q + · · · + q

︸ ︷︷ ︸
m times

. Then

ξm(x, y)
df= ∃z∃q((x + z = y) ∧ mq = z).

ξm(x, y) is satisfied only when z = y − x and q = z/m.
Such integers q and z exist exactly when x ≡ y (mod m),
as desired.

An extension of an interpreted first-order theory re-
sults from augmenting the theory with new predicates and
new symbols to denote them. An extension that does not
change the class of definable predicates is called conser-
vative. Let extended Presburger arithmetic result from aug-
menting Presburger arithmetic with relation symbols ≡m de-
noting equivalence modulo m, for m ≥ 2.

Lemma 4 Extended Presburger arithmetic is a conserva-
tive extension of Presburger arithmetic.

Proof Immediate from the fact that ξm defines ≡m .
�
Our definition of ξm makes essential use of quantifiers.

Rather surprisingly, once we augment Presburger arithmetic
with ≡m , quantifiers are no longer needed.

Theorem 4 (Presburger) Every definable predicate of
Presburger arithmetic can be defined in the extended lan-
guage by a quantifier-free formula.

Proof Presburger, in his original 1929 paper [22], shows
the decidability of closed formulas of Presburger arithmetic
without the “<” operator. His proof method is to transform
any closed formula4 into an easily-decided normal form in
which the only quantifiers appear in subformulas express-
ing ≡m . While he does not explicitly consider either our ex-
tended language or predicates definable by open formulas,
his methods would seem to easily extend to our case.

It is unclear where our form of Theorem 4 first appears,
although it is well known in the folklore. This result was
mentioned in Ginsburg and Spanier [10] and probably else-
where. Kracht presents a proof [15] that he attributes to
Monk [19].
�
Example We now return to the question raised at the end of
Sect. 1 of whether at least 5% of the birds in the flock have
elevated temperatures. Using the symbol-count input con-
vention, the sensors in the flock encode a pair (x0, x1), where
x0 is the number of birds with normal temperatures and x1
is the number of birds with elevated temperatures. The ques-
tion we wish to answer is whether x1 ≥ 0.05(x0+x1). This is
easily seen to be equivalent to the predicate 20x1 ≥ x0 + x1.
It will follow from Theorem 5 that this predicate is stably
computable.

4 A closed formula is one with no free variables.

4.3 Computing Presburger predicates
by population protocols

In this section, we show that every Presburger-definable
predicate is stably computable by a population protocol us-
ing the integer input encoding convention. We first show that
all Presburger definable predicates under the symbol-count
input convention are stably computable. We then use this re-
sult to show the computability of all Presburger definable
predicates under the integer input convention.

Lemma 5 Let X = {σ1, . . . , σk} be an arbitrary input al-
phabet. Let ai , c, and m be integer constants with m ≥
2. Then the following predicates on non-negative integers
x1, . . . , xk are stably computable in the family of standard
populations under the symbol-count input convention:

1.
∑

i ai xi < c.

2.
∑

i ai xi ≡ c (mod m).

Proof We define population protocols for computing
the two predicates as follows. Let s = max(|c| +
1, m, maxi |ai |), where m is taken to be 0 for the thresh-
old protocol. In both protocols, the state space Q is the set
{0, 1} × {0, 1} × {u ∈ Z : −s ≤ u ≤ s}, and the input func-
tion I maps σi ∈ X to (1, 0, ai). The first bit in each state
is a “leader bit” that is used to elect a unique leader who
collects the value of the linear combination. The second bit
is an output bit that records for each agent the output value
computed by the last leader it encountered. The third field is
a “count” field used to accumulate the linear combination of
the xi on the left-hand side. The output map O simply maps
(·, b, ·) to b.

We now give the transition rules for the two protocols
and prove their correctness. We start with the threshold pro-
tocol, as the analysis is more involved; we then argue the
correctness of the remainder protocol by analogy with the
argument of the threshold protocol.

For any integers u, u′ with −s ≤ u, u′ ≤ s, define

q(u, u′) = max(−s, min(s, u + u′))

and

r(u, u′) = u + u′ − q(u, u′).

Observe that both q(u, u′) and r(u, u′) lie in the range
[−s, . . . , s] and that q(u, u′)+r(u, u′) = u+u′. Let b(u, u′)
be 1 if q(u, u′) < c and 0 otherwise.

The transition rule is given by the formula

(�, ·, u), (�′, ·, u′) �→ (1, b(u, u′), q(u, u′)), (0, b(u, u′), r(u, u′))

if at least one of � or �′ is 1. If both � and �′ are zero, the
encounter has no effect.

Informally, the initiator becomes a leader if either agent
was a leader before the transition; the transition assigns as
much of the sum of u and u′ to the initiator as possible, with
the remained assigned to the responder. The output bits of
both agents are set to 1 if and only if the part of the sum

Computation in networks of passively mobile finite-state sensors 243

assigned to the initiator is less than c. We now show that all
output values converge to the truth value (

∑
i ai xi < c) by

proving a sequence of claims about any fair execution.

The protocol converges to a single leader Define �(C) to
be the set of agents whose leader bit equals 1 in configu-
ration C . Then |�(C0)| = n. Any encounter between two
leaders reduces |�(C)| by one, and no encounter increases
|�(C)|. By the fairness condition, if there are two leaders,
they eventually meet. It follows that after finitely many
steps |�(C)| = 1.

The single leader’s value converges to max(−s, min(s,∑
i ai xi)) For each agent j let u j (C) be the value of its

count field in configuration C . From the definition of the in-
put mapping I , we have

∑
j u j (C0) = ∑

i ai xi , where C0

is the initial configuration. Because the transition rule pre-
serves the sum of the count fields of the two participating
agents,

∑
j u j (C) continues to equal

∑
i ai xi throughout the

computation.
For a given configuration C , define �(C) as above to

be the set of agents that are leaders, and define p(C) =∑
j �∈�(C) |u j (C)|. For notational simplicity, and when the

meaning is clear, we will write p instead of p(C) and ui
instead of ui (C). Call a configuration C stable if there is a
unique leader � and one of the following conditions holds:

1. p = 0.
2. u� = s, and u j ≥ 0 for all j �= �.
3. u� = −s, and u j ≤ 0 for all j �= �.

By checking the three cases, it is not hard to see that in a
stable configuration, u� = max(−s, min(s,

∑
i ai xi)).

We will now show that the protocol converges to a stable
configuration by showing that from any configuration with
a unique leader that is not stable, there is a transition that
reduces p, and no transition increases p. We let � continue
to be the identity of the leader.

Suppose u� = s, and there is some j �= � for which u j <
0; then an encounter between � and j sets the count field of
the initiator (which becomes the leader) to s+u j and sets the
count field of the responder to 0. This reduces p by −u j >
0. If, on the other hand u� = −s and there is some j �= � for
which u j > 0, then an encounter between � and j again sets
the count field of the responder to 0, reducing p. If −s <
u� < s and there is some j �= � with u j �= 0, then in an
encounter between � and j either (a) u j > 0, the initiator’s
count becomes min(u� +u j , s) = u� +min(u j , s −u�), and
p drops by min(u j , s − u�) > 0; or (b) in the symmetric
case u j < 0, p drops by min(−u j , s + u j) > 0. So in any
configuration with a single leader that is not stable, there
exists a transition that reduces p; by fairness, a transition
that reduces p eventually occurs.

It remains to show that other transitions will not increase
p. The remaining possible transitions are (a) those between
two non-leaders, which are no-ops and thus do not affect p;
(b) those that involve a leader � with u� = s and an agent j
with u j ≥ 0, which do not change p because in such cases

the initiator becomes a leader with count q(s, u j) = s and
the responder receives r(s, u j) = u j ; and (c) those that in-
volve a leader � with u� = −s and an agent j with u j ≤ 0,
which are symmetric to the previous case. These last two
cases also demonstrate that once a stable configuration with
a unique leader � with |u�| = s is reached, the value held by
the leader does not change. For a stable configuration with
|u�| < s, the fact that p = 0 implies that the leader never
encounters a nonzero count in another agent, so again the
leader’s value never changes.

Since p is non-negative, bounded, never rises, and even-
tually falls in any non-stable configuration with a unique
leader, it follows that the protocol eventually converges to a
stable configuration once a unique leader exists.

Convergence of the output fields to the correct value. In a
stable configuration, if

∑
i ai xi < c, then the leader’s count

u� is either
∑

i ai xi or −s < c. In either case b(u� + u j)
gives the correct output, and any encounter between a leader
and another agent sets the output fields of both agents to
1. No other transition sets the output field of any agent to
0, and by fairness the leader eventually encounters all other
agents; it follows that after some finite interval, all agents
output 1. Alternatively, if

∑
i ai xi ≥ c, then the leader’s

count u� is either
∑

i ai xi or s; in either case encounters be-
tween the leader and another agent sets both agents’ outputs
to 0, and again all agents eventually converge, this time to 0.
This completes the the proof of correctness for the threshold
protocol.

We now turn to the remainder protocol. Here the transi-
tion rule is given by the formula

(�, ·, u), (�′, ·, u′) �→ (1, b, (u + u′) mod m), (0, b, 0),

if at least one of � or �′ is 1, where b is 1 if u + u′ ≡ c
(mod m) and 0 otherwise. If both � and �′ are zero, the en-
counter has no effect.

Repeating the argument for the threshold algorithm,
we immediately see that the protocol eventually converges
to a single leader. Inspection of the transition rule re-
veals that (

∑
j u j (C)) mod m is invariant throughout the

protocol, and that any non-leader has count 0. It follows
that when a single leader exists, its count field is exactly
(
∑

j u j (C0)) mod m = (
∑

i ai xi) mod m. Further encoun-
ters between the single remaining leader and other agents
eventually set all output fields to

∑
i ai xi ≡ c (mod m), as

claimed.
�
Theorem 5 Any Presburger-definable predicate on non-
negative integers is stably computable in the family of stan-
dard populations under the symbol-count input convention.

Proof Given a Presburger formula �, apply Theorem 4 to
convert it to a quantifier-free formula �′ over the extended
language described in Sect. 4.2. This formula �′ will be a
Boolean formula over predicates that can be written in one
of the following three forms:
∑

ai xi + c1 <
∑

bi xi + c2 (1)
∑

ai xi + c1 =
∑

bi xi + c2 (2)

244 D. Angluin et al.

∑
ai xi + c1 ≡m

∑
bi xi + c2 (3)

If we can show that each such predicate is stably com-
putable, then �′ is stably computable by Corollary 2.

By rearranging terms, predicates of the form (1) involv-
ing inequalities can be rewritten as
∑

di xi < c,

where each di = ai − bi and c = c2 − c1; such predicates
can be stably computed by the first case of Lemma 5.

Predicates of the form (2) involving equality can be re-
placed by the AND of a pair of predicates:
∑

ai xi + c1 <
∑

bi xi + c2 + 1
∑

ai xi + c1 >
∑

bi xi + c2 − 1

These two predicates can then be stably computed by the
first case of Lemma 5 and their AND can be stably computed
by Lemma 3.

Predicates of the form (3) can be rewritten as
∑

di xi ≡m c,

where c and the di are defined as in the first case; such
predicates can be stably computed by the second case of
Lemma 5.
�

Theorem 5 places strong restrictions on the input, and
it would appear that it would only permit computing
Presburger-definable predicates on non-negative values that
sum to less than n. However, it is possible to extend the re-
sult of Theorem 5 to the integer-based input convention by
building a translator for the integer-based input convention
into the Presburger formula itself. The result is:

Corollary 3 Any Presburger-definable predicate on Z
k is

stably computable in the standard population Pn with the
integer-based input convention.

Proof Let �(y1, . . . , yk) be a Presburger-definable predi-
cate on Z

k . We will convert � to a new Presburger-definable
predicate over free variables x�v , where each variable x�v
counts the occurrence of specific tokens representing each
k-vector �v = 〈v1, v2, . . . , vk〉 in X .

Recall that in the integer-based input convention, each
yi is the sum over all agents of the i-th vector coordinate.
Define

�′ = ∃y1, . . . , yk : �(y1, . . . , yk) ∧
k∧

i=1

(

yi =
∑

�v∈X

vi x�v

)

.

Observe that the values vi in each sum are constants, so that
�′ is a formula in Presburger arithmetic, which is stably
computable on the standard population by Theorem 5. Ob-
serve further that �′ is true if and only if � is satisfied by a
set of values y1, . . . , yk that are equal to the integer values
given by the integer-based input convention. It follows that
� is stably computable.
�

Example Consider the Presburger predicate

�(y1, y2)
df= (y1 − 2y2 ≡ 0 (mod 3)).

Let

X = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}
be an input alphabet. The related predicate

�′ df= ∃y1, y2
(
y1 − 2y2 ≡ 0 (mod 3)

∧y1 = x(1,0) − x(−1,0)

∧y2 = x(0,1) − x(0,−1)

)

has five free variables x(u,v), one for each (u, v) ∈ X . Let
E int

I be the integer input convention and ESC
I be the symbol-

count input convention on the same set X . It is easily verified
that

�′(ESC
I (x)

) = �
(
E int

I (x)
)

for every x ∈ X .

Corollary 4 A symmetric language L ⊆ X∗ is accepted by
a population protocol if its image under the Parikh map is a
semilinear set.

Proof Let L ⊆ X∗ be a symmetric language whose im-
age under the Parikh map 	 is a semilinear set. From
Theorem 3, 	(L) is definable in Presburger arithmetic.
From Theorem 5, there is a protocol A to stably com-
pute 	(L) under the symbol-count input convention. From
Lemma 2, A accepts L .
�

4.4 Predicates not stably computable

Theorem 5 gives a partial characterization of the stably com-
putable predicates in the population model with all pairs en-
abled. We do not know if this characterization is complete.
However, we can obtain an upper bound on the set of pred-
icates stably computable in this model by showing that it is
contained in the complexity class NL.

Because stably computable predicates in this model are
symmetric, it is sufficient to represent a population con-
figuration by the multiset of states assigned to the agents.
Since there are |Q| possible states and the population
consists of n agents, each population configuration can
thus be represented by |Q| counters of �log n� bits each.
A population protocol step can be simulated by drawing
two elements from the multiset, applying the transition
function and returning the resulting two elements to the
multiset.

Suppose there is a population protocol A that stably
computes a predicate F in the family of standard popula-
tions. Define L F to be the set of strings x such that F(x) =
1, where we interpret a string x of length n as an element
of Xn . We describe a nondeterministic Turing machine to

Computation in networks of passively mobile finite-state sensors 245

accept L F in space O(log n). To accept input x , the Tur-
ing machine must verify two conditions: that there is a con-
figuration C reachable from I (x) in which all states have
output 1, and there is no configuration C ′ reachable from
C in which some state has output 0. The first condition is
verified by guessing and checking a polynomial-length se-
quence of multiset representations of population configura-
tions reaching such a C . The second condition is the com-
plement of a similar reachability condition. It is in nonde-
terministic O(log n) space because this class is closed under
complement [13]. It follows that:

Theorem 6 All predicates stably computable in the model
with all pairs enabled are in the class NL.

It is an open problem to characterize exactly the power of
this model of stable computation. Concretely, we conjecture
that predicates such as “x is a power of 2” and “z = x ×
y” are not stably computable by population protocols. Our
intuition is that the model lacks the ability to sequence or
iterate computations, and we suspect that a pumping lemma
of some form exists for the model.

5 Computation with restricted interactions

Some interaction graphs may permit very powerful compu-
tations by population protocols; for example, a population
whose interaction graph is a directed line can easily simulate
a linear-space Turing machine. In this section, we prove that
the complete interaction graph we have been assuming up
until now is in a sense the weakest structure for stably com-
puting predicates, in that any predicate that is stably com-
putable in a complete interaction graph can also be com-
puted in any weakly-connected interaction graph.

Theorem 7 For any population protocol A, there exists a
population protocol A′ such that for every n, if A stably
computes predicate ψ on the standard population Pn, and
if P ′ is any population with agents 1,2,. . .,n and a weakly-
connected interaction graph, then A′ stably computes ψ on
P ′.

We present the proof in the following sections. First, we
construct the simulator A′. Next, we relate the reachable
configurations in A to the reachable configurations in A′.
We then conclude that A′ correctly computes ψ .

Construction of A′ First assume without loss of generality
that n is at least 4; we will need this assumption to avoid
getting our agents tangled. The case where n < 4 can be
handled by a parallel simulation that collects up to three in-
put values together, computes the resulting output by table
lookup, and overrides the output of the main simulation if it
(stably) computes that n is indeed less than 4.

The computation of A is simulated using one agent in
P ′ to hold the state of each agent in Pn . Simulated agents
migrate from agent to agent in P ′; this allows any two sim-
ulated agents to interact infinitely often. The key idea is to

have any interaction in A′ choose nondeterministically be-
tween swapping the states of the two interacting agents or
simulating an interaction in A; most of the details of the sim-
ulation involve implementing this nondeterministic choice
with deterministic transitions. To do so, the state space in A′
is augmented to add two “batons”, S (for the initiator) and R
(for responder) which move somewhat independently of the
simulated agents. The presence or not of the two batons is
used to control what effect an interaction has: an interaction
that involves no batons swaps the states; an interaction that
involves one baton moves the baton; and an interaction that
involves both batons simulates a transition in A.

Formally, let A have input alphabet X , output alpha-
bet Y , state space Q, input function I , output function O ,
and transition function δ. Define Q′ = Q × {D, S, R, −}
where D is a default initial state of the baton field, S marks
the initiator baton, R marks the responder baton, and −
marks a “blank” or absent baton. To avoid a profusion of
parentheses we will write ordered pairs in Q′ using sim-
ple concatenation, e.g., q D for (q, D). The transition func-
tion δ′ is shown in Fig. 1. Finally, define I ′(X) = I (X)D
and O ′(q B) = O(q). Let A′ be the population protocol
(X, Y, Q′, I ′, O ′, δ′).

Group (a) transitions consume all initial D batons, pro-
ducing at least one S and at least one R baton; group (b)
eventually reduces the set of non-blank batons to exactly one
S and one R. The remaining groups implement (c) baton
movement, (d) state swapping, and (e) A-transitions. Note
that group (e) transitions also swap batons; this is done to
allow S and R batons to pass each other in narrow graphs,
which may be necessary to bring duplicates together in the
initial stage.

Note that the group of an A′-transition can be uniquely
identified by looking at the changes to the baton fields. If the
number of D batons decreases, it is group (a). If the number
of S or R batons decreases, it is group (b). If exactly one R
or S moves from one agent to another, it is group (c). If the

Group (a): (x D, y D) �→ (x S, y R)
(x D, y∗) �→ (x−, y∗)
(x∗, y D) �→ (x∗, y−)

Group (b): (x S, yS) �→ (x S, y−)
(x R, y R) �→ (x R, y−)

Group (c): (x S, y−) ↔ (x−, yS)
(x R, y−) ↔ (x−, y R)

Group (d): (x−, y−) ↔ (y−, x−)

Group (e): (x S, y R) �→ (x ′ R, y′S)
(y R, x S) �→ (y′S, x ′ R)

Key: x and y range over all states in Q.
∗ represents any non-D baton.
(x ′, y′) = δ(x, y).

Fig. 1 Transition function δ′ for simulator in proof of Theorem 7

246 D. Angluin et al.

batons don’t change, it is group (d). If an S and R switch
places, it is group (e).

We now make precise the sense in which A′ “simulates”
A. A simulated A-configuration C is obtained by ignoring
both the batons and agent order in an A′-configuration C ′.
Let ρ(C ′) be the configuration C obtained from C ′ by eras-
ing the second component of each agent’s state in C ′, that
is, for all a ∈ A, if C ′(a) = pB, then C(a) = p. Let π
be a permutation of agents A. For any A or A′-configuration
C1, let π(C1) = C2, where C2(π(a)) = C1(a). Say C is a
Q-restriction of C ′ if there is a permutation π of the agents
A such that π(ρ(C ′)) = C ; in other words, the Q compo-
nents of the C ′ states equal the C states modulo reordering
the population members.

Call two configurations C and C̄ of A equivalent, writ-
ten C ≡ C̄ , if C̄ = π(C) for some permutation π of the
agents. For convenience, we extend the definition of equiva-
lence to the union of A- and A′-configurations. If C is an A-
configuration and C ′ is an A′-configuration, then let C ≡ C ′
if C is a Q-restriction of C ′, and close ≡ under reflexivity,
symmetry, and transitivity. For A′-configurations C ′

1 and C ′
2,

it then follows that C ′
1 ≡ C ′

2 iff ρ(C1) ≡ ρ(C2).
Call an A′-configuration clean if it has exactly one S and

one R baton and no D batons.

Lemma 6 Let C ′ be any configuration of A′ reachable from

an initial configuration C ′
0. Then C ′ ∗→ D′ for some clean

configuration D′.

Proof Either C ′ = C0 or C ′ contains at least one S baton
and at least one R baton. This is because the only transitions
that can be applied to C0 change two D batons into an S and
an R, respectively, and no subsequent transition can remove
the last S or the last R.

Starting from C ′, apply group (a) transitions to C ′ to re-
move all D batons. If there are two or more S batons, apply
group (c) and group (e) transitions to bring them to adjacent
nodes, and apply a group (b) transition to eliminate one. Re-
peat until only one S baton remains. In a similar way, re-
peatedly eliminate R batons until only one remains. Let D′
be the resulting configuration. D′ contains exactly one S and
one R baton and no D batons, as desired.
�
Lemma 7 Let C ′ be final in A′. Then C ′ is clean.

Proof By Lemma 6, there is a clean configuration D′ reach-
able from C ′. Since C ′ is final, then so is D′, and C ′ is reach-
able from D′. No A′-transition takes a clean configuration to
an unclean one; hence, C ′ is also clean.
�
Lemma 8 Let C ≡ C ′, where C is reachable in A and C ′
is reachable in A′. Suppose C ′ ∗→ D′ in A′. Then C

∗→ D
and D ≡ D′ for some A-configuration D.

Proof Proof is by induction on the length k of the execution

C ′ ∗→ D′.
Base case: If k = 0, it suffices to take D = C .
Inductive case: Suppose the lemma holds for k − 1. Let

C ′ = C ′
0 → C ′

1 → · · · → C ′
k = D′. By the induction

hypothesis, there exists Ck−1 such that C
∗→ Ck−1 and

Ck−1 ≡ C ′
k−1. If C ′

k−1 → C ′
k is a transition in groups

(a)–(d), then C ′
k−1 ≡ C ′

k , so we choose Ck = Ck−1. If
it belongs to group (e), then ρ(C ′

k−1) → ρ(C ′
k) is an A-

transition by construction. Let π be the agent permutation
such that Ck−1 = π(ρ(C ′

k−1)). Define Ck = π(ρ(C ′
k)). It is

easily seen that C
∗→ Ck−1 → Ck and Ck ≡ C ′

k . Hence, the
lemma holds for k by choosing D = Ck

By induction, the claim holds for all k.
�
Lemma 9 Let C ′ be a reachable clean configuration of A′.
Let C be a reachable configuration of A such that C ≡ C ′.
Suppose C → D is a possible A-transition. Then C ′ ∗→ D′
and D ≡ D′ for some A′-configuration D′.

Proof Suppose C
(u,v)→ D via encounter e = (u, v). Suppose

C(u) = p, C(v) = q , and (p′, q ′) = δ(p, q). We proceed
to construct D′.

Begin by fixing a spanning tree in the interaction graph
of P ′. We restrict attention to encounters described by edges
in the spanning tree. States p and q are the state compo-
nents of two distinct nodes in C ′. Similarly, batons S and R
lie in two distinct nodes. We describe a sequence of transi-
tions whose effect will be to move state p and baton R along
spanning tree edges to some node u′, and to similarly move
state q and baton S to some node v′, where u′ and v′ are the
endpoints of some edge.

Using a sequence of group (c) transitions, move the S
and R batons to distinct leaves of the spanning tree. Let u′ be
the leaf now containing baton S, and let v′ be some adjacent
node. Thus, (u′, v′) or (v′, u′) (or both) is an edge; choose
one and call it e. Using a sequence of group (d) transitions,
move state p to node u′ and move state q to node v′. Using a
sequence of group (c) transitions, move baton R to node v′.
Finally, apply a group (e) transition to e to obtain D′.

We have thus constructed a sequence of configurations
C ′ = C ′

0 ≡ C ′
1 ≡ · · · ≡ C ′

k−1
e→ C ′

k = D′. It is easily
seen that C is a Q-restriction of C ′

k−1 via some permutation
π that maps u′ to u and v′ to v. Since D′ is identical to C ′

k−1
except for the states of u′ and v′, and the simulated state
components of u′ and v′ have been replaced by p′ and q ′,
respectively, it follows that D is a Q-restriction of D′.
�
Lemma 10 Let C ≡ C ′, where C and C ′ are reachable con-
figurations of A and A′, respectively, and C ′ is final in A′.
Then C is final in A.

Proof Let G(A′,P ′) be the transition graph of A′ and P ′,
and let S ′ be the final strongly connected component of
G(A′,P ′) that contains C ′. Let S be the set of all reachable
A-configurations D such that D ≡ D′ for some D′ ∈ S ′.
Hence, C ∈ S. We now show that S is a union of final
strongly connected components of G(A,Pn).

It suffices to show that if C1 ∈ S and C1
∗→ C2, then

C2 ∈ S and C2
∗→ C1. By definition of S, there exists C ′

1 ∈
S ′ such that C ′

1 ≡ C1. By Lemma 7, since C ′
1 is final, then

Computation in networks of passively mobile finite-state sensors 247

C ′
1 is clean. By repeated application of Lemma 9, there exists

C ′
2 ≡ C2 such that C ′

1
∗→ C ′

2. Since S ′ is final, then C ′
2 ∈ S ′

and C ′
2

∗→ C ′
1. By Lemma 8, C2

∗→ C̄1 and C̄1 ≡ C ′
1 for

some A-configuration C̄1. If C̄1 = C1, we are done. If not,

we have established that C1 ≡ C ′
1 ≡ C̄1 and C1

∗→ C̄1.

Hence C̄1 = π(C1) for some agent permutation π , so C1
∗→

π(C1). From this, it follows that

πk(C1)
∗→ πk(π(C1)),

where πk is the kth iterate of π , that is, πk(C1) =
π(π(. . . π(C1) . . .)) k times. Hence,

C1
∗→ π(C1)

∗→ π(π(C1))
∗→ · · · ∗→ πk(C1),

For some k0, πk0 is the identity function, so in particular,

C̄1 = π(C1)
∗→ πk0(C1) = C1.

Hence, C2
∗→ C1, as desired.
�

We now complete the proof of Theorem 7.

Proof We must show that every computation of A′ on input
x stabilizes to ψ(x). Let �′ be a computation of A′ on input
x . Let C ′ occur infinitely often in �′. By Lemma 1, C ′ is
final. By Lemma 8, C ′ ≡ C for some reachable configura-
tion C of A. By Lemma 10, C is final in A. Let y = yC be
the output determined by C . Since A computes a predicate,
then y is the constant assignment 0 or 1, and y is correct for
ψ . The output determined by C ′ is some permutation of y,
but since y is the constant function, all permutations of y are
identical. Hence, the output determined by C ′ is y, which is
correct.

We conclude that A′ stably computes ψ .
�

6 Computation with randomized interactions:
Conjugating automata

“Stability” is probably not a strong enough guarantee for
most practical situations, but it is the best we can offer given
only the fairness condition. To make stronger guarantees, we
must put some additional constraints on the interactions be-
tween members of the population.

Let us add a probabilistic assumption on how the next
pair to interact is chosen. Many assumptions would be rea-
sonable to study. We consider one of the simplest: the or-
dered pair to interact is chosen at random, independently and
uniformly from all ordered pairs corresponding to edges in
the interaction graph. When the interaction graph is com-
plete, this is the model of conjugating automata, inspired
by models introduced by Diamadi and Fischer to study the
acquisition and propagation of knowledge about trustworthi-
ness in populations of interacting agents [5].

Random pairing is sufficient to guarantee fairness with
probability 1, so any protocol that stably computes a predi-
cate g in a fair model computes g with probability 1 on every

input in the corresponding random-pairing model, assuming
both run on the same population.

However, probabilities also allow us to consider prob-
lems where we only compute the correct answer with high
probability, or to describe the expected number of interac-
tions until a protocol converges. Given a function f map-
ping X to Y , a population protocol A, and an input x , we
define the probability that A computes f on input x to be
the probability of all computations beginning with I (x) that
stabilize with output f (x).

For example, for the (mod m) protocol, we can compute
both the expected number of interactions in a computation
until there is just one leader and the expected number of fur-
ther interactions until every member of the population has
interacted with the unique leader.

The time (meaning the number of interactions) to get a
single leader is equal to the sum of the times until two lead-
ers meet with n, n − 1, . . . leaders; this is

n∑

i=2

(n
2

)

(i
2

) = (n − 1)2.

Once there is a unique leader, it must participate in
�(n log n) interactions on average before it encounters ev-
ery other member of the population (immediate application
of the Coupon Collector Problem). But since the leader par-
ticipates in only (n − 1)/(

n
2) = 2/n of the interactions, this

translates into a total of �(n2 log n) interactions in the full
population.

Summing these two bounds, the expected total number
of interactions until the output is correct is �(n2 log n). In
general, we are interested in protocols that accomplish their
tasks in an expected number of interactions polynomial in n,
the population size.5

Generalizing this argument to the constructions of
Lemma 5, Theorem 5, and Corollary 3, we obtain the fol-
lowing:

Theorem 8 Let ψ be a Presburger definable predicate.
Then there is a conjugating automaton (randomized popu-
lation protocol) that computes ψ with probability 1, where
the population converges to the correct answer in expected
total number of interactions O(kψn2 log n), where kψ is a
constant depending on ψ .

Proof Observe that the construction used in Theorem 5 in-
volves (a) electing a unique leader, followed by (b) com-
puting in parallel zero or more base predicates of the form∑

ai xi < c or
∑

ai xi ≡ c (mod m); and (c) combining the
results of these base computations according to the formula
and distributing the results to all agents.

We have already observed that step (a) takes O(n2) time.
We will now show that step (b) takes O(n2 log n) time. We
have already shown that computing a single sum (mod m)
takes O(n2 log n) time, as the leader just needs to encounter
each other agent once.

5 Note that such protocols do not terminate with a final answer; they
remain capable of resuming indefinitely.

248 D. Angluin et al.

For the threshold predicate, the situation is slightly more
complicated; it is possible that some encounters between the
leader and another agent will not make progress, because the
leader is already “maxed out” and cannot collect any values
from the other agent. Define n− as the number of agents car-
rying negative values and n+ as the number of agents carry-
ing positive values. Then in any configuration with a unique
leader,

1. If the leader’s count is non-positive and the other agent’s
count is positive, then n+ drops by one.

2. If the leader’s count is non-negative and the other agent’s
count is negative, then n− drops by one.

Now consider the length of the interval starting from
some configuration until either n− or n+ drops. If the
leader’s count is positive, then n− drops after an expected
O(n2/n−) interactions. If the leader’s count is negative, then
n+ drops after an expected O(n2/n+) interactions. In either
case, there is at most one interval in which the leader’s count
has the appropriate sign for each distinct value of n− or n+,
and its expected length is at most O(n2/n−) or O(n2/n+),
depending again on the sign of the leader’s count. Summing
all such intervals for both n− and n+ gives a total expected
time bounded by

n−1∑

n−=1

O(n2/n−) +
n−1∑

n+=1

O(n2/n+)

= O(n2 Hn) = O(n2 log n).

This establishes that a single instance of the threshold pred-
icate can also be computed in O(n2 log n) time.

To show that all the base predicates running in parallel
take O(n2 log n) time, let Ti , i = 1, . . . , k be the time for the
i-th such predicate, where k is the (finite) number of such
predicates. Then E[maxi Ti] ≤ E[∑i Ti] = O(kn2 log n) =
O(n2 log n).

Finally, step (c) requires that the leader encounter every
other agent at least once, which we have already shown takes
O(n2 log n) time. Thus the total time for the Theorem 5 con-
struction is O(n2 log n). That the same asymptotic expected
time bound applies to Corollary 3 follows from the fact that
the proof of the corollary just constructs a new constant-size
Presburger formula and applies Theorem 5 to it.
�

6.1 The benefits of a leader

Given a leader agent, it is possible to simulate a counter ma-
chine with a finite-state controller (whose state is stored in
the leader) and increment, decrement, and zero-test opera-
tions, where the zero-test operation succeeds with high prob-
ability (Theorem 9). Using an initial leader election protocol
and a standard reduction from Turing machines to counter
machines due to Minsky [18], we can show that a conjugat-
ing automata can thus simulate logspace Turing machines on
inputs given in unary (Theorem 10).

Simulating counters If we are allowed to designate a leader
in the input configuration, that is, one agent that starts in
a distinguished state, then the leader can organize the rest
of the population to simulate a counter machine with O(1)
counters of capacity O(n), with high probability. We assume
throughout this section that the interaction graph is com-
plete.

We use the representation described in Sect. 3.4 for inte-
gers in arithmetic computations. For a simulation of k coun-
ters in which counter i can take on a maximum value of ci n,
each state is mapped to a k-tuple of nonnegative integers in
[0, . . . , c1]×· · ·×[0, . . . , ck]. The sum of component i over
the population gives the current contents of counter i . We as-
sume that the inputs to the counter machine are supplied in
designated counters and the leader simulates the finite-state
control of the counter machine.

To decrement counter i , the leader waits to encounter an
agent with component i of its state greater than zero, and
decrements it. Incrementing counter i is similar; component
i must be less than its maximum value ci . These operations
will happen with probability 1, assuming that they are pos-
sible. However, testing counter i for zero is different; the
leader must attempt to decide whether there are any agents
with component i greater than zero. We give a method that is
correct with high probability. It is the ability to make (pos-
sibly incorrect) decisions that enables effective sequencing
and iteration of computations in this model.

The leader initially labels one other agent (the timer)
with a special mark. The leader waits for one of two events:
(1) an interaction with an agent with a nonzero component i ,
or (2) k consecutive interactions with the timer. If an event of
type (1) occurs first, then the simulated counter is certainly
not zero. Event (2) has low probability, so if it occurs first,
the probability is high that the leader has encountered ev-
ery other agent in the meantime, so the leader may conclude
(with a small probability of error) that the value of simulated
counter i is zero. The parameter k controls the probability of
error, at the expense of increasing the expected number of
interactions.

The probability that the leader prematurely concludes
that there are no tokens of a particular type depends on the
number of such tokens. We can model this game as an urn
process, where at each step (corresponding to some interac-
tion between the leader and one of the n − 1 other tokens), a
token is drawn from the urn, examined, and replaced. If the
token is one of m counter tokens, the leader wins: it correctly
determines that there is at least one counter token in the urn.
If the token is an unmarked token or a timer token, the leader
replaces it and continues to draw. The leader loses if it draws
k timer tokens in a row without drawing any other token.

For simplicity, we write N = n − 1 for the size of the
urn in this process. We also assume that the timer token is
distinct from all the counter tokens, although later we will
allow the agent carrying the timer token to also carry part
of the counter value. If the timer token is also a counter to-
ken, then the probability of seeing the timer token before
a counter token drops to zero, and the expected number of

Computation in networks of passively mobile finite-state sensors 249

steps until the first counter token is drawn when there are m
counter tokens is exactly N/m.

However, in the case where the timer token and counter
tokens are distinct, we have:

Lemma 11 With an urn containing N tokens, of which m
are counter tokens and 1 a timer token:

1. The probability of drawing the timer token k times in a
row before drawing a counter token is exactly

N − 1

m N k + (N − 1 − m)
≤ 1

m N k−1
.

2. Conditioned on not drawing the timer token k times in
a row before drawing a counter token, and provided
m > 0, the expected number of draws up to and includ-
ing the first draw of a counter token is less than or equal
to N/m.

3. When m = 0, the expected number of draws until the
timer token is drawn k times in a row is O(N k).

Proof We consider first the probability of losing, i.e., the
probability that we draw k timer tokens in a row before
drawing a counter token. At the start of the process, there
is a probability of N−k that we draw the timer token on ev-
ery one of the first k draws. Call this event L . If L does not
occur, then we draw the timer token between 0 and k − 1
times, followed by some non-timer token x . Since all non-
timer tokens are equally likely to be x , the probability that x
is a counter token conditioned on L not occurring is m

N−1 ; in
this case the process ends. If x is not a counter token, then
the process starts over from the beginning.

Letting p be the probability of losing, we have

p = Pr[L] + (1 − Pr[L])
(

1 − m

N − 1

)

p.

Solving this equation for p gives

p = Pr[L]
1 − (1 − Pr[L]) (

1 − m
N−1

)

= N−k

1 − (1 − N−k)
(N−1−m

N−1

)

= N−k(N − 1)

(N − 1) − (1 − N−k)(N − 1 − m)

= N−k(N − 1)

(N − 1) − (N − 1 − m) + N−k(N − 1 − m)

= N−k(N − 1)

m + N−k(N − 1 − m)

= N − 1

m N k + (N − 1 − m)
.

For the upper bound, observe that

N − 1

m N k + (N − 1 − m)
≤ N

m N k
= 1

m N k−1
.

For the second part, consider again the initial state. From
this state we first draw the timer token zero or more times,
followed by a non-timer token. The expected number of such
draws until we get the first non-timer (without any condi-
tioning) is N

N−1 , and conditioning on not drawing the timer
k times in a row can only reduce this value. Having drawn a
non-timer, the probability that it is a counter token is again

m
N−1 ; if it is not, we start over from the beginning.

Letting T be the expected number of draws, we have:

T ≤
(

N

N − 1

)

+
(

N − 1 − m

N − 1

)

T .

Solving for T gives

T ≤ N/(N − 1)

1 − (N − 1 − m)/(N − 1)

= N

(N − 1) − (N − 1 − m)
= N

m
.

For the third part, we again consider sampling from the
urn without stopping, and start with 0 or more timer token
draws, followed by a non-timer token draw. Each such phase
includes an expected N

N−1 draws, and has probability N−k of
including k timer tokens. Stopping after k timer tokens can
only reduce the time, so we have

T ≤
(

N

N − 1

)

+ (1 − N−k)T,

from which T ≤ N k(N
N−1) = O(N k).
�

We now use Lemma 11 to bound the time and error of
performing a zero test operation in a population protocol,
where a unique leader wishes to determine if there are no
nonzero counter tokens in the rest of the population. As in
the urn process, the leader gives up if it sees the timer token
(held by one of the other agents) in k consecutive interac-
tions, without first seeing a nonzero counter value.

We again assume that the timer token sits on an agent
with a zero counter value, and that there are m agents with
nonzero counter values. To translate the time bounds of
Lemma 11 into expected steps of the population process,
we must not only substitute n − 1 for N , but must also
take into account the fact that when testing for zero, only
a fraction 2/n of all interactions involve the leader. This
gives an expected number of population protocol steps per
draw of �(n), so that the time bounds for a zero test be-
come O(n2/m) when m > 0 and O(nk+1) when m = 0. We
summarize these bounds as:

Theorem 9 Given a standard population with n agents, of
which one is a leader agent, one carries a timer token, and
m carry counter tokens, and a zero test operation that waits
for either (a) an encounter between the leader and a counter
token, or (b) k encounters between the leader and timer to-
kens with no intervening encounter between the leader and
any other token:

250 D. Angluin et al.

1. The probability that the zero test incorrectly reports zero
when m > 0 is zero if the timer token is on the same
agent as a counter token and �(n−k/m) otherwise.

2. Conditioned on a correct outcome, the expected time
to complete a zero test is O(n2/m) when m > 0 and
O(nk+1) when m = 0.

How to elect a leader If we do not have a unique leader in
the input configuration, it is possible to establish one using
the ideas of the leader bit, as in the proof of Lemma 5, and
the timer mark, as in the counter simulation above.

At the global start signal, every agent receives its input
symbol (which it remembers for the duration of the compu-
tation), sets its leader bit equal to 1, and clears its timer mark
(indicating that it is not a timer). Any agent whose leader
bit equals 1 begins an initialization phase: it marks the first
non-timer agent that it encounters as a timer and attempts
to initialize every other agent. It uses the event of encoun-
tering a timer k times in a row to determine the end of the
initialization phase.

Of course, at first every agent is attempting to run the ini-
tialization phase, so there will be general chaos. Whenever
two agents with leader bit equal to 1 encounter each other,
one (the loser) sets its leader bit to 0, and the other (the win-
ner) keeps its leader bit 1. If the loser has already marked a
timer, the winner waits until it encounters a timer and turns
it back into a non-timer before proceeding. The winner then
restarts the initialization phase (not creating another timer if
it has already released one). When initialized, agents with
leader bit equal to 0 revert to a state representing only their
input and their leader bit, but they retain their timer status.

If an agent with leader bit equal to 1 completes the ini-
tialization phase, it begins the computation (e.g., simulating
a counter machine, as in the preceding section). If during
the computation it encounters another agent with leader bit
equal to 1, the two proceed as indicated above, one setting
its leader bit to 0, and the other restarting the initialization
phase, with appropriate housekeeping to ensure retrieval of
the extra timer, if any.

After a period of unrest lasting an expected �(n2)
interactions, there will be just one agent with leader bit
equal to 1. After the interaction eliminating the last rival,
this lucky winner will succeed in initializing all other agents
with high probability (because there is only one timer in
the population) and proceed with the computation as the
unique leader. If and when the counter machine halts, the
unique leader can propagate that fact (along with the output,
if a function of one output is being computed) to all the
other agents. If there have been no errors during the (final)
simulation, the output of every configuration in the rest of
the computation is correct.

Simulating a Turing machine We have just shown how to
carry out zero tests and to elect a leader with high probabil-
ity. We now show how to simulate a logspace Turing ma-
chine with high probability, using a standard reduction due
to Minsky [18] from Turing machines to counter machines.

The central idea of Minsky’s construction is to represent
a Turing machine tape as two stacks, and then represent each
stack as a counter value using a Gödel-numbering scheme
where the sequence of symbols x0, x1, . . . , xm is stored as

m∑

i=0

xi b
i ,

where each symbol is assigned a positive numerical value
and b is a constant base that exceeds the value of all the
symbols. Pushing a new symbol x corresponds to setting
c ← cb + x ; a pop operation consists of setting c ← �c/b�
and returning the remainder. The product and quotient oper-
ations can each be implemented using a second counter that
accumulates the new value while the first counter is decre-
mented to zero; the remainder is accumulated in the finite-
state controller (or in our simulation, the leader agent) dur-
ing the quotient operation. A total of three counters—one for
each side of the tape plus an extra accumulator—are used for
the simulation.

We represent these counters using the integer-based in-
put convention. Each agent other than the leader and the
timer stores a vector of values in the range 0, . . . , M for
some M ; the value of counter i is the sum of the i-th po-
sitions in these vectors, and may be as large as (n − 2)M . A
counter is zero if and only if every agent holds a zero share
of the counter.

To multiply the value of counter i by b, storing the result
in counter j (which is assumed to start at zero), the leader
executes the following simple loop:

1. Test counter i for zero; if zero, exit the loop.
2. Decrement counter i .
3. Increment counter j b times.
4. Repeat from step 1.

The first step uses the zero-test protocol with waiting pa-
rameter k. When counter i has a nonzero value �, the num-
ber of interactions to complete the zero test is �(n2/m) and
the probability of error is O(n−k/m), where m ≥ ��/M�
is the number of agents with nonzero shares in the counter
(Theorem 9). The second step can be combined with the
zero test, since the first encounter between the leader and
an agent with non-zero counter value i can also decrement
the counter. The third step requires waiting for b encoun-
ters between the leader and agents with counter shares less
than M ; assuming there is always at least one such agent,
this requires an expected O(bn2) interactions. Note that the
second step does not add any probability of error: the timer
token is not used to bound the time for this step, as the leader
is guaranteed to eventually encounter a counter agent that is
not full.

The last zero test has � = 0, and takes O(nk+1) interac-
tions, again by Theorem 9.

For an initial counter value bounded by nM , the total
probability of error is

O

(
nM∑

�=1

n−k

��/M�

)

= O

(

M2n−k
n∑

h=1

1

h

)

= O(n−k log n),

Computation in networks of passively mobile finite-state sensors 251

and the total time is

O

(
nM∑

�=1

(
n2

��/M�

)

+ bn2

)

+ O(nk+1)

= O(n2 log n + nk+1).

For a push operation, the additional O(xn2) expected in-
teractions needed to add in x is dominated by the time for the
product even when k is small.

For the quotient operation, the analysis is essentially the
same, the only difference being that counter j is only incre-
mented once for every b passes through the loop instead of b
times per pass. So again the probability of error for a single
quotient operation is O(n−k log n) and the expected number
of interactions O(n2 log n + nk+1).

Finally, the same bounds apply for the same reasons to
the initialization step where the unique surviving leader ini-
tializes all the other agents; again, we are simply waiting for
the leader to encounter all the non-timer agents before see-
ing the timer k times in a row.

We now have all the pieces we need to show the simula-
tion result.

Theorem 10 Let f (x) be a function in logspace, where
the input x is represented in unary. Let T (n) = O(nd),
where d is an integer, be the worst-case running time of
some logspace Turing machine that computes f . Then for
any fixed integer c > 0, there is a conjugating automa-
ton that, when run in the standard population with n mem-
bers, computes f (x) for any x ≤ n with probability of error
O(n−c log n) in expected time O(nd+2 log n + n2d+c+1).

Proof Let k = c + d , where k is the waiting parameter of
the zero test operation.

Simulating one step of the Turing machine involves
O(1) product and quotient operations, each of which con-
tributes O(n−k log n) to the error probability. The total prob-
ability of error is then

T (n)O(n−k log n) = O
(
ndn−(c+d) log n

) = O(n−c log n).

The expected running time for the simulation, including
the initial leader election phase, is

O(n2) + T (n)O(n2 log n + nk+1)

= O(nd+2 log n + n2d+c+1).
�

6.2 Simulating conjugating automata

In this section, we show that either deterministic polyno-
mial time or randomized logarithmic space (with exponen-
tial time) is sufficient to recognize predicates computable
with probability at least 1/2 + ε by conjugating automata.

Suppose that a conjugating automaton A computes a
predicate F with probability at least 1/2 + ε. Then F can be
computed by a polynomial-time Turing machine. As before,

we assume that a string x of symbols from X represents an
input assignment x to A, so that n represents both the input
length and the population size.

On input x , a polynomial-time Turing machine can con-
struct the matrix representing the Markov chain whose states
are the multiset representations of the population configura-
tions reachable from I (x), since there are at most n|Q| of
them. Solving for the stationary distribution of the states,
the Turing machine can determine a set of configurations of
probability greater than 1/2. that all have the same output
(which must be correct, as an incorrect output can only ap-
pear with probability less than 1/2−ε). The Turing machine
then writes this common output to its output tape and halts.

Under the same conditions, F can be computed by a ran-
domized Turing machine with probability 1/2 + ε′ using
space O(log n). A randomized Turing machine simulates the
automaton by using a finite number of O(log n)-bit counters
to keep track of the number of members of the population in
each state. Using coin flips, it simulates drawing a random
pair of population members and updating the counters ac-
cording to the transition function of A. By running the sim-
ulation for long enough, the randomized Turing machine can
be almost certain of being in a terminal strongly connected
component of the states of the Markov chain, at which point
the Turing machine halts and writes the output of the current
configuration on its output tape.

How long is this? The number of distinct simulated con-
figurations is less than (n+1)|Q|, so the diameter of the state
space of the Markov chain is less than d = (n +1)|Q|. Given
any state that is not in a terminal component, there is some
path of length at most d that leads to a state that is. It fol-
lows that in each interval of d simulated transitions, there is
a probability of at least (n(n − 1))−d > n−2d of reaching a
terminal component. So the probability of not reaching a ter-
minal component after K d simulated transitions is less than

(1 − n−2d)K ≤ exp(K/n2d).

It follows that we can achieve any constant probability 1 − δ
of convergence after

O(dn2d) = O
(
(n + 1)|Q|n2(n+1)|Q|)

= O
(
2(|Q|+2(n+1)|Q|) lg n) = O

(
2n2|Q|)

simulated transitions.

To wait this long, the randomized Turing machine allo-
cates a counter of c�log n� bits and flips a coin before each
simulated interaction, adding 1 to the counter on heads, and
clearing the counter on tails. The simulation is stopped when
the counter overflows, that is, when there have been at least
nc consecutive heads. The probability that this event occurs
starting at any particular time is 2−nc

; it follows that dur-
ing the first t trials the expected number of times that it oc-
curs (and thus the probability that it occurs at least once)
is at most t2−nc

. Thus we expect to finish in time t with
probability o(1) provided t = o(2nc

). Setting t = 2n2|Q|

and c = 3|Q| thus gives an o(1) probability of failing to

252 D. Angluin et al.

converge before the simulation stops. It follows that the ran-
domized logspace simulation produces a correct answer with
probability at least 1/2 + ε − δ − o(1) = 1/2 + ε′ for suffi-
ciently large n.

We have just shown:

Theorem 11 The set of predicates accepted by a conjugat-
ing automaton with probability 1/2 + ε is contained in P.
Further, they can be computed by a randomized logspace
machine in exponential time.

7 Other related work

In a Petri net, a finite collection of tokens may occupy one
of a finite set of places, and transition rules specify how the
tokens may move from place to place.6 Viewing the states of
a population protocol as places and the population members
as tokens, our models can also be interpreted as particular
kinds of Petri nets. Randomized Petri nets were introduced
by Volzer [23] using a transition rule that does not depend
on the number of tokens in each input place, in contrast to
conjugating automata where the probability of an interaction
between a particular state pair increases with the number of
agents possessing those two states.

The Chemical Abstract Machine of Berry and Boudol [3]
is an abstract machine designed to model a situation in
which components move about a system and communi-
cate when they come into contact, based on a metaphor of
molecules in a solution governed by reaction rules. A con-
cept of enforced locality using membranes to confine subso-
lutions allows the machines to implement classical process
calculi or concurrent generalizations of the lambda calculus.

Ibarra, Dang, and Egecioglu [12] consider a related
model of catalytic P systems. They show that purely cat-
alytic systems with one catalyst define precisely the semilin-
ear sets, and also explore other models equivalent in power
to vector addition systems. The relationships between these
models and ours is an intriguing topic.

Brand and Zafiropulo [4] define a model of communi-
cating processes consisting of a collection of finite state ma-
chines that can communicate via pre-defined FIFO message
queues. They focus on general properties of protocols de-
fined in the model, such as the possibility of deadlock or
loss of synchronization.

Milner’s bigraphical reactive systems [17] address the is-
sues of modeling locality and connectivity of agents by two
distinct graph structures. In this work the primary focus is
upon the expressiveness of the models, whereas we consider
issues of computational power and resource usage.

8 Discussion and open problems

In addition to the open problem of characterizing the power
of stable computation, many other intriguing questions and

6 See [6, 7] for surveys of Petri nets.

directions are suggested by this work. One direction we have
explored [2] is to define a novel storage device, the urn,
which contains a multiset of tokens from a finite alphabet.
It functions as auxiliary storage for a finite control with in-
put and output tapes, analogous to the pushdown or work
tape of traditional models. Access to the tokens in the urn is
by uniform random sampling, making it similar to the model
of conjugating automata.

We have primarily considered the case of a complete in-
teraction graph, which we have shown in Theorem 7 pro-
vides the least computational power of all weakly-connected
interaction graphs in the stable computation model. The
question of characterizing the power of stable computations
on particular restricted interaction graphs remains open. We
can also consider the interaction graph itself as part of the
input and ask what interesting properties of its underlying
graph can be stably computed by a population protocol. This
problem may have applications in analyzing the structure of
deployed sensor networks. Some initial work in this direc-
tion has been carried out in [1].

An interesting restriction of our model is to consider
only one-way communication between the two agents in an
interaction, that is, the transition function δ can be restricted
to change only the state of the responder in the interaction,
keeping the state of the initiator the same. Although there
are still protocols to decide whether the number of 1’s in the
input is at least k, this condition appears to restrict the class
of stably computable predicates severely.

The models in this paper assume a “snapshot” of the
inputs is taken when the global start signal is received. A
model accommodating streaming inputs, as is typically as-
sumed in sensor networks, would be very interesting.

We have assumed uniform sampling of pairs to inter-
act, but for some applications it may make sense to con-
sider other sampling rules. One idea is weighted sampling,
in which population members are sampled according to
their weights, possibly depending on their current states. We
conjecture that with reasonable restrictions on the weights,
weighted sampling yields the same power as uniform sam-
pling. Other sampling rules might be based on more ac-
curate models of patterns of interaction in populations of
interest.

The interaction rules we consider are deterministic and
specify pairwise interactions. What happens if the rules are
nondeterministic, or specify interactions of larger groups, or
allow the interaction to increase or decrease the population?

Our bound on the number of interactions in Theorem 8
applies only to stable computations of Presburger-definable
predicates. The bounds on the simulation results in the
Turing-machine simulation in Theorem 10 are higher, but
still polynomial (for polynomial error bounds). It is not clear
whether there are any useful computations of a conjugating
automaton that require more than polynomial time; just as
logspace machines do not have enough states to exploit su-
perpolynomial time bounds, it may be that the lack of struc-
ture in a conjugating automaton’s memory means that in-
creasing its time bound adds no actual power.

Computation in networks of passively mobile finite-state sensors 253

Furthermore, we give bounds on the expected total num-
ber of interactions, but other resource measures may be more
appropriate in some applications. For many applications, in-
teractions happen in parallel, so that the total number of in-
teractions may not be well correlated with wall-clock time;
defining a useful notion of time is a challenge. Alternatively,
if we consider only the number of interactions in which at
least one state changes (which might be correlated with the
energy required by the computation), then the bounds can be
finite even in the stable computation model, and the expected
bounds can be smaller in the conjugating automata model.

Finally, we have not addressed the issue of fault toler-
ance, which is of course of immense practical importance in
real sensor networks. In one sense, our underlying model
should be very robust in the face of faults since we are
making such weak assumptions about when interactions oc-
cur. If an agent dies, say from an exhausted battery, the in-
teractions between the remaining agents are unaffected. Of
course, many of the algorithms we describe here would not
survive the failure of a single agent, especially those based
on leader election. It is a challenging open problem to de-
sign fault-tolerant algorithms for some of the problems ad-
dressed here, or show that fault-tolerant solutions do not
exist.

Acknowledgements The authors wish to thank Richard Yang for
valuable advice regarding these ideas, David Eisenstat for the original
parity protocol and other discussions, and the anonymous reviewers of
an earlier version of this paper for their thoughtful comments and sug-
gestions. We thank Jinqiang Han for a careful reading of the final draft
of this paper.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H.,
Peralta, R.: Stably computable properties of network graphs. In:
Viktor K. Prasanna, Sitharama Iyengar, Paul Spirakis and Matt
Welsh (eds.), Distributed Computing in Sensor Systems: First
IEEE International Conference (2005). Lecture Notes in Com-
puter Science 3560, 63–74 (June/July, 2005) Proceedings Marina
del Rey, CA, USA

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Urn automata. Tech. Rep. YALEU/DCS/TR–1280, Yale Univer-
sity Department of Computer Science (2003)

3. Berry, G., Boudol, G.: The chemical abstract machine. Theor.
Comp. Sci. 96, 217–248 (1992)

4. Brand, D., Zafiropulo, P.: On communicating finite-state ma-
chines. J. ACM 30(2), 323–342 (1983)

5. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust
in distributed systems. Wuhan Univ. J. Natur. Sci. 6(1–2), 72–82
(2001). Also appears as Yale Technical Report TR–1207, January
2001, available at URL ftp://ftp.cs.yale.edu/pub/TR/tr1207.ps

6. Esparza, J.: Decidability and complexity of Petri net problems-an
introduction. In: Rozenberg, G., Reisig, W., (eds.) Lectures on
Petri Nets I: Basic models, pp. 374–428. Springer Verlag (1998).
Published as LNCS 1491

7. Esparza, J., Nielsen, M.: Decibility issues for Petri nets—a survey.
J. Inform. Process. Cybern. 30(3), 143–160 (1994)

8. Fang, Q., Zhao, F., Guibas, L.: Lightweight sensing and communi-
cation protocols for target enumeration and aggregation. In: Pro-
ceedings of the 4th ACM International Symposium on Mobile ad
hoc Networking & Computing, pp. 165–176. ACM Press (2003)

9. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Pres-
burger arithmetic. In: Complexity of Computation, SIAM-AMS
Proceedings, vol. VII, pp. 27–41. American Mathematical Soci-
ety (1974)

10. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas,
and languages. Pac. J. Math. 16, 285–296 (1966)

11. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of
ad hoc wireless networks. IEEE/ACM Transac. Networking 10(4),
477–486 (2002)

12. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic p systems, semi-
linear sets, and vector addition systems. Theor. Comput. Sci.
312(2–3), 379–399 (2004)

13. Immerman, N.: Nondeterministic space is closed under comple-
mentation. SIAM J. Comput. 17(5), 935–938 (1988)

14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion:
a scalable and robust communication paradigm for sensor net-
works. In: Proceedings of the 6th Annual International Con-
ference on Mobile computing and networking, pp. 56–67. ACM
Press (2000)

15. Kracht, M.: The Mathematics of Language, Studies in Genera-
tive Grammar, vol. 63. Mouton de Gruyter (2003). ISBN 3-11-
017620-3

16. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG:
A Tiny AGgregation service for ad-hoc sensor networks (Decem-
ber, 2002). In OSDI 2002: Fifth Symposium on Operating Sys-
tems Design and Implementation

17. Milner, R.: Bigraphical reactive systems: basic theory. Tech. rep.,
University of Cambridge (2001). UCAM-CL-TR-523

18. Minsky, M.L.: Computation: Finite and Infinite Machines.
Prentice-Hall Series in Automatic Computation. Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1967)

19. Monk, J.D.: Mathematical Logic. Springer, Berlin, Heidelberg
(1976)

20. von Neumann, J.: Theory and organization of complicated au-
tomata. In: A.W. Burks (ed.) Theory of Self-Reproducing Au-
tomata [by] John von Neumann, pp. 29–87 (Part One). University
of Illinois Press, Urbana (1949). Based on transcripts of lectures
delivered at the University of Illinois, in December 1949. Edited
for publication by A.W. Burks

21. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581
(1966). DOI http://doi.acm.org/10.1145/321356.321364

22. Presburger, M.: Über die Vollständigkeit eines gewissen Sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition als
einzige Operation hervortritt. In: Comptes-Rendus du I Congrès
de Mathématiciens des Pays Slaves, pp. 92–101. Warszawa (1929)

23. Volzer, H.: Randomized non-sequential processes. In: Proceedings
of CONCUR 2001-Concurrency Theory, pp. 184–201 (2001)

24. Zhao, F., Liu, J., Liu, J., Guibas, L., Reich, J.: Collaborative signal
and information processing: An information directed approach.
Proc. IEEE 91(8), 1199–1209 (2003)

