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This paper presents partial results of an ongoing in-

vestigation into the computability power of proces-

sors that are computing wait-free while synchroniz-

ing through various deterministic linearizable syn-

chronization objects. Our main result is that any

task over ~ 2n processors, solvable using objects

that cannot implement n + 1 process consensus,

can be solved using only n process consensus ob-

jects. We also identify two new object implemen-

tation notions: protocol-implementation and task-

implernentation. We show that objects that cannot

implement n + 1 process consensus are protocol-

implementable by n process consensus objects. A

corollary of the latter result is that the class of ob-

jects that do not implement n+ 1 process consensus

is closed under composition (i.e., in the terminology

of [17], Herlihy ’s hierarchy is robust). With these

two results, we substantiate for the first time Her-

lihy’s consensus number n notion for objects with

fan-in greater than n.
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1 Introduction

Several recent papers [5, 12, 21] have examined

the computability power of t-resilient computation

with communication via read-write memory. In

light of these results, the next natural question is

how computability power increases when communi-

cation is through media more powerful than read-

write memory. Although some results of this flavor

appear in [5, 14, 7], they are limited because they

apply to the specific instance of media, namely, n

process consensus objects, used by n processors.

We will address the general model of any media

made of deterministic linearizable objects.

Herlihy [10] proposed characterizing objects in a

hierarchy according to their ability to implement

consensus. An object is of consensus number n if

it can implement n process consensus but cannot

implement n + 1 process consensus. For this clas-

sification to make any tangible sense, the least one

would expect is that the set of tasks solvable by

m > n processors using objects of consensus num-

ber n be no larger than the set solvable by using

only n process consensus objects, and the most one

would expect is that objects of the same consensus

number implement each other. Can this be true?

Not in general, since it follows from [5, 7] and

from theorem 3.9 (composition theorem) below

that there exists a consensus number n object,

namely, the composition of an n process consensus

object and an object of 2n + 1 process 2-set consen-

sus, that can solve a task (namely, 2n + 1 processes

2-set consensus) that is not solvable solely with n

consensus objects.

This complication arises only when we reach

2n + 1 processors. As an interim result, we were

able to show that for protocols over m < 2n proces-

sors, all consensus number n objects have the same

task-solving power. Our difficult y in going beyond

2n is not unlike the difficulty encountered in ex-
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tending the one failure of [4] to the multiple failures

in [5, 12, 21]: up to 2n processors, we deal with sim-

ple connectivity of the full-information view graph;

above 2n (i.e., above 2 = 2n/n), things are a bit

more complex.

On the way to proving even this limited result,

we had to resolve the question raised by Jayanti

[17] and Kleinberg and Mullainathan [18] regard-

ing the robustness of Herlihy’s hierarchy, that is,

whether an object that is the composition (in the

sense of the Cartesian product, as explained sec-

tion 2 below) of two consensus number n objects is

itself a consensus number n object. That the hier-

archy is indeed robust is a corollary of our compo-

sition theorem, which states that the composition

of two objects each unable to solve (when used in a

“canonical protocol” as explained later) n + 1 pro-

cess consensus is also an object that cannot solve

n + 1 process consensus.

We derive the composition theorem by first ob-

serving the following crucial fact: An object A

(single copy) in conjunction with any number of

n process consensus objects and read-write regis-

ters does not solve the n + 1 process consensus

task if and only if the view graph of any proto-

col for n + 1 processors using a single copy of A

together with any number of n process consensus

objects and read-write registers is connected. We

are then able to show (for n + 1 processors) that we

are able to replace the object in any fixed protocol

by n process consensus objects. In other words, an

observer controlling interleaving over the communi-

cation objects (everything but A) and the timing of

invoking inputs to the object will find it impossible

to determine whether we actually have object A or

a set of n process consensus objects. Now, when we

have two objects, we do induction on the number of

steps of the protocol to show that, from the point

of view of each single object, it is interacting only

with communication variables of power no greater

than n consensus. Thus each single object can itself

be replaced by n process consensus objects up to

this point in the protocol. Consequently, the whole

protocol can be simulated by n process consensus

objects, giving the required result that the view

graph is connected. This gives us an alternative

characterization of consensus number n objects – a

single copy of A together with n — 1 process con-

sensus objects solves the n consensus task, but A

together with n process consensus, does not solve

the n + 1 consensus task.

2 Model

2.1 Lhearizable Deterministic Objects

Following [11], we intuitively perceive objects as

“hardware black-boxes.” They interface with their

environment through “pins” or “ports .“ Various

input voltages and output voltages correspond to

various inputs and outputs, respectively. When us-

ing objects, one may envision a restrictive environ-

ment, in which the connection between a pin and a

processor has to be hard-wired and consequently

must be specified before runtime (hard environ-

ment ), or a less restrictive environment, in which

software may control which processor attaches to

what pin at what time (soft environment); this is

not unlike the question of whether an array’s di-

mension must be predeclared or may be left to be

determined at runtime. We show (lemma 3.1) that

a hard-wired object implementing n process con-

sensus implements soft-wired n process consensus

as well. We make the assumption that all the con-

sensus objects in this paper are soft-wired.

Functionally, an object is a variant of a Mealy

machine [15]. In response to an input at a pin, the

object makes a transition from one state to another

state and responds with an output to the pin. The

object is deterministic in the sense that an input

applied at a pin in a particular state determines

uniquely the next state and the response. We as-

sume that all possible inputs can be applied when

the object is in any state. Thus, the object is de-

fined for a serial sequence of inputs. The object is

linearizable [11] if it contains a scheduler that in-

terfaces between the pins and the Mealy machine

and applies inputs and returns responses serially.

The scheduler is fair in the sense that it does not

leave an input pending indefinitely. The scheduler

communicates with ports through an asynchronous

channel. Our use of objects is such that when a

processor applies an input at a pin, the processor

remains attached to the pin and is blocked from do-

ing anything else until it receives a response. Only

one processor at a time may be attached to a pin.

We prove (lemma 3.2) that if there exists a state

s in object A, reachable from the initial state,
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such that A implements n process consensus when

started at s, then A implements n process consen-

sus when started at its initial state. Thus we will

assume w.1.o.g. that every state can serve as an

initial state.

To summarize the above mathematically: An ob-

ject is (P, S,1,0,6), where P is a set of ports, S is

a set of states, J is a set of sets of inputs, one set

1; for each port i, O is a set of sets of outputs, one

set Oz for each port i, and d is a transition function

mapping port, state, and input at the port to next

state and output at the port.

Roughly, in 1/0 parlance, processors interact

with an object via actions invokei(di ~ Ii), where

i is a port, and receive.responsei (d’i G 0;), which

are input and output actions, respectively, for the

object. The invoke action enables the object tran-

sition corresponding to the input and the port. The

internal action of the transition disables the transi-

tion and enables the output action of the response.

We assume that a processor’s behavior in an exe-

cution is well formed in the sense that each invoke

alternates with the corresponding response with no

intermediate action by the processor.

2.1.1 Object Composition

A composition of two objects A and B is essentially

an object that is the two objects side by side. The

composed object has pins, which are the collection

of the pins of A and 1?, and state space, which is the

Cartesian product of the two state spaces. Each

transition in the composed object is a transition

of one of the individual objects and is associated

with the corresponding state component. Thus,

in the specification of the composed object, only

states that differ in one component may have a

transition between them. One may now see why

the two objects implement the composed object,

and vice versa. Clearly, the composition operation

is commutative and transitive.

Mathematically: If A = (PA, SA, 1,4, OA, ($A) and

B = (PB, SB, IB, OB, 8B), where we assume that

all elements in sets A and B are distinct, then

AxB = (PAUPB, SAX SB, IA UIB,0AUOB,6AXB),

where 6A. B acts in the appropriate way on the

state of A or B according to which port the input

is from.

2.2 Object Implementation

Essentially, the notion of implementation of object

type A by B is (informally) that object type A can

be “replaced by” object B. We use three degrees

of strength of this notion in our paper. One notion

is that A is replaced by B such that, behind the

interface between the memory and A, the primitive

used is object B rather than A and the replacement

cannot be detected in any environment. This is the

strongest notion and will be indicated by saying

implements [10].

A weaker notion of implementation involves re-

placing the object undetectable within a given pro-

tocol P. Note that a protocol limits the sequence

of inputs at the interface to the object. We say that

B P-implements A if inside the given protocol we

can replace A by a collection of B‘s and read-write

registers.

We want to now refer to a collection of protocols,

but we want to limit the power of the sequences at

the interface so that the sequences do not corre-

spond to an arbitrary environment. Thus, for a

collection of objects CV, we say that B (CV, m)-

implements A if, in any protocol over m processors

which uses a single copy of A and objects from W,

we can implement A by a collection of B’s.

In particular, we do not want the environment

to be able to produce a family of sequences that

cannot be produced by the object A itself. We say

that a protocol over m processors is canonical(A, n)

if it uses a single copy of A (the object) and any

number of n process consensus and read-write ob-

jects (communication variables). Let A x C be

the composition of A and C and assume that both

are (CV, m)-implement able by B; then, as we will

show, B (CV, m)-implements A x C.

The weakest of our implementation notions is

that tasks solvable by using A (and CV) can be

solved using objects of type B (and CV) instead.

We will indicate this type of implementation by

saying task-implements.

With the first two kinds of implementations, we

need to address the issue of whether the environ-

ment/protocol is terminating or nonterminating,

ultimately a question of whether one can imitate

the fairness of the scheduler. In the general envi-

ronment case, this issue corresponds to the ques-

tion of one-shot vs. long-lived. We deal only with
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the terminating case in this paper.

Whether our three are materially distinct - that

is, whet her for each pair of implementation notions

there is a pair A and B such that B implements

A with respect to one implementation notion but

not with respect to another – is a research topic

in its own right. However, examples showing that

P-implements is distinct from implements are easy

to construct.

Finally, as observed in [17, 18], there are many

ways to interpret how one “substitutes” B for A.

Having different object types, as Nir Shavit [20]

pointed out, corresponds to having different models

of computation, as in finite automata versus Tur-

ing machines. Having different numbers of copies of

an object is analogous to investigating the power

of Turing machines with more or less space. In

the latter case, the model of computation is fixed

but one imposes “resource bounds” on the com-

put ation; this is essentially a complexity question.

Afek and Stupp’s [2] investigation into the power of

a single object is an example of a complexity result

in this area. Characterizing the power of read-write

[5, 12, 21] is a computability result; it applies to any

number of read-write registers. Thus, if we want to

investigate e computability power, our implement a-

tion notion must refer to a collection, that is, to

whether there exists a collection of type B objects

together with read-write registers that can replace

a given collection of type A objects (together with

read-write registers). Neiger [19] has indicated that

deterministic objects of consensus number n z 2

can implement read- writ e registers; with this re-

sult, the implementation definition becomes more

streamlined.

We postpone formal definitions to the full pa-

per, but semi-formally we assume that the reader

is familiar with the standard notion of system S1

implementing S2 [1]. Let system S2 use objects of

type AI, A2, . . . . let S1 use objects of type B1, 5,...,

and let S3 be a system that can be composed with

both S1 and S2.

1. We say that the B class of objects implements

the A class if for any S2 system, there is an S1

system such that for any S3 system, S1 com-

posed with S3 implements S2 composed with

Ss.

2. We say B S3-implements A if for all S2 sys-

3.

4.

5.

2.3

Let

terns composed with a fixed S3, there exists

an S1 composed with S3 that implements S2

composed with S3.

We say that B protocol-implements A if for

any S2 and S3 systems, there exists an S1 sys-

tem such that S1 composed with S3 imple-

ments S2 composed with S3 (i.e., unlike (1)

above, S1 may depend on S3).

We say that the B class of objects (CV, m)-

implements the A class if B protocol-

implements A when S3 is restricted to using

objects of the CT class and is a protocol over

m processors.

Finally, we say that B m-task-implements A

if any task solved by an S2 system with m

processors is solved by S1 with m processors.

View Graphs

P be a wait-free protocol. A view vi of pro-

cessor i in an execution (or run) of P is its local

state upon halting (halting state). We attach the

name view to a halting state because in general we

will refer to full-information protocols [9] and in

such protocols a state is everything the processor

“viewed” throughout the execution. The protocol

induces a map from final views to outputs for the

protocol. Out of the views of all executions of P,

we build a view-graph complex of simplexes. A sim-

plex in the complex is a set of views, one per pro-

cessor, all from the same execution. Pictorially, it

is a graph in which the nodes correspond to views

and two views are connected by an edge if there

exists a common execution to which the nodes cor-

respond. A simplex is a complete subgraph. The

dimension of a simplex is the number of nodes mi-

nus one, a ~ace of a simplex is any subsimplex, and

a solo execution view is one in which the processor

sees only itself take steps in the protocol.

3 Characterization of Objects

that Do Not Implement n + 1

Process Consensus

In this section, we provide a characterization con-

dition for when a deterministic object cannot solve

n + 1 processor consensus. The connectivity over
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all view graphs of canonical(A, n) protocols is the

determining factor in the characterization. By

construction? we show that if all view graphs for

canonical(A, n) protocols are connected, then n

process consensus can ((n-consensus, ~/w), n +

1)-implement A. Alternatively, we show that

if there exists a disconnected view graph for a

canonical(A, n) protocol, then the object indeed

implements n + 1 process consensus. We begin by

proving a few necessary lemmas.

3.1

Here

Some Properties of’

Objects

we show that a hard-wired

Deterministic

n processor con-

sensus object is equivalent to a soft-wired one.

Thus, throughout the remainder of the paper, all

consensus objects are assumed to be soft-wired. We

also show that if a deterministic object has consen-

sus number n, then the object cannot implement

n + 1 process consensus regardless of the state to

which the object is initialized.

Lemma 3.1 For a fixed set of processors 1,. ... m,

a soft-wired n process consensus object can be im-

plemented from hard-wired n process consensus ob-

jects.

Proof (by construction) Arrange.a set of (~ ) hard-

wired n process consensus objects in a sequence.

Let each of these be hard-wired for a unique n pro-

cessor subset of the m possible processors. Proces-

sors now apply to the objects to which they are

hard-wired in the order induced by the sequence.

Each processor uses the output from an object as

input to the next object it accesses. The final out-

put for a processor is determined by the last object

it accesses in the sequence.

To see why this works, consider the hard-wired

object of the sequence which is accessed by all pro-

cessors. This object acts as a filter passing a single

value to all processors. This guarantees that any

object accessed subsequently will have input and

output fixed to this value. ❑

Lemma 3.2 (Initial State Lemma) If an ob-

ject A can implement n process consensus when

initialized to some reachable state S, then n pro-

cessors can implement consensus using copies of A

initialized to the start state.

Proof Let each processor have a private copy of

object A initialized to the start state, and let the

processors be ordered 1,..., n. Since state S is

reachable, let each processor apply a sequence of

inputs so that its copy of A reaches state S. At this

point, a processor i writes into the memory ‘ready-

i’. A processor then takes a snapshot of memory

to see which objects are ready. Following the idea

of lemma 3.1, each processor executes consensus,

in the order induced by the processor numbers, on

the set of objects it sees ready. Again processors

submit the output from one consensus as the in-

put to the next. The first object to be pronounced

ready will necessarily be accessed by all processors;

thus the output value for that consensus will be the

final output for each processor. ❑

3.2 Simplex Agreement

The primary technique used in implementation of

tasks and objects is that of simplex agreement [13].

Given a complex, in our case the view graph for a

protocol (G), the simplex agreement problem is for

each processor to take a node of the complex as

output such that all output nodes lie in a common

simplex. Each simplex corresponds to a run of the

protocol, and processors are required to take views

labeled by their own IDs. Let sk be a subset of pro-

cessors. Then Sk(G) is the subgraph of G in which

only processors in sk take steps. Then furthermore

for simplex agreement on G, if only a subset sk of

the processors wakes up, the output views taken

by these processors must belong to Sk(G). Thus,

a processor waking up alone in the simplex agree-

ment must adopt a view that corresponds to a solo

execution.

Define two simplexes in a complex be k-

connected, k > 0, if they share a face of dimension

k – 1 or more. Define the k-run graph of a complex

to be the graph in which runs (simplices) are nodes

and two nodes are connected if the corresponding

simplices are k-connected. We say a complex is

k-connected if the k-run graph of the complex is

connected.

Let C be a complex. Then the linking-sphere of a

simplex S 6 C with respect to C’ is the subcomplex

induced by a all the vertices of C’ – S which lie in

simplexes in C that contain S.
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Lemma 3.3 Let A be of consensus number n, G

the view graph of a canonical(A, n) protocol over

m, n < m processors, and Sk a subset of the m

processors such that Isk[ = k > n; then Sk(G) is

k – n connected.

Proof Assume the (k–n)-run graph (G~) of Sk(G)

is disconnected. W .Lo.g. assume we have two con-

nected fragments f O and ~1 in G~. Since initially

all runs of G\ are possible, there must be a critical

stat e of the protocol in which any operation deter-

mines the fragment of the run [8]. Color any views

of the view graph shared by runs in both fragments

by distinct colors. Color remaining views by O if

they lie in runs of fragment ~0 and 1 if they lie in

runs of fragment f 1.

Bring the protocol to the critical state. Let n+ 1

processors using n process consensus do agreement

for the consensus values associated with ~0 and fl

and then simulate the k processor protocol from

the critical state [5]. At least k – n codes will ter-

minate. The labels of these resulting views, if they

include 1 or O, determine the fragment in which

the simulation ended. Otherwise, the k – n views

are all labeled by distinct colors. Notice, however,

that any combination of k – n colors in a simplex

uniquely determines a fragment. Thus, the n + 1

simulating processors can waitfree agree on a frag-

ment, contradicting the assumption that A is of

consensus number n. 0

Lemma 3.4 For an m processor canonical(A, n)

protocol, n < m s 2n, with view graph G, and a se-

quence of subsets of the processors Sn+I C S.+2 C

“ -- C S~, 1 S m with lS~l = i, there ezists a corre-

sponding sequence of complexes Cn+l c . . . c C’m

with veriezes(Cn~l ) = veri!ezes(Sn+l (G)), C’i ~

Si(G), Ci is of dimension i – 1 and is i – n-

connected, such that for n < j < k s 1, the linking

sphere of any simplex in Ci of j —(n + 1 ) dimension

or !ess, with vespect to Ck is connected.

Sketch of Proof We use induction on 1. Lemma

3.3 establishes the basis for the induction. Let q be

the smallest index for which the lemma fails. There

exists a simplex S in Si for which the lemma holds,

namely the simplex in which processors wake up in

order, one terminating before the other wakes up.

Partition Sm+2 into two sets of vertices. Those for

which S can be extended to satisfy the lemma, ~0,

and those that do not satisfy the lemma comprise

the other f 1. We now take q = n +2, and we defer

the general case to the full paper. Obviously there

are vertexes in S’n+l that belong to ~1. Let W. c f O

be adjacent to W1 < ~1. Since in Cn+2 that solves

the problem on fO W. is adjacent to all nodes in its

linking sphere adding WI with all the l-dimensional

simplexes that connect it to vertices on the linking

sphere of W. would have satisfy the linking sphere

condition for W1. Thus we must conclude that WI

is not adjacent to any vertex on the linking sphere

of W.. Consequently, WI cannot be adjacent to a

l-dimensional simplex in Cn+2. Thus the existence

of two vertices of Cn+2 in a run in which S’n+l woke

up and after at least one processor terminated then

S.+2 – Sn + 1 woke up, and the existence of vertex

not in Cn+z are two mutually exclusive outcome.

Thus two outcome reveal the fragment, contradict-

ing the impossibility of n + 1 consensus. ❑

Theorem 3.5 m processors, n < m ~ 2n, can

do simplex agreement on the view gmph of a

canonical (A, n) protocol using only n process con-

sensus.

Proof Let G be the view graph for a

canonical( A, n) protocol. Let each processor keep

a set of views F’ that are jized (initially the empty

set), and let there be predefine paths for each pair

of views, participating sets and fixed set I’ (notions

to be defined inductively below).

Upon starting simplex agreement, processors

register in the memory and then use test-and-set to

partition themselves into two slotted sets, A and 1?,

of less than or equal to n processors. Sets A and B

will each synchronize through n process consensus

to work as a single processor. All processors try to

access slots of set A first, so if [B[ >0 then IA I = n.

Both A and B then take snapshots of the memory

to get a participating set of processors. A and B

each propose, through n process consensus, their

solo view and participating set (set of processors

that they observed registered in memory), Assume

some embedding of the complex in some Euclidean

space of high enough dimension. Processors then

do c-convergence [4]. Let Sk be the union of their

participating sets. There is some predefine rule
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that by the winners in A and B and by sk deter-

mines a sequence Sn+l, ..., sk such that the winners

belong to Sn+l. They then converge along a pre-

define path for the starting views and Sm+l. Let

~ = 1/4(length of smallest edge on the path). We

will refer to this sequence of steps as the conver-

gence phase.

After converging, sets A and B each end at

points (within c from each other) in the embed-

ding. Each set writes its ending point in memory

and then updates F’ as follows. An ending point of

A or B within c of a view w yields F = F U {v}.

Otherwise, the ending point lies on an edge with

endpoints Vo, VI, in which case F = F U {vo, Vi}.

Any processor seeing the ending point of both sets

A and B takes F to be the union of the F’s corre-

sponding to each ending point. If a processor sees

a view of its own label in F, it drops out of the

simplex agreement wit h that view as output.

Processors now repeat the convergence phase,

starting from views on the predefine path on the

linking sphere of views of F, and converging across

the path with respect to the new participating sets.

By lemma 3.4, there exists such a path for conver-

gence. Once m – n nodes are fixed, no processor

will belong to set B, so set A works alone, propos-

ing (and trivially converging to) one view at each

subsequent convergence phase. Thus all processors

halt with nodes of a common simplex. ❑

3.3 Object Implementation

We start with a few preliminaries. Let a

canonical( A, n) protocol be (n + 1)-concurrent if,

when < n + 1 processors access the communication

objects (everything except for A), the processor

accesses are totally linearized. In other words, ac-

cesses to a set of communication objects in the pro-

tocol by a single processor can be viewed as a single

atomic step. For an (n + 1)-concurrent protocol,

when ~ n + 1 processors access the communication

objects, there are no constraints on the processor

linearization. Throughout this section, we assume

all protocols are n+ l-concurrent. This assumption

can easily be justified by noticing that with n pro-

cess consensus we can implement n-fetch-and-add

that returns the sequence of the last n – 1 proces-

sors linearized and the set of all processors that

accessed the object. It can be seen then that only

when we have n + 1 consecutive distinct proces-

sors linearized do we lose track of the order inside

the fetch-and-add. If in addition, after a processor

accesses the fetch-and-addy it also writes its view

in shared memory, then exactly n + 1 concurrency

is required for processors to lose track of the lin-

earization. Thus we get the following lemma.

Lemma 3.6 If the view graph G for each

canonical(A, n) protocol is connected, then the sub-

graph G’ induced by views in n + 1-concurrent runs

is connected.

Let a be a sequence of operations to an object A,

let “.” denote concatenation of lists, and let ~ be

a prefix of o. Define Nezt(a, a) to be the longest

sequence A such that A contains no two operations

of the same processor and a . A is a prefix of a. If

G is a view graph of a protocol, then define G/a

to be the graph induced by views in runs R of G

for which a is a prefix of R.

Lemma 3.7 If Y canonical(A, n) protocols, the

view graph G is connected, then for each protocol,

the subgraph G/Q (for given prefix a) is connected.

Proof G/a is the subgraph of views from runs

that start with prefix a. By lemma 3.2, if G/a

is disconnected, we can start executing from the

state reached by prefix a and achieve n + 1 process

consensus. Thus, a disconnected view graph for a

canonical(A, n) protocol must exist. By contradic-

tion, G/a is connected. ❑

We now show that any canonical(A, n) proto-

col P for n + 1 processors can be P-implemented

by n process consensus. Thus, in n + 1 proces-

sor protocols, A can be ((n-consensus,~ /w),n + l)-

implemented by n-consensus. The idea of the im-

plementation is to iterate the simplex agreement

used to implement tasks, continually building a

prefix a of runs of the protocol. When a is a com-

plete linearization of a run, the simulation termi-

nates.

Lemma 3.8 (Object Implementation) If ‘d

canonical(A, n) protocols over n + 1 processors, the

view graph is connected, then n process consensus

((n-consensus, r/w), n + 1)-implements A.
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Proof Let G be the view graph of a

canonical(A, n) protocol for n+ 1 processors. For

every view and edge of G, let there be a predeter-

mined run (n-simplex) cent aining the view or, for

the edge, containing both views of the edge. Thus

the runs associated with an edge and one of its end-

points share at least one view. Let a, initially the

empty string, store a prefix of a run. For each pair

of views in G/a, let there be a predetermined path

between the views.

Processors execute the convergence phase of sim-

plex agreement over the G/a. Sets choose initial

views for the convergence in which a is followed by

operations of only the viewing processor.

After convergence, sets A and B end at points

pA and pB, in the embedding of the view graph,

along the path used for convergence. If a point is

within c from a view it will map to that view, and

otherwise it will map to the edge it lies on. Let

RA (resp. RB) denote the run associated with the

view or edge that is mapped to from PA (pB).

Set A (resp. 1?) writes pA (pB) and RA (RB)

and then reads. W.1.o.g. assume set B reads the

run of set A. If set A does not read RB, it knows

the run corresponds to either the view closest to

PA or the edge pA lies on. Thus, A can deter-

mine whether both possible runs RB are such that

Nezt(a, RA) = Nezt(a, RB). To be safe, A always

assumes RB # RA (if this is possible) until it sees

otherwise. Since B sees both RA and RB, it knows

for certain whether lVezt(a, RA) = Nezt(a, RB).

Thus each set may proceed with an assumed or

certain view of what RA and RB are.

If IVezt(a, RA) = lVezt(a, RB), then processors

update a to Q. IVezt(a, RA). If a processor has an

operation in lVezt(a, RA), it takes the correspond-

ing object value, goes to the CV objects to con-

tinue the steps of the protocol, and then returns to

convergence to linearize again in the object. Oth-

erwise, a processor repeats the convergence phase

(with updated a) in order to linearize its own op-

eration on the object.

~~e~~(~,~A) # f’Vezt(a, R~), then RA and RB

must share at least one view. Thus let p* be the

next processor to linearize in the CV objects in

both runs. Since the run is n+ l-concurrent and at

least one processor can not tell the difference be-

tween RA and RB, px is well defined. Processor px

necessarily has the same object output in both runs

and so may take its output, linearize in the CV

objects, and return the convergence phase to lin-

earize again in the object. When px returns to the

convergence after linearizing alone in the CV ob-

jects, it accesses set B directly, leaving A open for

the other processors. With a unchanged, p* starts

a new convergence phase, starting from the view

to which its ending point was closest in the previ-

ous convergence phase and tagging the convergence

with its completed CV access. If any processor ob-

structs p*’s linearization in the CV objects, the

processor reveals which of RA and RB was chosen.

In this case, px updates a accordingly and returns

to the convergence phase as usual (trying for a slot

of A).

When ~ezi(a, RA) # ~ezt(a, RB), all proces-

sors other than px return directly to begin a new

convergence phase. They will all access slots of

A, Set A starts convergence at the view closest to

an ending point of the previous convergence and

tags the round with px’s memory access. If the

convergence bet ween A and 1? is nontrivial (i.e., A

and B start at different points), then px linearized

in the CV objects successfully. After convergence

with new PA, PB, processors can either update a

or send another processor to take an object value

and linearize in the CV objects.

Continuing in this manner, at least one processor

gets output for the object after each convergence

phase, so the processors eventually simulate all

their accesses to the object and halt with output ac-

cording to the protocol. Thus A is P-implemented

from n process consensus for an arbitrary protocol,

and the theorem holds. ❑

3.4 The Composition Theorem

Theorem 3.9 (Composition Theorem)

If B protocol-implements A and B also protocol-

implements C, in each case w. r. t. communica-

tion objects CV, then B protocol-implements A x C

W.r. t. Cv.

Sketch of Proof We induct on the number of

steps of the execution of the protocol. Since A and

C by themselves can be implemented, and there is

no notion of simultaneous steps by both, accesses

to object A may be viewed as separate from access

to CV objects since B can replace them, and vice
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versa for accesses to object C. u

Corollary 3.10 Herlihy ’s consensus hierarchy is

robust.

3.!5 Characterization via Canonical Pro-

tocols

Corollary 3.11 (Object Characterization)

There exists no protocol using objects A, n pro-

cess consensus, and read-write memory that solves

n + 1 process consensus ifl, for all canonical(A, n)

protocols over n + 1 processors, the view graph is

connected.

Sketch of Proof

(+) By definition, if there is no protocol that

solves n + 1 process consensus using copies of A, n

process consensus, and read-write objects, then A

is of consensus number at most n. So, by lemma

3.3, a canonical(A, n) protocol has a connected

view graph.

(~) Conversely, by the object implementation

lemma (lemma 3.8), if for all canonical(A, n) pro-

tocols, the view graph is connected, then n process

consensus protocol-implements A. By [16, 7], n

process consensus cannot implement n + 1 process

consensus, so there can be no canonical(A, n) pro-

tocol implementing n + 1 process consensus. Thus,

by theorem 3.9, (composition theorem), any proto-

col using multiple copies of A can be implemented

by n process consensus. Again, [16, 7] imply that

no such protocol can implement n + 1 process con-

sensus. ❑

4 Task Implementation

The next result gives the first tangible benefit to

the notion of consensus number n class. It shows

that for up tom processors, m s 2n, objects in the

cIass are interchangeable with respect to solving

tasks. This is a direct result of theorem 3.5 and

the composition theorem (theorem 3.9).

Theorem 4.1 (The Main Theorem) A task 2’

fbr m pmeessors, n s m s 2n, which can be im-

plemented by a collection of consensus number n

objects can be implemented by n process consensus.

Proof By theorems 3.5, and 3.9, any set of con-

sensus number n objects can be composed to form

a single consensus number n object. Thus consider

task T to be implemented by a canonical(A, n) pro-

tocol, where A is the composition object. Let G be

the view graph for this protocol. By lemma 3.5,

processors can do simplex agreement on G using

only n processor consensus objects and read-write

memory. By the assumed correctness of the proto-

col implementing T, when processors take outputs

that correspond to their views, the outputs satisfy

the task. ❑
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