
A Gap Theorem for Consensus Types—
Extended Abstract

—

Gary L. Peterson* Rida A. Bazzit$

Spelman College Gil Neigert

Georgia Institute of Technology

Abstract

This paper presents a strong characterization that pre-

cisely determines the ability of n–process deterministic

types to solve n–process wait–free consensus. This char-

acterization, called the High Gap Theorem, has several

important corollaries including a proof that Jayanti’s

hierarchy that allows multiple copies and read/write

shared memory is robust for deterministic types.

1. Introduction.

Herlihy [Her191] defined a complexity measure for

shared memory types based on their power to solve

wait-free consensus. Jayanti formally defined several

variations of Herlihy’s hierarchy [Jay93] and introduced

the notion of robustness. It concerns a basic question

on the power of combined types. Robustness means

that if objects of two or more types separately cannot

solve a problem then they can not solve the problem

together. Jay ant i studied robustness using consensus as

the problem to be used in classifying types. Depending

on the assumptions made about the properties of types

and whether read/write shared variables (i.e., registers)

are permit ted, Jayant i was able to show some consensus

hierarchies are not robust.

There remained one hierarchy, h&, defined by Jayanti

*Research supported in part by the W. F. Kellog Foundation

under a grant to the Center for Scientific Applications of Mathe-

matics at Spehnan College, Author’s address: Computer Science

Department, PO Box 333, Spehnan College, 350 Spelman Ln SW,

Atlanta, GA 30314-0339.
t Re~emch supported in part by the National Science FourI-

dation under grants CCR–9106627 and CCR–9301454. Authors’

address: College of Computing, Georgia Institute of Technology,

Atlanta, GA, 30332-0280.

t Supported in part by a scholarship from the Hariri

Foundation

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PODG 94- 8/94 Los Angeles GA USA
@ 1994 ACM 0-89791 -654-9/94/0008.$3.50

whose robustness question was not resolved. For a type

T, let n be the smallest value such that multiple copies

of objects of type T, augmented with read/write shared

memory, can solve n–process wait–free consensus. Then

h~ (T) = n. The main result of this paper implies h~

is robust for deterministic shared memory types.

We are very careful when discussing a type to indicate

the number of processes that can access the type. Note

that a 3-valued test–and–set object that can be accessed

by 3 processes can solve 3–process consensus but cannot

solve 4–process consensus [LA87]. While it is common

to consider types such as 3–valued test–and–set to be

one type, it is more proper, and more useful, to consider

it to be a family of types.

Our main result, called the High Gap Theorem, is

a characterization of n–process types. If a type has a

certain property, then its objects can be used to solve

n–process consensus. If it doesn’t have the property,

then its objects can be simulated using objects of any

type that can do (n – I)–process consensus. Therefore,

there is a gap between n-process types with consensus

numbers n and n — 1. No comparable gaps exist at lower

levels in general. (There are n-process types that cannot

do (n– 1) process consensus but can solve problems that

not all (n — 2)–process consensus types can solve.) Basic

corollaries to the High Gap Theorem follow easily:

Corollary. Jayanti’s h~ hierarchy is robust for deter-

ministic types.

Corollary. A deterministic 2–process type has con-

sensus number 2 if and only if its objects cannot be

simulated by read/write shared memory.

One of the other issues raised by Jayanti concerns

the definition of a shared memory type. Different re-

sults can be obtained based on different notions of type.

For example, one of Jayanti’s results permitted types to

be non-deterministic. We therefore state the following

properties about types that are used in this paper (see

also [BNP94]):

● An object of an n–process type is accessed via n ports.

(One port may allow reading, another writing.) Which

process is to use which port is set at compile time.

● The object is a restricted finite state automaton with

344

transitions labelled by ports, the values of the inputs

used in the call (including the names of functions), and

the output values returned from the call. The sets of

possible input and output values are finite.

. The transition function is deterministic and total,

● Any state of the type can be specified as the start

state for the object.

● The object is accessed a bounded number of times.

The above assumptions are reasonable for the study of

complexity of types based on consensus number. While

Jayanti allowed non-deterministic types, it seems more

reasonable to assume any shared memory object must

have a fully deterministic specification. Allowing more

than one transition for a given call to an object was

shown by Jayanti to result in hierarchies that are not

robust. Similarly, basic properties of types may be dif-

ferent if there is no transition defined for some of the

calls to an object.

Note that the types are not required to be oblivious

[KM93]. That is, processes may not be permitted to

perform the same operations on the object since not

all operations are necessarily permitted on all ports.

Many shared memory types are non-oblivious, e.g., one–

reader, one–writer shared variables. Many types used

for consensus are oblivious [Her191]. The results of this

paper still hold for oblivious types since they are a sub-

set of non–oblivious types.

The assumptions about types given above implies

that all aspects of the use of shared objects are bounded.

Note that the consensus problem is the basis for the

study of the complexity of types as given here. A type’s

complexity is defined by its ability to solve a consen-

sus problem using a wait–free algorithm. Therefore

having bounded objects implies that all wait–free algo-

rithms for consensus using such objects call the objects

a bounded number of times. This differs from simula-

tions involving read/write shared memory where unlim-

ited calls to object are allowed.

Note that the same assumptions are used in [BNP94]

to prove the useful result that all non-trivial determin-

istic shared memory types can simulate bounded–use

read/write shared memory. This implies the existence of

a gap at the lowest end of the hierarchies between local

memory and general read/write shared memory. Also,

we do not need to separately assume having read/write

shared memory in our simulations as whatever type is

being used can also be used to simulate read/write mem-

ory. [BNP94] also gives a proof using the High Gap

Theorem that Jayanti’s hm hierarchy for deterministic

types is robust.

2. Definitions

N, the set of process numbers, is {1,2,..., n} with the

ith process denoted by Pi. Schedules are elements of

N“. We assume we have a fixed object of the given

type. For any string X, Xi denotes the ith symbol in

x.

Definition. For any string S in N*, let Pos(S, i, k)

denote the location in S of the kth occurrence of the

number i. (It is undefined if i does not appear in S k

times.) Let iVum(S, i) denote the number of occurrences

in S of i. Let PreflS, s) denote the prefix of S of length

s. E.g., Pos(S, 3, 2) is 4, iVum(S, 1) is 3 and Pref(S, 4)

is 2133 for the string S = 2133211.

Definition. An n–process type T (with n ports) is

(n, Q, 1, R, 6), where Q is the set of states, 1 is a set

of input invocations (composed of a function name and

parameters), R is a set of output responses (functional

return values, new values of referenced parameters) and

6: QxNx14Q xR. As perfection l, Q, Iand R

are finite. An n–process object of type T is (T, ~) where

~ is a permutation over N that maps process numbers

to ports. (See [BNP94] for more details.)

Definition. An input history is Z E 1* denoting a

sequence of input invocation values for a sequence of

calls to the object. Similarly an output history is 7? ~

R* denoting a sequence of output response values for a

sequence of calls to the object.

Definition. An execution sequence S. is a 3–tuple:

(S, Z, 7?) where S is a schedule, Z is an input history,

and R is an output history, all of the same length. IS= I

is ISI, and Pref(S., i) is (Pref(S, i), Pref(Z, i), Pref(7Z, i)).

The execution sequence is consistent from a given

start state qo, if 3 states ql, q2, q. such that Vi

~(Qi-I, ~(&), Z) = (Q,%) where s = ISI.

An execution sequence plus start state can be thought

of as the complete record of a series of accesses to an

object starting from the start state: the order of calls,

the input values used in calls, and the return values of

the calls. It is consistent if the given order and inputs

to calls to the object produces the given responses.

Definition. For a schedule S of length s and process

Pi, P,’s observable operations at the end of S, V(S, i),

is a pair of matrices (l[l. ..n],O[n, ..n, 1.. .s, l.. .n)

called the 1/0 matrix and the Order matrix, resp. For

all j, l[j] is iVum(S, j) but l[i] is Num(S, i) + 1. For all

~, k, sj, 0[~, Sj, k] is Num(Pre~S,Pos(S, j, Sj)), k) – 1.

but O[i,Num(S, i) + 1, k] is Num(S, k) – 1.

Note that the word is “observable” and not “ob-

served.” In our algorithms, processes between calls to

the object will read and write information using shared

memory. The information processes can be guaranteed

to easily obtain include: outputs from calls that are

certain to have been completed, inputs to calls that are

certain to have started, and any ordering information

that processes could be sure to obtain between calls.

I[j] = Sj means that is possible for Pi to learn via

shared memory before its next call to the object the
output of pj ‘S Sj — 1st and earlier calls and the input

to Pj’s sj th and earlier calls to the object. For i = j,

Pi will know the input to its own Si + 1st call and the

345

output of its sith call as well.

o[~, sj, k] = Sk means that Pi before its next call to

the object will be able to learn that F’j ‘S sj th call to

the object occurred after pk’s Skth call to the object.

(While in fact Pj’s sjth call occurred after P~’s sk + 1st

call, there is no easy way for Pi to learn this.) For i = j,

Pi will also be able to know before its next call that pk

has completed its Skth call.

It will be shown how processes can actually obtain

the observable information in the next section. The

1/0 information is quite simple using read/write mem-

ory. The Order information can be obtained easily with

a simple object that for two processes can be done with

read/write memory and for three or more processes can

be done with objects whose type is weaker than 2-

process consensus types.

Definition. Given a start state qo, a process num-

ber i and an execution sequence S. = (S,z, n) of

length s that is consistent from go, a visible history

instance for Pi h(qo, Se, i) is a triple of three matri-

ces(Z~[l. ..n, l.. .s],7?~[l . ..n. s], O)], O). O is the or-

der matrix in Pi’s visible history V(S, i) = (1, O). If

s s I[j] and s’ = Pos(S, j, s), lh~, s’] is Z~, and is J_

otherwise. If s < ~[j] and s’ = Pos(S, j,s), Rh [j, s’] is

R: and is 1 otherwise.

A visible history instance for Pj records the actual

information that is observable to Pi at a point in time:

inputs values for all calls to the object that are observ-

able, output values for all calls that are observable, and

the order information. A visible history is a sequence

of visible history inst antes, each one representing what

is observable to Pi just before each of its calls to the

object.

Definition. A visible history for Pi H(qo, Se, i) is

(hl, hz, h.,) where iVtzrn(S, i) = s’ (Se = (S, Z, R))

and Ym, hm = h(qo,Pre~Se, m), i).

During a simulation of an object, each process needs

to know the inputs to calls to the object by other pro-

cesses. Since a process has choices of input values, these

choices may make a simulation possible or impossible.

Our simulation algorithms work under the assumption

that the processes are “playing fair” in their choice of

input values. It is reasonable to expect that input pa-

rameters might depend on things such as outputs from

previous calls to the object, data obtained from other

processes between calls to the object, etc. However, a

process cannot be permitted to choose an input value

that is dependent on the internal state of an object that

is not visible to the process. This is formally stated us-

ing the definitions from Peterson and Reif’s Multiple–

Person Alternation automata (MPA’s) [PR79].

Definition. A strategy is 7 : N* x N + 1. (From a

given point in a schedule and who is to call the object

next, it gives the input invocation for that call.) An

execution sequence Se = (S, Z, l?) is produced by y from

q. if Vi y(PreflS, i – 1), Si) = Zi and Se is consistent

from qo.

That is, a strategy is a complete list of what parame-

ters to the object each process will use in a given algo-

rithm. If Pi’s visible history is the same for two different

schedules, Pi must call the object with the same input

parameters.

Definition. A strategy -y is a legal strategy from q.

if for all execution sequences Se = (S, Z, 72) and S: =

(S, Z, %3) produced by y from go and all process numbers

i, ll(qo, S., i) = ff(qo, Sj, i) implies -y(S, i) = -y(S’, i).

Our proofs hinge on the fact that if an object can

solve n–process consensus it can do so with each process

calling the object a bounded number of times. On the

other hand, it will be proven that if the object cannot

solve n–process consensus it is due to some processes

not being able to determine the ordering in the schedule

no matter how many times they call the object. The

following formalizes these bounds where one process Pi

is unable to decide within a bounded number of steps.

Definition. A schedule bound a is (s1, s2, s~) and

Iul = ~ si. Given an schedule S, a process number i

and a schedule bound u = (sl, S2, Sri), S is bounded

by (i, o) if b’~ # i Num(S, ~) < sj and Num(S, i) = si.

An execution sequence S: = (S, Z, 7?) is bounded by

(i, o) if S is bounded by (i, m).

Definition. Given three process numbers i, j, and k

with j # k, a start state q., a schedule bound u, and a

legal strategy -y starting from q., Pi cannot distinguish

bet ween j and k in schedules bounded by CT starting

from q. using -y if there exists a pair of execution se-

quences Se = (S, Z, 7?) and S: = (S’, Z’, 72-’) produced

by -y from q., where S1 = j, S; = k and Se and S:

are bounded by (i, O) such that Pi’s visible histories

H(qo, Se, i) and H(qo, S:, i) are equivalent.

That is, Pi is unable to tell apart two execution se-

quences (one started by Pj and the other by pk) using

its history of visible information. The power of a type is

directly related to the abilities of processes to determine

the order of their operations.

Definition. For objects of an n–process type, a start

state q., a schedule bound u, and a legal strategy y

from qo define an equivalence graph G(qo, C, y) = (V, E)

where V = {1,2, ..., n}, E = {(j, k)13i such that

Pi cannot distinguish between j and k in schedules

bounded by a starting from QOusing 7}.

Note that equivalence graphs are undirected and

there is an equivalence graph for each start state, sched-

ule bound and strategy. An edge (j, k) in an equivalence

graph captures the notion that at least one process is

not be able to tell whether at least one pair of execution

sequences starts with j or k.

High Gap Theorem. If, for objects of an n–process

deterministic type T, there is a state q., a schedule

bound u, and a legal strategy ~ starting from q. such

346

that the Equivalence Graph G(qo, a, -y) is not connected

then objects of type T can solve n–process consensus,

otherwise objects of type T can be simulated by any

object that solves n — l–process consensus.

3. Basic Types and Algorithms

We define some basic types and algorithms needed

later. The proofs and some constructions are given in

the full version of the paper. For simplicity we equate

the consensus problem with the election problem. That

is, processes elect one of the competing processes and

return its process number. Clearly an election algorithm

can be converted into a consensus algorithm and vice

versa.

3.1 Basic consensus types.

Definition. Let objects of type T., accessed by n pro-

cesses, wit h default start state 1 be the standard con-

sensus type. That is, it returns the index of the first

process that calls it when started from the start state.

Definition. Given two disjoint non–empty sets of pro-

cesses ‘PI and ‘PZ (of size n and n’), let T, ,n,n, denote the

splitting type. Processes calling the type when started

in 1 state return the set number that the first process

to call the type belongs to.

It is easy to prove that objects of type T~,~)~/ can do

n + n’–process consensus using a variation of Loui and

Abu–Amara’s tournament algorithm for three–valued

test-and-set [LA87].

3.2 The overlooking type.

For some of our simulations we will need a type that

allows processes to know the result of one process read-

ing another process’s variable (without having to wait

for the reader to write the value it saw). Let q be a one–

writer, one–reader, write–once, read–once Boolean vari-

able. q has initial value false, and P2 writes true to it.

PI will return false or true depending on whether it

read before or after P2 wrote. We want to allow the n– 2

overlooking processes to be able to know whether PI

will return true or false even though PI may not have

written its return value to shared memory. A special

value 1 is returned to overlooking processes if neither

P1 nor P2 has executed its operation (because their or-

der is not yet known). For n processes this type, called

the overlooking type, is denoted by TO:n. A type TO:n

object can be simulated using type T2 objects (and with

just read/write memory for n = 2).

Definition. Define objects of type TO:., called the over-

looking type, by the atomic operations given in Figure

3.1. Let 1 denote a special non-Boolean value. The de-

fault initial value of the object’s shared variables (qi,q2)

is (l,f alse). If either P1 or P2’s operation has occurred

then the overlookers will return the same value that the

reader returned (or will return).

Theorem. An object oft ype To:. can be simulated us-

ing objects of type T2 and by read/write shared memory

for n = 2.

shared variables

boolean+ ql, q2

For P1, the reader:

integer function Read

ql=q2

return ql

For P2, the writer, writing true:
function Write
q2=true
For Pi, an overlooker:

integer function Overlook

if ql # 1 then

return qi I* PI done, return its value *I

elseif q2 then
return true /* P2 done, P1 will return true */

else return 1 I* Neither P1 or P2 done *I

Figure 3.1 The overlooking type.

3.3 The process order algorithm.

We next outline the process order algorithm. The

process order algorithm is a system which allows pro-

cesses to determine an approximate ordering of a series

of operations on an object using only objects of type

TO:n (which has consensus numb~r at most ‘2). An exact

ordering cannot be obtained since that is equivalent to

n–process consensus. (An exact ordering would indicate

which process went first). A process will not have an ex-

act view of the order of operations but the process order

algorithm allows processes to rule out schedules that are

very dissimilar to the actual schedule. The system con-

sists of three components: a read and two write steps.

The read step, called ReadOrder, returns to the process

the most recent information on the order and actions of

the processes, i.e., a visible history instance, The write

steps, called WriteInput and WriteOutput, are used to

notify other processes of the input values and result val-

ues to a call to an object. The algorithms are called in

the order: ReadOrder, WriteInpu t, call (or simulate a

call to) the object, WriteOutput. The process order al-

gorithms can be implemented using read/write shared

variables and the overlooking type. The construction is

given in the full version of the paper.

3.4 The partial edge choice problem

The general structure of the proof that if a type’s

equivalence graph is connected, then objects of that

type can be simulated using Tn– 1 type objects requires

two sub algorithms. The first is used to have processes

select an edge in a connected equivalence graph. The

second is used to ensure that processes simulations ei-

ther stay in lockstep or all processes choose the same

simulation. The lockstep algorithm is discussed in the

next subsection.

Each edge in an equivalence graph represents a pair of

schedules whose first symbols are the end nodes of the

edge and at least one process cannot tell the execution

sequences apart. Our construction requires that pro-

cesses select one such edge and carry out simulations of

both execution sequences. Using objects of type Tn _ 1,

347

we cannot ensure that all processes can choose the same

edge, but we can come close enough.

Definition. Given an n-node connected graph with

each node associated with 1 of n processes, an algorithm

solves the partial edge choice problem ifi

1. Every process’s procedure is wait–free.

2. Process Pi returns with a non–empt y set &i of edges.

3. For at least n – 1 processes Pi, l&[= 1.

4. For all Pi with & = {(j, k)}, for all i’, (j, k) E tit.

5. For any edge (j, k) in any&, at least one of P3 or Pk

has started its procedure.

6. For any process Pi with &i = {(j, k)}, there is a

shared variable chosen that is set to (j, k) before Pi

completes its procedure.

7. If I$il > 1, then & ~ {(i, j)l(i, j) is an edge in the

graph.}

That is, at least n – 1 processes will agree on just

one edge and at least one process on that edge is ac-

tive. There is at most one process that may not know

which edge the others have chosen but it does know that

the edge is incident to its node. It will also be able to

know the particular edge by reading chosen once any

other process completes its algorithm. Solvability y of t he

partial edge choice problem hinges on the graph being

connected.

Outlined in Figure 3.2 is the Partial Edge Choice

algorithm that solves the partial edge choice problem

using only type Tn _ 1 objects. Select any node in

the graph and make that the root. Assume that the

nodes/processes are numbered in breadth first search

order. Each non–root node will use its parent link as its

initial choice of an edge. The root’s initial choice is any

child edge. (All initial choices are fixed and known to

all processes.) The algorithm has the processes doing

competitions at various nodes starting at the root going

down towards active processes. Each process is initially

trying to direct the competition towards itself. At some

point the competition will terminate at some node and

that node’s initial edge choice is selected. Tn _ 1 (j , i)

denotes a call by P% to the jth of n copies of type Tn _ ~

objects.

Theorem. The partial edge choice algorithm solves the

partial edge choice problem.

3.5 The lockstep algorithm.

The lockst ep algorithm given in Figure 3.3 is used

to force processes to either execute their operations in

a specified order or agree on one value. It uses only

objects of type Tn _ 1 and read/write shared memory.

The algorithm uses n objects of t ype Tn _ ~ with a call by

Pi of the jth copy denoted by Tm– 1 (j , i). Many copies

of this algorithm will be needed in some simulations.

Theorem. The lockst ep algorithm has the following

lockstep property: Either all processes return the same

choice or for all i and j, the calls to lockstep by Pi and

Pj overlap.

Assumes G is a connected n–node graph
shared variables

boolean active [1. .n] initially false

/* who’s active */

integer Winner [1. .n] initially O
/* winner at node i */

integer favorite [I. .n]
/* Pi’s favorite to win */

local variables
integer j , contender

set-of -edges f unct ion EdgeChoice (
graph G, integer i)

/* let others know you’re active */

active [i] = true
Contender = 1 /*root of G, first possible winner */

favorite [i] = i /* initially you’re trying to win */

while true do

if i is not a descendant of Contender

then favorite [i] = any j , active [j] and

(j is a descendant of Cent ender)
if Contender # i then

I* not competing at your node */

/* compete, look at winner’s favorite */

j = favorite CTn_l(Contender, i)]
if j <= Contender then

/* competition ended at j */
chosen = j ‘s initial edge

return chosen
/* indicate winner +/

Winner [Contender] = j ;

Contender = j

else /* Pi not allowed to compete at note i */
for each j = child of i do

if Tn. -l (j ,i)# i then exit loop

if Winner [i.] = O then return
all edges incident on i;

else Contender = Winner [1]

Figure 3.2 The partial edge choice algorithm.

Called by Pi with initial choice i.nchoice:
shared variables

integer minner[l. .n] initially O

integer choice [l. .nl
integer function lockstep(integer i, inchoice)
choice [i] = lnchoice /* display choice */

forj=l tondo
if j # i then /* on n — 1 of n iterations */

k = Tn–l (j , i) /* first on jth iteration */

choice [i] = choice [k] /* winner’s choice */

winner [j] = k /* signal who won to Pj */
else /* on one of n — 1 iterations */

if winner [j] # O then
/* winner of ith iteration known */

choice [i] = winner [j I
/* else keep choice */

return choice [i]

Figure 3.3 The lockstep algorithm.

4. High Gap Theorem: “then” case.

High Gap Theorem (“then case”.) If, for objects of

an n–process deterministic type T, there is a state q., a

schedule bound u, and a legal strategy y starting from

go such that the Equivalence Graph G(qo, u, ~) is not

connected then objects of type T can solve n–process

348

consensus.

Proof: Given G(qO, a, y), let (Pl, P2) be a partition

of nodes into two non–empty sets with no edges be-

tween them. Note that (Pl, P2) is also a partition of

the processes. Let a = (sl, Sn). For each process Pi

consider the algorithm in Figure 4.1.

History Instance h [1. . Si] initially null
Obj ectInputType 1
ObjectOutputType R

integer m initially I /* No. calls to the object
*/

while true

h [ml =ReadOrder(i, m)

/* Determine sequences that could
correspond to visible information */

S = {S1%S= = (S, Z, %!) produced by -y from qO
and bounded by u such that

~(go,se,i) = h}
/* All start with nodes in same set? */

if {jlj = S1 and S E S} ~ Pt returr, t

S = any element in S
1 = -f(S, i) /* Use strategy for inputs */

Writelnput(i, rn,l)

R = CallObject (i, 1) /* Call the object */
WriteOutput(i, m, R)
m,++

Figure 4.1 Algorithm for Pi, “then” case.

Note that the above simulation uses only the order

algorithms to communicate and therefore requires only

type T2 objects (and read/write memory if n is 2).

While Pi can choose from many S’s to use in calling

-y, all of them must give the same 1, Otherwise, there

would be two execution sequences whose visible histo-

ries are the same to Pi but -y returns different values.

That is, y is not legal.

Assume that Pj was the first process to call the object

and Pj E Pt. (Therefore no other process completed its

algorithm before Pj started.) Eventually, Pi ‘S ~ will not

contain any schedule starting with k for all k not in Pt.

Otherwise, after si steps, there would be two execution

sequences whose schedules start with j and k resp., and

P, cannot distinguish them. But then there must be an

edge between j and k in the equivalence graph and the

node sets P1 and P2 are not unconnected, a contradic-

tion. Hence all processes are guaranteed to stop and all

will return the same t. Therefore this algorithm using

Ton typeobjects can implement the split type ~p, 1,lp,l

which in turn can solve n–process consensus. Note that

for two process, TO:2 requires only read/write memory

and therefore objects of type T alone can implement

T2. For n three or more, first T2 is implemented using

the two–process version and from that the TO:. type is

implemented from T. Therefore objects oft ype T alone

can then be used to solve n–process consensus. ❑

5. High Gap Theorem: “else” case.

High Gap Theorem: “else” case. For an n–process

deterministic type T, if for all states q., schedule bounds

a, and legal strategies ~ starting from q. the Equiv-

alence Graph G(qo, U, -y) is connected then objects of

type T can be simulated by any object that solves n – l–

process consensus.

The main features of the proof of the simulation in-

clude:

. The proof is by induction on IcI. The base case of

Ial = 1 is trivial. Only one process calls the object

once, hence there is no parallelism. The simulation as-

sumes that for all c’, la’ I < Ial, that a simulation of the

type using type Tn._ 1 objects can be done. The simula-

tion will call itself recursively but with a smaller a.

. The simulation basically forces the adversary sched-

uler to do one of two things, both of which are to our

advantage. Either it does the simulation in a specified

order (in which case only n – 1 processes need to make

a decision) or it does the simulation out of order (which

due to the use of the lockstep algorithm allows all n

processes to make the same decision).

● The strategy -y being used when accessing the object

is not known in advance. Hence multiple simulations

are started, one for each possible 7 that is unique up to

Ial steps. As the simulation progresses, some strategies

may be discarded as not being consistent with the ac-

tual calls to the object. At least one strategy simulation

will continue to execute.

● The core of the simulation is for the processes to sim-

ulate a pair of execution sequences that correspond to

an edge in the equivalence graph. The processes use

the partial edge choice algorithm to choose the edge.

However, one process might get back more than one

edge from the algorithm. In the beginning it will have

to simulate pairs of execution sequences for all edges

in its set. If no other process joins the simulation, all

simulations will ret urn the same result. If another pro-

cess does join the simulation, the first process can now

determine which edge the others have chosen and only

simulate that edge from then on.

● Because of the very large number of simulations that

processes may be participating in simultaneously, we

must ensure that processes doing the same simulation

use the same shared variables and when doing dif-

ferent simulations use different shared variables. For

each simulation we have a simulation number w. All

global and shared memory variables given in the al-

gorithms are components of an array of records called

sharedmem [1. . maxnum-s imsl. At the beginning of ev-

ery function we have a “with sharedmem [w] do” state-

ment so that the process is accessing only the variables

it needs to during that simulation step. When a pro-

cess initiates a new subsimulation, it must give the sub-

simulation a simulation number. We assume a func-

tion SimNum(qo, w, (j ,k) ,-y) that maps a start state,

the current simulation number, the edge in the graph

349

and strategy that is to be simulated into a unique sim-

ulation number. At the top level, the simulation will

start with a simulation number of 1.

The basic task of the simulation is to try as best as

possible to determine a linearization of the calls to the

simulated object and return the appropriate values for

that linearization. In particular, knowing which process

is considered first is crucial. But as [Her94,Plo89] have

shown, this is in fact n–process consensus. Given only

objects of type Tn – 1, n processes cannot agree on just

one value. But they can agree on at most two values

(2-set consensus [Cha93]). That is, all processes can at

least agree on two processes, say Pj and f%, that are

candidates for going first.

T._ 1 is sufficiently strong that we can limit in our

favor which two values can be chosen. Ideally, we want

to choose two processes whose nodes are adjacent in an

equivalence graph. By the definition of connection in

an equivalence graph, that means there is a pair of exe-

cution sequences from the start state, Se and S; (whose

schedules start with j and k resp.), such that there is

at least one process Pi that cannot distinguish between

Se and S:. That is, Pi will always see the same return

values, order of execution information, etc. in both se-

quences. Hence Pi does not have to choose between j

and k, it will return the same result no matter which

of j and k the others choose as the first. That leaves

n – 1 other processes that might need to choose, and

T.- 1 can be used to do that.

The above discussion sounds naive in that there is no

requirement that the adversary scheduler actually coop-

erate and schedule operations so that the simulated se-

quences are linearizations of the chosen sequences. This

is where the lockstep algorithm is used. All processes

do their simulation steps in a particular order combined

with several calls to the lockstep algorithm. If the sched-

ule corresponds to the desired simulations, then there

are at most n — 1 processes that need to decide. On the

other hand, if the scheduler does not order the steps as

planned, then there are two calls to the same lockstep

algorithm that do not overlap and all processes will end

up making the same choice. In order to construct the

sequence of simulated steps and locksteps, we first need

some more definitions.

Definition. Overlap sequences are elements of N*.

An overlap sequence denotes a form of schedules that

allows for operations to take a non–zero amount of time,

i.e. there are non–atomic. The digits in an overlap se-

quence indicate the order of the ends of the respective

processes’ operations. (One can safely assume that, ex-

cept for the first operation, the beginning of one pro-

cess’s operation occurs immediately after the end of its

previous operation.)

Definition. A schedule S is a linearization of an over-

lap sequence S if S is a permutation of S and for all

i, j, k, k’, with i and j appearing at least k and kt + 1

times in S, Pos(S,i,k) < Pos(S,j,k’) implies Pos(S, i, k)

< Pos(S, j, k’ + 1).

That is, if Pi’s kth operation ends before Pj’s k’th

operation ends then P;’s kth operation must occur be-

fore Pj’s k’ + 1st operation in any linearization. Note

that the order of the last operations of the processes (in

a linearization) is not necessarily constrained.

Definition. Two schedules S1 and S2 share an overlap

sequence if there exists an overlap sequence S such that

S’l and S2 are each linearizations of S.

It will be shown that if two schedules do not share an

overlap sequence, it is relatively easy for the processes

to distinguish between them during a simulation. For

example, in the case of two processes, each performing

two operations, the only schedules that do not share an

overlap sequence are 1122 and 2211. It is quite simple

to have the processes use shared variables between calls

in order to rule out one of these as a possible lineariza-

tion. In fact, the process order algorithm (which uses

the overlook type) does this and more.

We first state two basic properties of schedules that

do not share an overlap sequence.

Lemma. Schedules Si and Sj containing operations by
Pi and Pj do not share an overlap sequence iff ~k, k’ such

that POS(Si, i, k) > Pos(Si, j, k’+ 1) and Pos(Sj, i, k+ 1)

< Pos(Sj , j, k’).

Lemma. If S. = (S, Z, 7?) and S: = (S’, 1, 7?) are exe-

cution sequences associated with an edge in an equiva-

lence graph then S and S’ share an overlap sequence.

An example. Given two process Pi and Pj, with

SI = ~~z]zzj and S2 = ZJJZJJZ, SI and S2 are lin-
.

earizations of the overlap sequence S = jjiiji j. The

sequences for simulating the operations for S1 and Sz

are given below. The processes do simulated steps in S1

(denoted by 1) and simulated steps in S2 (denoted by 2)

intermixed with calls to lockstep algorithms (denoted by

L’s). Brackets denote the beginning and end of a simu-

lated call. (L) denotes calls to a lockstep that processes

will perform only if a choice has to be made. The calls

to matching locksteps have been lined up. The sched-

uler is not required to order the events as given below,

but if it doesn’t then all processes agree on the same

choice.

Pi: [2L L1 L] [2L1] [Ll L2] (L) (L)

Pj: [1L2] [IL2] [Ll L2 L] [2L1 L] (L)

E.g., Pi and its third call to the object will: do the

third lockstep, simulate a step in S1, do the fourth lock-

step, simulate a step in S2 and do the fifth lockstep. The

basic properties of simulation orderings is given below.

The construction of such an ordering from the three se-

quences is easy using these properties and is given in

the simulation algorithm.

● During a call to the simulation, each process will do

exactly one simulation step in each sequence.

350

● The number of locksteps needed is 1~1 + 1 (one extra

for the final decision).

● Between any pair of lockstep calls, there is exactly one

simulation step by any process in either sequence.

● Taking who does a simulated step in S1 as given above

in order does in fact give S1. The same with S2.

● if the tth occurrence of i in S1 is at m, then the tth

call by Pi is done between the m – 1st and mth lockstep.

● Let m be the position of the tth i in S and m’ be the

last lockstep Pi did in its most recent call to the object.

Pi on its tth call to the simulation will do locksteps

m’+l tom.

c If the scheduler were to arrange it so that two oper-

ations in the same sequence were performed out of or-

der, then the intervening locksteps would not all overlap

and all processes would choose the same simulation se-

quence. (Which of course would no longer correspond

to either of the originals.)

The simulation algorithm is given in Figures 5.1, 5.2,

5.3a, and 5 .3b. Note that only read/write shared mem-

ory types and the types needed by the partial edge

choice and lockstep algorithms are used (which in turn

use no types more powerful than Tn _ 1).

The toplevel algorithm SimOb j ect, for simulating the

object from a start state qO, for at most CTsteps, for sim-

ulation number w, for the tth call having input I is given

in Figure 5.1. On the first call, it creates a set of possible

strategies and will simulate all of them. The process col-

lects visible history information using the process order

algorithm. The visible history information and input

values can be used to eliminate possible strategies.

The midlevel algorithm Simstrategy, for simulating

the object using a particular strategy y, etc. is given

in Figure 5.2. On the first call, it calls the partial edge

choice algorithm to try and select an edge (and there-

fore two execution sequences) to simulate. Since more

than one edge may be returned all are simulated. But

once the choice of the others is known, the extras are

dropped.. .
The lowest level algorithm SimEdge, for simulating

an object using a given edge, etc. is given in Figure

5.3. On its first call it determines for the two possible

candidates for first process, Pj and pk, what their next

step would be from q., etc. On each call it looks at the

two schedules and their overlap sequence to determine

the order in which to perform its own simulated steps

and locksteps. Note that it calls the toplevel simulation

SimObj ect but with a smaller schedule bound.

Obj ectResultType function SimObj ect (
Stat e q., /* Initial state of simulation */
ScheduleBound u, /* Max. num. steps */
integer w, /* Simulation No., init. 1 */

integer t, /* Count of Pi’s calls to object */
Obj ectInputType I) /* Input values to call */

static variables
set of Strate y 17 /* Current legal strategies */

History h[l. . hUi1 /* Visible history */

local variables
Schedule S

set of Schedule ‘1 /* Possible schedules */

Obj ectResultType R /* Result from a sire. */
/* Use the right shared variables */

with SharedMem [wI do

if t=l then /* determine possible strategies */
r = {-fl -f is a legal strategy from

q. for schedules bounded by a}
h [t] =ReadOrder(i, t) /* Get order info. */
/* Determine possible schedules */

V = { S 13S. = (S, Z, 7?) produced by some

~ c r from qO and bounded by a
such that H(qo, Se, i) =h}

forall y E r /* Remove invalid strategies */
if forall SE V, ~(S, i) # 1 then

r=r -{y}
WriteIJIput (i, t, I) /* Display input values */
forall y E r /* Simulate a step in each strategy */

R = SimStrategy(qO, u, G(~o, a,7), t,l, ~,-y)

WriteOutput (i, t ,R) /* Display result values */
t++ /* completed one sire. call */

return R /* return the value from a simulation */

Figure 5.1 Top–level simulation algorithm for Pi.

object, therefore on later calls it need only run the sim-

ulation for the previously chosen one.

Proof outline, High Gap Theorem, else case: As-

sume that the simulation algorithm fails for some ob-

ject starting from some start state go, wing a 5trat-

egy Yj and bounded b’ ff calls. since the equivalence

graph G(qo, a, y) is connected, a simulation is initiated

for some edge in the equivalence graph, using -Y from

q. (and perhaps others). Recall that this is a proof by

induction on IuI. What are the possible ways for the

entire simulation to fail?

The simulation fails for the selected edge. The first

possibility is that incorrect results are returned from

the subsimulation. But by the induction hypothesis,

the subsimulations are correct regardless of the actions

of the scheduler.

The second possibility is that the scheduler choose a

schedule that did not correspond to the sequences for

the edge. But then the locksteps do not overlap and all

processes choose the same subsimulation.

Once a process completes all of its simulation steps Another consideration is that a process Pj may get

and locksteps during a call to SimEdge, it has two possi- different results from the subsimulations (which were

ble results to choose from. If there are both equal it does done in order) and have to choose but still has remaining

not matter which to return. If they are not equal then operations in the simulated sequences. But that means

it must choose. It does this by finishing any remaining that the process Pi that cannot distinguish between the

locksteps and returning the value from the simulation two schedules will in fact be able to note the difference

chosen at the end. There may be further calls to the due to Pj writing the result of that call before starting

351

ObjectResultType function SinStrategy(

State q., /* Initial state of simulation */
integer W, /* Sire. number */

Graph G, /* Connected Eq. Graph */
integer t, /* Count ofcalls */

ObjectInputType I, /* Input values tocall */

ScheduleBound C, /* Max. num. steps */

Strategy y) /* The strategy to use */

shared variables
Edge chosen /* From EdgeChoice */

Boolean active[l. .n] /* From EdgeChoice */
ObjectInputType l[l. .n], /* Inputs to calls */

static variables

integer mycholce[l ..n,l. .n]

/* current choice ofwinners */
ObjectResultType result[l. .n,l. .n]

/* Results ofedge simulations */

integer w[l. .n,l. .n]

/* Edge simulation numbers */
set of Edge S /* set ofedges to simulate */

local variables
integer j,k /* Process numbers for an edge */

/* Use the right shared variables */
with SharedMem[w] do
if t = 1 then /* First call choose an edge */

I[i] = I /* Tell others input to call */

~ = EdgeChoi.ce(G,i,chosen,active)
forall (j,k)E~ do

if active[j] then

mychoice[j,k] = j /* Initial choice */

else mychoice[j,k] = k

/* Assign Sire, Nos. */
w[j,k] = SimNum(qO, w,(j,k),-y)

forall (j,k)E~ do /* Sire. each edge lstep */
result[j,k] = SimEdge(go,w[j,k],G, j,k,a,t,

mychoice[j,k] ,I,I[j],IUil)

if chosen # null then /* Only 1 edge tosim. */
E ={chosen}

return result[j,k] for any (j,k)E~

Figure 5.2 Strategy–level simulation algorithm for Pi.

the next one. I.e., the edge does not in fact exist in

the equivalence graph. Hence, all processes will always

return a correct value from SimEdge.

For Sim%rategy to return an incorrect value would

require that different edge simulations return different

results and the “wrong” one is returned. But differ-

ent results from the edge simulations would mean some

other process has also started its edge simulations. That

means the first process cannow find out which edge the

others choose and drop the others. Hence, it will only

have the one result from SimEdge to use and it is correct

for the given simulation.

For SimObj ect to return an incorrect result would re-

quire that thesimstrategy calls return different values

and the wrong result is chosen. But different results

from the calls means that some strategies can be elim-

inated. Hence the results from all remaining calls are

the same. Otherwise, there would betwostrategies that

are identical up to the known ordering information but

return different values. I.e., at least one of them is in

fact not a legal strategy and would not still be in I’. ❑

ObjectResultType function SimEdge(

state go, /* Initial state of simulation
integer w, /* Sire. number */

Graph G, /* Connected Eq. Graph */

integer j,k, /* Processes on edge */

ScheduleBound u, /* Max. num. steps
integer t, /* Count of calls */

integer mychoice /* j,k choice */
ObjectInputType I, Ij, Ik)

/* Input values to calls */
shared variables

integer choice [l. .lul+l][l. .n]

/* for Locksteps */

*/

*/

integer winner [l. .Ial+l][l. .n] initially O
static variables

integer m /* index in schedules */
Boolean decided initially false

/* chosen asim.? */

State q[l. .2] /* states after qo for j and k */
ScheduleBound c7[I ..2] /* subsim. bounds */
Schedule s[l. .2], S /* sequences for edge */

ObjectResultType result [l. .2]

/* results of simulations */
ObjectResultType RII. .2]

/* Results from lstepof 6 */

Figure 5.3a Edge simulation algorithm for Pi, data.

Since the equivalence graphs for a type are either all

connected or one of them is not, an n–process type’s

power cannot be in between T. and Tn_l. This gives

the following simplification:

Corollary: For all n–process deterministic types T,

either T has consensus number n or objects of type T

can besimulated by objects of any type with consensus

number n— 1.

The High Gap Theorem is more than enough to an-

swer Jayanti’s robustness question for these types:

Corollary. For two deterministic n–process types T

and T’, if h~ (T) and h.~ (T’) are less than n then ob-

jects oft ype T and T’ combined cannot solve n–process

consensus.

Proof: Since objects of type T and T’ cannot do

n–process consensus then each can be simulated by

type T.– 1 objects, which in turn cannot do n–process

consensus. •l

For two processes, the High Gap Theorem implies

that there are no types strictly between 2–process con-

sensus and read/writes. In [BNP94] it is shown that ob-

jects of any non-trivial deterministic type can be used

to simulate readlwrite memory (a low gap theorem).

Hence we have:

Corollary. All 2–process deterministic types can

placed in exactly one of the following categories: lo-

cal variables, read/writ e shared variables, or 2–process

consensus types.

The class common2 was introduced in [AWW3] as a

set of standard types that have two main properties:

they all can do 2–process consensus and each can simu-

late any other type in common2. As a result, all types in

common2 can be simulated by any 2–process type that

352

/* Use the right shared variables */
with SharedMem[w] do
if t=l then /* first call? */

/* If j goes first... */
(q[lI,R[ll)=6(q0, fi(j), Ij)
/* If k goes first,.. */
(q[l] ,R[21)=6(qo, T(k) ,Ik)
/* What seqs. to simulate */
(S [11 , S [21 ,S) = sequences and overlap seq.

for edge (j ,k) in G
/* smaller schedule bounds for subsimulations */
a[ll = (01,. ... ol, l)...)

0[2] = (al,al. l)...)
if not decided then /* still simulate both */

while true do /* Cycle thru schedules */
if POS(S II] ,i, t) = m then

/* 1 step for i in S[1] */
if t=l then result [I] = R[l] /* i=j */

else result [1]=
SimObject(q[l] ,uII] ,w, t,I)

if Pos(S[2], i,t) = m then
/* lstepfor i in S[21 */
i.f t=l then result [2] = R[2] /* i=k */
else result [21=

SimObject(q[2] ,v[2] ,w, t,I)
/* Done all steps? */
if Pos(s, i,t) < m then exit loop;
/* Doalockstep */
mychoice =
lockstep(i., mychoice, winner [ml ,choice[ml) ;
m++;

i.f result [l] = result [2] then
return result [i] /* no need to choose */

else /* must choose */
for mflnal = m to Iu\+l do

/* force others to finish */
mychoice =

lockstep(i,mychoi.ce,lock[mfinal]);
decided = true;
return result[mychoice]; /* made choice */

else
result[mychoice] = SimObject(q[mychoice] ,

a[mychoice],w,t,I)
return result[mychoice]

Figure 5.3b Edge simulation algorithm for Pi, code.

can do 2–process consensus. This latter point, when

combined with the corollary above, gives:

Corollary. Let Tbe anyn–process type that canbe

simulated by some 2–process type. Either T can be

simulated by read/write shared variables or T can be

added to common2.

6. Conclusions and open problems.

Note that the High Gap Theorem gives a gap between

n–process types with consensus number n and all types

that have consensus number less than n. It’s eas-

ily shown that no such gap exists at even the next

lower level for n–process types. Hence robustness for

n–process types below n–process consensus is an open

question. However, if a “universal” set of simple types

were found such that all types could be classified as
being equivalent to exactly one universal type, then a

technique similar to the one used in this paper might

be able toprove this more general robustness.

While a useful characterization for the high end of the

n–process type hierarchy has now been found, at the

opposite end there is still a need for a comparable char-

acterization. Note that for 2–processes there is a signifi-

cant gap between readjwrite and non–readiwrite mem-

ory (i.e., 2–process consensus types), What is the na-

ture of the gap between readiwrite and non-readlwrite

memory for more than two processes? Note that Herlihy

and Shavit [HS94] have recently given a characterization

of a very restricted form of wait–free computations that

can be solved with read/write memory. However, their

methods are extremely complex and their results do not

directly apply to our more general definition of types.
Much simpler characterizations, such as our High Gap

Theorem, are needed if they are to be used to study the

power of types.

Bibliography

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan
Weisman. “A completeness theorem for a class of syn-
chronization objects.” In Proceedings of the Twelfth
ACM Symposium on Principles of Distributed Comput-
ing, pages 159–170. ACM Press, August 1993.

[BNP94] Rida A. Bazzi, Gil Neiger, and Gary L. Peter-
son. “On the use of registers in wait–free consensus.”
To appear in Proceedings of the 13th ACM Symposium
on Principles of Distributed Computing, 1994.

[Cha93] Soma Chaudhuri. “Agreement is harder than
consensus: Set consensus problems in totally asyn-
chronous systems.”’ Information and Computation,
103(1):132-158, July 1993.

[Her91] Maurice Herlihy. “Wait-free synchronization.”
ACM Transactions on Programming Languages and
Systems, 13(1):124-149, January 1991.

[HS94J Maurice Herlihy and Nir Shavit. “A simple con-
structive computability theorem for wait–free computa-
tion.” In Proceedings of the 26th ACM Symposium on
Theory of Computing, 1994.

[Jay93] Prasad Jayanti. “On the robustness of Herlihy’s
hierarchy.” In Proceedings of the Twelfth ACM Sym-
posium on Principles of Distributed Computing, pages
145-158. ACM Press, August 1993.

[KM93] Jon Kleinberg and Sendhil Mullainathan. “Re-
source bounds and combinations of consensus objects.”
In Proceedings of the Twelfth ACM Symposium on Prin-
ciples of Distributed Computing, pages 133–144. ACM
Press, August 1993.

[LA87] Michael C. Loui and Hosame H. Abu-Amara.
‘Memory requirements for agreement among unreliable

asynchronous processors.” In Franco P. Preparata, edi-
tor, Advances m Computing Research, volume 4, pages
163-183. JAI Press, 1987.

~l~~~~~;;~~,~lotkin. “Sticky bits and the universality
In Proceedings of the 8th ACM Sym-

posium on Principles of Distributed Computing, 1989,
159-175.

[PR79] John Reif and Gary L. Peterson. “Multiple-
person alternation.” In Proc. 20zh IEEE ,$’ymp. on
Foundations of Computer Science, 1979, 348-363.

3.53

