
Wait-freedom vs. &resiliency

and the robust ness of wait-free hierarchies

(EXTENDED ABSTRACT)

Tushar Chandra’ Vassos Hadzilacost Prasad Jayanti$ Sam Toueg$

1 Background and overview

In a shared-memory system, asynchronous processes

communicate via typed shared objects, such as regis-

ters, test&sets, and queues. The need to implement an

object of one type from objects of other types arises

often in such systems. Recent research has focussed

mostly on wait-free implementations. Such an imple-

mentation guarantees that every process can complete

every operation on the implemented object in a finite

number of its own steps, regardless of whether other

processes are fast, slow, or have crashed. From now on,

we write “implementation” and “implement” as abbre-

viations for “wait-free implementation” and “wait-free

implement”, respectively. If an implementation is not

wait-free, we will explicitly state so.

It is known that objects of different types vary

widely in their ability to support (wait-free) implemen-

tations. For example, using test&set objects, one can

implement any object that is shared by at most two

processes [Her91]. In contrast, using compare&swap

objects, one can implement objects of any type that

can be shared by any number of processes [Her91].

Thus, it is natural to ask whether object types can be

mapped to levels in a hierarchy, where the level of a

type reflects its ability to support wait-free implemen-

*IBM T. J. Watson, tushar@watson. ibm. com

t University of Toronto, vassos@db. toront o. edu, partially

support ed by a grant from the Natural Sciences and Engineering

Research Council of Canada
t Dartmouth College, prasadQcs. dartmouth. edu, supported

by Dartmouth grants 2-01361 and 424820.
sco~e~ University, sam~cs. cornell. edu, supported by NSF

grad CCR-9102231

and/or sp-ecific permission.
PODC 94- 8/94 Los Angeles CA USA
m 1QQA ACM 0-89791 -654-919410008.$3-50

tations. We seek two properties in such a hierarchy:

(1) If a type T is at level N, then, for all types T’,

one can implement an object of type T’ shared by N

processes, using only registers and objects of type T.

This property ensures that weak types are not placed

at high levels of the hierarchy. (2) If a type T is at level

N, and $ is a set of types all of which are at lower levels

than T, then one cannot implement an object of type

T shared by N processes, using any number and any

combination of objects of types in S. This property

guarantees that there are no clever ways of combin-

ing objects classified as weak by the hierarchy (i.e.,

objects whose types are at low levels) to implement

objects that are classified as stronger (i.e,, at higher

levels).

A hierarchy with Property (1) is known as a waat-

free hzerarchy, and a hierarchy with Property (2) is

known as a robust hierarchy [Jay93]. Our interest lies

in a robust wait-free hierarchy, one which has both of

the above properties. The existence of such a hierar-

chy is an open question. We know, however, that if

such a hierarchy exists, it must be the hierarchy h:

(or a coarsening of it) defined as follows: h: maps a

set S of types to level N if N is the maximum inte-

ger so that an N-consensus object can be implemented

using only registers and objects belonging to types in

S [Jay93]. (An N-consensus object allows each of a

maximum of N processes to access it by proposing

a value; the object returns the same value to all ac-

cesses, where the value returned is the value proposed

by some process. This object plays a central role in

realising wait-free implementations: Herlihy ’s univer-

sal construction shows that using N-consensus objects

and registers one can provide a wait-free implementa-

tion of any object that is shared by at most N pro-

cesses [Her91].)

From the universal construction of [Her91], it

follows that hfi is a wait-free hierarchy. Is h% a

robust hierarchy? Equivalently, is h~({T, T’}) =

max(h~(T)j h~(T’)) for arbitrary types T and T’?

While the general question remains open, this paper

334

proves that the answer is yes for the restricted case

where T is N-consensus (and T’ is arbitrary). Thus,

if an object type (together with registers) is pow-

erful enough to “boost” N-consensus into (N + 1)-

consensus, then (together with registers) it is already

powerful enough to implement (N+ 1)-consensus! This

result is the subject of Section 3.

Wait-free implementations provide an extreme

degree of fault-tolerance. They assure that even if just

one process survives, it will be able to complete its op-

erations. Researchers have also investigated another

form of implementations which support a more mod-

est degree of fault-tolerance [D DS87, LAA87]. These

guarantee that correct processes will complete their

operations, as long as no more than t processes fail,

where t is a specified parameter. Such implementa-

tions are called t-reszhent. It is immediate from the

definitions that wait-freedom is equivalent to (N – 1)-

resiliency, where N is the number of processes in the

system. Using our result that h~({T, N-consensus}) =

max(h~(T), N), we prove an important connection be-

tween t-resilient and wait-free implementations of N-

consensus. We describe this connection and its signif-

icance below. (The proof is given in Section 4.)

Consider the task of devising a t-resilient imple-

mentation of an object shared by N processes, as N de-

creases. As the ratio of correct processes on which the

implementation can rely gets smaller, the task seems

to become more and more difficult. For example, a t-

resilient implementation which works only when a ma-

jority of processes are correct, cannot be used when N

becomes smaller than 2t + 1. In the limit, when N be-

comes t+ 1, the task amounts to providing a watt-free

implementation of the object. Thus, prima faczae, it

seems that the ability of a set S of objects to support

a t-resilient implementation of an object shared by N

processes is greater than the ability of S to support a

wait-free implementation of that object shared by t + 1

processes. In this paper we show that this is not the

case for the N-consensus object. More specifically, we

prove that, for any N > t > 1, a set of objects can be

used for a t-resilient implementation of N-consensus if

and only if it can be used for a wait-free implementa-

tion of (t+ 1)-consensus.

The “if” direction of this result is not surpris-

ing. To give a t-resilient implementation of consensus

among N processes, we can choose t + 1 of the pro-

cesses, have them run the given wait-free implemen-

tation of (t + I)-consensus, and write the result into

a register. The remaining processes keep reading that

register until the result appears there. The “only-if”

direction is not obvious, and is useful in obtaining sim-

ple proofs of the impossibility of t-resilient implemen-

tations. Suppose we want to prove that there is no t-

resilient implementation of N-consensus using certain

base objects. Since N can be arbitrarily large relative

to t,such an impossibility proof can be difficult. In-

stead, our result allows us to focus on the simpler task

of proving the impossibility of a wait-free implementa-

tion of (t + 1)-consensus. 1 To illustrate this, consider

the known fact that there is no wait-free implemen-

tation of 3-consensus using only queues and registers

[Her88]. From this it follows, using our result, that

there is no 2-resilient implementation of N-consensus

using only queues and registers, for any N ~ 3.

To our knowledge, there is only one previous re-

sult relating t-resiliency to wait-freedom. Borowski

and Gafni showed that any t-resilient solution to the

k-set agreement problem among N > t processes that

uses only regtsters can be transformed into a wait-free

solution to the k-set agreement problem among t+ 1

processes that also uses only registers [BG93]. Their

transformation depends on the fact that the original

solution employs only registers. In contrast, in our re-

sult the set of base objects used in the t-resilient or

wait-free implementation is arbitrary.

In the final section, we call attention to the sig-

nificance of an assumption of the traditional model of

shared objects. In the traditional model, when a pro-

cess applies an operation to an object, the response

from the object and the resulting state of the object

depend only on what the operation is, without re-

gard to the identity of the process invoking the op-

eration. For example, a deq operation on a quwe has

the same effect, regardless of who invokes it. Con-

sider an alternative model of shared objects in which

this is not necessarily the case. More specifically, sup-

pose that the response to an operation and the re-

sulting object state may depend not only on the op-

eration but also on the identity of the process invok-

ing the operation. We prove that the hierarchy h;

is not robust in this model. The proof exhibits a

type booster with two properties: h~(booster) = 1 and

h~({booster, 2-consensus}) = 3. Thus, although nei-

ther booster objects nor 2-consensus objects can im-

plement 3-consensus, the two types of objects, when

used together, can implement 3-consensus. It follows

that h; is not robust.

Can we hope to discover a type boosier with

the above two properties in the traditional model?

The answer is no: our earlier result that h&({ T, N-
consensus}) = max(h~(T), lV) rules out the existence

of such a type in the traditional model.

1The difference in difficulty between these tasks can be appre-
ciated by comparing the proof that there is no wait-free imple-

mentation of a 3-consensus object using only registers and l-bit

read-modify-write objects to the proof that there is no 2-resilient
implementation of an N-consensus object using only registers

and l-bit read-modify-write objects, for any N > 2 [LAA87].

The latter proof is much longer (three pages versus one page)

and the arguments are more involved [LAA87].

335

2 Traditional model

A concurrent system consists of asynchronous pro-

cesses and shared objects. Each (shared) object has

a type which characterizes the behavior of the object.

A type T is a tuple (OP, S, ‘F), where

● OP is the set of operations that may be applied

to an object of type T.

. S is the sequential specification. It specifies the

legal state transitions and responses of the object

when operations are applied one after the other,

without overlap.

. P is the set of virtual process names. For all P E

P and op E OP, an object O of type T is required

to support access procedures Apply (P, op, O).

Let T = (OP, S, P) be a type, op E OP, and O be an

object of type T. A process invokes the operation op

on object O and obtains a response res by executing

res := Apply (P, op, 0). Note that P is not necessarily

the identity of the process applying the operation; it

just needs to be a virtual name in P.

We require that, for all P E P, there be no more

than one instance of Apply (P, *, 0) in execution at

any time. Since Apply (P, *, O) and Apply (Q, *, 0) (for

P # Q) may be executed concurrently, the sequential

specification, by itself, is not adequate to character-

ize O‘s behavior. We use hnearzzubilit y, together with

the sequential specification, to resolve the behavior of

an object in the presence of such concurrent accesses.

Informally, linearizability requires that each execution

of an access procedure appear to take effect instanta-

neously, at some point in time between the call and

the completion of the access procedure.

Two types, cons(P1, P2, PN) and register,

are central to this paper. cons(Pl, Pz, l’N) SUp-

ports the operations propose O and propose 1, and

has the following sequential specification: if the first

operation applied is propose u, then every operation,

including the first, gets the response u. The set

of virtual process names for cons(Pl, P2, P~) is

{Pl, P,,..., PN}. The type register supports the op-

erations read and writ e u (u is arbitrary), and has

the following sequential specification: wrzte u gets the

fixed response ack and read gets the last value written.

We leave the set of virtual process names for register

unspecified; it can be any finite set.

Let T = (OP, S, P) be a type and S be a set of

types. We say that S implements T (equivalently, T

has an implementation from S) if there is a function

Z(01,02, . ., On) such that each Oi (1 < i s n) is

of a type in S and O = Z(01,02,0~) is of type

T. Intuitively, Z specifies how the access procedures

Apply (P, op, 0) (for all P E P and op c OP) are im-

plemented in terms of the access procedures supported

by 01, Oz, ..., On. The object O is the implemented

object or dervved object, and objects 01, 02, On

are the base objects. Z is a wait-free implementation if

Apply (~, op, 0) (for all P 6 P and op E OP) is guar-

anteed to complete in a finite number of steps. We

write “implementation” and “implement” as abbrevi-

ations for “wait-free implementation” and “wait-free

implement”, respectively. If any implementation is not

wait-free, we will explicitly state so.

Finally, we repeat the definition of the hierarchy

h; given in [Jay93]. hi maps a set S of types to a

positive integer or, to m, as follows: hi(s) is the max-

imum integer N such that S U {regist er} implements

cons(Pl, Pz, P~). If there is no such maximum,

h:(s) = cm.

3 consensus cannot boost the

level of a type in &

We obtain our main results using a lemma that

can be informally stated as follows: If we can im-

plement (N + I)-consensus from a set S of types

(that includes register) and N-consensus, then we

can implement N-consensus from S and (N – l)-

consensus. Formally, if cons(P1, P2, PN+l) has

an implementation from S U {cons(Pl, PZ, PN)},

then cons(P1, P2, PN) has an implementation

from S U {cons(Pl, P2, PN_l)}. By applying this

lemma repeatedly we can eliminate the use of con-

sensus base objects in the implementation, thereby

obtaining an implementation of (N + 1)-consensus

from S. Formally, if cons(Pl, P2, PN+l) has an

implementation from SU {cons(Pl, PZ, P~) }, then

Cons(pl, P2, PN+l) has an implementation from

S. This means that if the types in S are not strong

enough to implement (N + I)-consensus, then the use

of N-consensus cannot “boost” S to do so. Formally,

hfi(SU {cons(Pl, Pz, PN)}) =max(h&(S), IV).

3.1 Preliminary lemmas

Lemma 3.1 cons(Pl, P2, PN) implements

cons(Ql, Qz, . . ., QN).

Proof Intuitively, Q, disguises itself as Pi. More pre-

cisely, an object O of type cons(Q1, Q2, QN) is

implemented using

an object O of type cons(P1, P2, PN) as follows:

Apply(Q,, propose u, 0) simply calls (and returns the

same value as) Apply(P~, propose u, O). cl

336

01,02: objects of type cons(Pl, Pz, PN)

GP, SP, DEC: registers, initialized to 1

Apply(pi, propose U,, 0) (l<i~N) Apply (P, propose u, 0)

1. GP := APPIY(Pi, propose %, ~1) SP := u

2. if SP = J- then if GP = 1 then

3. VOtez := GP DEC := U

4. else VOte2 := SP else busy loop until DEC # 1

5. DEC := APPIY(I’i, propose vote,, 02)

6. return DEC return DEC

Figure 1: GroupSolo(PI, PN; P): non wait-free implementation of cons(P1, P2, PN, P)

The next result, presented in Figure 1, imple-

ments a consensus object shared by PI, PN and

P using registers, and consensus objects shared by

only P1, PN. This implementation is not wait-free:

Process P may block (see the busy loop statement on

Line 4). Processes PI, PN, however, will never

block. We now informally describe how this imple-

ment ation works.

Let O be a derived object of the implementation

in Figure 1, and 01, 02, GP, SP and DEC be its base

objects. (GP and SP are acronyms for “Group’s Pro-

posal” and “Solo Proposal”, respectively. DEC stands

for “Decision”.) Of the N+ 1 processes that may share

0, processes PI, PN act as one group, while pro-

cess P acts as a solo outsider. Processes in the group

reach consensus on their initial proposals by accessing

01. Each process P% in the group regards the response

of 01 as the group’s proposal to consensus with Pro-

cess P, and writes it in the register GP (see Line 1).

Pi then reads SP to check if the solo process P has

published its proposal yet. If SP is blank, Pi attempts

to promote the group’s proposal as the consensus value

between Process P and the group. Otherwise, Pi at-

tempts to promote the value in SP (which is the pro-

posal of the solo process P) as the consensus value.

Lines 2, 3 and 4 in which P{ sets the local variable

votei to either GP or SP implement this strategy. It

is possible, however, that some processes in the group

find SP blank and consequently promote the group’s

proposal, while the other processes find a non-blank

value in SP that they promote. To reconcile such dif-

ferences, processes in the group reach consensus on

their votes by accessing 02. The response of 02 is

regarded as the final outcome of consensus between

Process P and the group.

The solo process P, on the other hand, begins

by publishing its proposal in the register SP. It then

reads GP, the register where the group’s proposal is

337

published. If GP is blank, P concludes that it is ahead

of all the processes in the group and that processes in

the group will vote for its (P’s) proposal. Thus, P

regards its proposal as the outcome of its consensus

with the group. On the other hand, if P finds GP

non-blank, then P is uncertain of the views of the pro-

cesses in the group. P therefore blocks itself until the

consensus value is published in the register DEC by

(some process in) the group.

Lemma 3.2 Ftgure 1 presents an zmplementatton of

cons(pl, Pz, PN,P) from

{cons(P~, P2,..., PN), register}. The implementa-

tion M not watt-free: P may block. However, for al~

1 s i ~ N, Pi does not biock.

We use this implementation later as a building

block, In the rest of the paper, we will refer to it as

GroupSolo(PI, PN; P).

Lemma 3.3 Figure 2’ presents an implementation of

cons(p~, PN, P, P() from

{cons(P~, PN, P), Cons(f’l, PN, P’), register}.

The tmplementatzon works correctly ifP and P’ do not

access it concurrently.

This implementation is also used later as a build-

ing block. In the rest of the paper, we will refer to it

as Non Concurrent(P1, PN; P, P’).

Let Cons; denote the set of types

{cons(Pi,, PiZ,..., P)llll S i, < iz < ~~~ < in s N}.

Lemma 3.4 Let m < N and S be any set of types

that tncludes register. If cons(P1, P2, PN) has

an implementation from S U Cons~, then d has an

tmplementatton Z from S U Cons; wtth the follow-

~ng property: If O is a derwed object of 1 and O

as a base object of type cons(Pil, Piz, Pi~), the

0: object of type cons(Pl,. . . . PN, P)

O’: object of type cons(Pl,. . . . PN, P’)

DEC: register, initialized to L

Apply(P~, propose ui, O) (l<i<N)

Vi := APPIY(Pi, propose ui, O)

DEC := Apply(P~, propose vi, O’)

return DEC

Apply (P, propose u, ~) Apply(P’, propose u’, ~)

if DEC = 1 then if DEC = L then

DEC := Apply (P, propose u, O) DEC := Apply(~’, propose u’, O’)

return DEC return DEC

Figure 2: IVonConcurrent(Pi,..., PN; P, P’): restricted implementation of cons (Pi,. . . . PN, P, P’)

procedure Apply(pi, *, 0) does not contain a call to

Apply(pj, *, 0) for j # i.

When Pi proposes a value to a derived object O

of implementation 1, Pi accesses the base objects of O

in order to compute 0’s response to its proposal. The

above lemma states that Pi does not need to fake the

identity of another process while accessing any base

object of type Cons(pil, pi2, Pi-). The proof of

this lemma is non-trivial, but is omitted due to space

constraints.

3.2 The reduction

Let S be any set of types that includes register and

N ~ 2. We show how to transform an implementation

1 of cons(Pl, P2,..., PN+l) from S U Cons:+l ‘nto

an implementation 3 of cms(Ql, Q2, ..., QN) from

‘-l Informally, if we can implement a con-S U ConsN+l.

sensus object shared by N + 1 processes using objects

of types in S and consensus objects shared by any N

processes, then we can implement a consensus object

shared by N processes using objects of types in S and

consensus objects shared by only N – 1 processes. In

the following, we give an informal account of how this

reduction is developed.

We find it convenient to partition cons~+l

into three disjoint sets C, ‘D, and &, where C =

{COIIS(Pi, pi~_~, PN, PN+1)[l~iI<i2 <...<

iN_~ < N – 1}, ~ = {COnS(~l,..., ~N_l, pN)},

and S = {cons(PI, . . ., PN-l, PN+I)}. Thus, Z is

an implementation of cons(Pl, P2, ..., PN+I) from

S U C U ‘D U S. Let O be a derived object of Z and the

QI Q2 QN-1 QN

. . .

Figure 3: Top: implementation of O (given); Bottom:

implementation of 0’ (to be developed)

338

Q1 Q2 QN-IQN

. . .

PI P~ l’N- l’N PN+I. . .

m . . .

m . . .

m . . .

m . . . m

Figure 4: Implementing 0’: the first idea

following be its base objects: Al,. . . . A. of types in S,

consensus objects Cl, CC of types inC, consensus

objects Dl, ..., Dd of the type in D, and consensus ob-

jects EI, ..., E, of the type in E. The first picture in

Figure 3 depicts this implementation. By Lemma 3.4,

we can assume that Apply(P~, *, 0) does not contain a

call to Apply (Pj, *,O) for anyj # i and O E CU’lDUf.

As already mentioned, our goal is to realize 3

which implements a consensus object 0’ that can be

shared by Q 1, QN. Essentially, we must complete

the currently blank picture in Figure 3. As we do

this, we must bear in mind that base consensus ob-

jects of O’ may not be shared by more than N – 1

processes. The intuition behind how we implement 0’

is explained below in a series of steps. Each step pro-

poses an implementation of 0’. The implementation

may be deficient in certain ways, but these deficiencies

will be corrected in the next step (which may introduce

new deficiencies).

1. Implement 0’ aa in Figure 4. That is, im-

plement O (using Z) from the base objects

A1, A=. C1, cC, Dl,, ,Dd, ... Dd, EI,Ee.

and let Apply(Qj, propose u:, 0’) simply call

Apply(p:, propose ui, ~). (Hereafter we will

write ifQi sim-

ulates P,” to mean “Apply(Qi7 propose ui, ~’)

calls Apply(P,, propose ui, 0)” .)

This implementation of 0’ is not acceptable: the

base objects DI, D2, ..., Dd belong to the type

in D and are thus shared by N processes—

Q1 Q2 QN-1 QN

. . .

12cl ... m

Figure 5: Implementing 0’: the second refinement

2.

PI, P2,PN. This violates the requirement

that base consensus objects in 0’ may be shared

by at most N – 1 processes.

Modify the above implementation as follows. For

all 1 < i < c, re-

place c, (of type COnS(Pil, Pi~_,, Pfv, PN+I))

by C;, where C: is implemented using the Non-

(%ncurrent(~il,. ... pi~.,; PN, PN+l) hpkme!k

tation described in Figure 2. For all 1 s i s d,

replace Di by D;, where D; is implemented us-

ing the GroupSolo(Pl, ..., PN- I; PN) implementa-

tion described in Figure 1. For all 1 S i S e,

replace E~ by E:, where E: is implemented using

the GroupSolo(Pl, . . ., PN- 1; PN+l) implementa-

tion described in Figure 1. The resulting imple-

mentation is depicted in Figure 5.

This implementation satisfies the requirement

that base consensus objects are shared by at

most N – 1 processes, but it has the following

deficiency. As QN simulates PjY, PIV may ap-

ply an operation to an object D; and execute

the procedure Apply(PN, *, D;). Due to the na-

ture of the GroupSolo(Pl, PN– 1; PN) imple-

mentation with which we implemented D:, PN

may enter a busy loop and block while executing

Apply(PN, *, D;). (Recall that this happens if PN

finds the base register GP of D; to be non-blank,

but base register DEC to be blank.) Thus, 0’ is

not wait-free: ApPIY(Qjv, *, 0’) n-my bloclr. This

is the only problem with this implementation; in

particular, Q1, QN_l do not block.

339

Ql Q2 QN-1 QN

. . .

I

.

P1 P2 PN- PN PN+l
. . .

I

m I
I I

Figure 6: Implementing 0’: the third refinement

3. Modify the above implementation as follows. As

before, QN begins by simulating PN. However,

if PN enters a busy loop whose termination con-

dition does not hold, QN suspends the simu-

lation of PN and begins simulating P~+l. If

PN+l enters a busy loop whose termination con-

dition does not hold, QN suspends the simula-

tion of PN+l and resumes the simulation of PN;

and so on. Thus, QN simulates PN and PN+I,

switching from one to the other only if the cur-

rent simulation is stuck in a busy loop. QN

completes its operation on 0’ if (its simulation

of) either PN or PN+I completes. More pre-

cisely, the procedure APPIY(QN, propose u, ~’)

completes as soon as one of the simu-

lated procedures, Apply(PN, propose u, ~) or

Apply (PN+l, propose u, O), completes. Further-

more, Apply(QN, propose u, 0’) returns the same

value as the simulated procedure that completes.

Figure 6 depicts this implementation.

If N ~ 3, the above strategy is not sufficient

to make 0’ wait-free: ApplY(~rv, propose ‘u, ~’)

may still block since simulations of PN and PN+l

may both block, as illustrated by the following sce-

nario. Processes Q3, QN - 1 crash from the

beginning. QI and Q2 crash while simulating

accesses of PI and P2, respectively, to two dis-

tinct consensus objects implemented by Group-

SO1O (i.e., D; or E; objects). Specifically, each

crashes after writing the corresponding GP base

register, but before writing the corresponding

DE(3 base register. This is precisely the state

that may cause the “solo process” in the Group-

Solo implementation to block. It is possible that

PN and PN+l are the solo processes in these two

GroupSolo implementations. Thus, both the PN

and PN+l threads that QN is simulating may be-

come blocked.

4. We overcome the above deficiency by ensuring

that PN and PN+l are not both stuck at the

same time. We achieve this by preserving the fol-

lowing property at all tzmes: Of the objects in

{Dj,..., Dj, E[, E~}, E~}, there is no more than

one object whose GP register is non-blank and

DEC register is blank. To realize this property,

we enforce the following discipline on the group of

processes Pl, Pz, PN_l.

When Pi (1 ~ i ~ N – 1) wants to ap-

ply an operation propose ui to an object in

{D\,..., Dj, E~,.. ., E&}, Pi will be allowed to

do so only after it completes all propose oper-

ations that have already been initiated by pro-

cesses in the group {Pl, P2, ..., PN– 1} on objects

in {D~, ..., D~, E~, E~j. To implement this

discipline, we use additional (multi-valued) con-

sensus objects — 01, ..., Od+e — that are shared

by P1, P2, ..., PN _ 1. When Pi wishes to propose

u to an object F c {D~, D~. E~, E~}, E~}, pi

must first “obtain permission” to do so. To ob-

tain the permission, Pi accesses 01, ..., Od+e, in

that order, as described below. Pi proposes the

tuple (F, u) to 01. Let (G, v) be the response.

There are two cases: either G = F or G # F.

(clearly, if G # F, it means that some process

has already obtained permission from 01 to pro-

pose w to object G E {D~, Dj. E{, E~},)~}.)

In the former case, where F and G are the same,

Pi proposes v to object G by executing res :=

Apply(P~, propose v, G). Pi then considers its

operation of proposing u to F as having com-

pleted: the response of F to its operation is res.

In the latter case, where G is different from F,

Pi proposes v to object G by executing res :=

Apply(P,, propose v, G). Pi then accesses 02 for

permission to propose u to F. It does this by

proposing (1’, U) to 02, and proceeds as above.

The above discipline ensures that if FI, F2, are

the objects in {D\, D;, E~, E:} for which

01,02, . . . give permissions, then the base regis-

ter DEC of Fi is written before the base register

GP of Fj+l is written. Thus, at any time, there

is at most one object in {D~, . . . ,D~, E~, ..., E:}

whose GP register is non-blank and DEC register

is blank. This guarantees that, as QN simulates

PN and PN+l, PN and PN+l cannot both block

simultaneously. Thus, QN will be able to sim-

340

Q1 Q2 QN-1 QN

. . .

.

Figure 7: Implementing 0’: the fourth and the final

refinement

ulate one of PN and PN+l to completion. Thus,

finally, we have the implementation U of 0’ which

satisfies all requirements, including wait-freedom.

This implementation is depicted in Figure 7.

The following lemma states what the reduction,

informally described above, achieves.

Lemma 3.5 Let N ~ 2 and S be any set of types

that tncludes register. If cons(P1, P2, PN+l)

has an implementation from S U Cons~+l, then

cons(Q1, Q2, . . . , QN) has an zmplementat~on from

S U cons~~~.

By Lemma 3.1, cons(Pl, P2, ., PN_l) imple-

ments each type in Cons~~~. Thus, we obtain the

following corollary of Lemma 3.5.

Corollary 3.1 Let N > 2 and S be any set of types

that includes register. If cons(Pl, P2, l’N+I)

has zmplementatzon from S U {cons(PI, P2, PN)},

then cons(P1, P2, PN) has implementation from

SU{GOns(P~,Pz,...,PN_~)}.

3.3 The main theorems

Theorem 3.1 Let N ~ 1 and S be any set of types

that tnciudes register. If cons(P1, P2, PN+l)

has implementation from S U {cons(PI, P2, PN)},

then cons(P1, P2, PN+l) has tmplementatton from

s.

Proof Suppose cons(P1, P2, PN+l) has an imple-

mentation from S U {cons(PI, P2, PN)}. By re-

peated application of Corollary 3.1, it follows that

cons(P1, P2, . . ., PN+l) has an implementation from

S U {cons(PI)}. It is trivial to implement cons(Pl)

from register. Hence the theorem. ❑

Theorem 3.2 Let N ~ 1 and S be any set of types.

h~(i$ U {cons(PI, P2, PN)}) = max(h~(s), N)

Proof Let Al = h~(s U {cons(PI, PN)}). It is

obvious that A4 ~ max(hfi(s), N). Suppose, for a

contradiction, Al > max(h~(s), N). By definitions

of M’ and h~, cons(P1, P2, PM) has an implemen-

tation from S U {register, cons(p~, PN)}. Since

M’ > N, cons(P1, P2, PM) has an implementati-

on from S u {register, cons(Pl, P~_l)}. By

Theorem 3.1, cons(Pl, P2, PM) has an implemen-

tation from SU {register}. Thus, by definition of hi,

hi(s) > ill, a contradiction. ❑

4 Wait-freedom vs. t-resiliency

Theorem 4.1 Let S be any set of types that in-

cludes register and N, t be any posttiue integers

such that N > t ~ 2. cons(P1, P2, . . .,PN) has

a t-resilient tmplementatton from S if and only tf

cons(Q1, Q2, . . . , Qt+l) has a wait-free ~mPiementa-

tzon from S.

Proof Sketch The “if” direction of the theorem is

easy. Processes PI, Pt+l participate in consensus

by simulating Q1, Qt+l, respectively. They write

the decision value in a register, say, DEC. Processes

Pt+z, PN simply wait until the decision value is

written in DEC and then decide that value.

We now sketch the proof of the “only if” direc-

tion. Suppose that cons(Pl, P2, PN) has a t-

resilient implementation Z from a set S of types that

includes register. [Jsing T, we obtain a wait-free

implementation 1’ of cons(Ql, Q2, Qt+l) from

S U {test&set} as described below. (We will refer

to Ql, . . ., Qt+l as processes and refer to PI, PN

as threads.) We let the t+ 1 processes — Q1, Qt+l

— of implementation Z’ simulate the (code associated

with the) N threads — P1, PN — of implemen-

tation 1, as follows. Process Qi attempts to simulate

all N threads in a fair fashion, say, by executing the

first instruction of each thread, and then the second

instruction of each thread, and so on. To prevent mul-

tiple processes from executing the same instruction of

a thread, we require that a process gain exclusive ac-

cess to a thread before executing an instruction on

behalf of that thread. We implement this by associat-

ing a test&set object Tj with each thread Pj. When

341

a process Q; wishes to simulate a thread Pi, it at-

tempts to get exclusive access to Pj by performing the

test&set operation on Tj. If Qi wins Tj (that is, it gets

the response O from Tj), itobserves the current state

of Pj, executes the statement pointed to by the pro-

gram counter of Pj, updates the state of Pj by storing

the result oft his statement and updating the program

counter. Qi then resets T] (so that some other process

may carry out the next statement of thread Pi) and

moves on to thread Pj +1. On the other hand, if Qi

loses T] (that is, it gets the response 1 to its test&set

operation on Tj), Q! simply moves on to thread Pj +1.

To make the description of our simulation complete,

we mention one further detail: we assume, without

loss of generality, that the first statement in the code

of each thread Pj is to write Pj’s proposal in a register

Rj private to Pj. In the simulation, the process Qi

that gets to simulate the first statement of Pj writes

Qi’s proposal in Rj.

Notice that the crash of a process Q~ will make

at most one thread inaccessible for simulation by other

processes. Thus, even if up to t processes crash, the

remaining process will be able to simulate at least

N – t threads in a fair fashion. Since Z is a t-resilient

implementation, these threads will run to completion,

revealing the consensus value to the correct process.

In other words, Z’ is a wait-free implementation of

cons(Ql, Qz, . . . , Qt+I) from IS U {test&set}. It is

known that testkset(Q1, Qt+l) has an implemen-

tation from {cons(Ql, Qz), register} [AGMT92].

Composing this implementation with 1’, we conclude

that cons(Ql, Q2, . . . , Qt+I) has a wait-free imple-

mentation from S U {cons(Q1, Q2)}. By Theorem 3.1,

this implies that cons(Q1, Qz, Qt+l) has a wait-

free implementation from S. ❑

We remark that the “if” direction of the above

theorem holds even for f = 1. It is open whether the

“only if” direction holds for t = 1.

Next we state a universality result for t-resilient

implementations. An implementation of a type T is

strongly t-resdient if every derived object D has the

following property: if a correct process Q calls and ex-

ecutes an access procedure Apply (P, q, 0), the proce-

dure will eventually terminate and return a response

provided that no more than t processes crash while

executing access procedures of 0. Notice that the def-

inition takes the crash of a process into account only

if the crash occurs while the process is executing an

access procedure.

lTsing similar ideas as in Theorem 4.1, the follow-

ing can be shown: if cons(Pl, P2, P~+l) has a wait-

free implementation from a set S of types (that in-

cludes register), then cons(P1, P2, P~) (for any

N) has a strongly t-resilient implementation from S.

From this and Herlihy’s universal construction [Her91],

we obtain:

Theorem 4.2 Let t ~ O, T be any type, and S

be any set of types that tncludes register. If

cons(P1, P2, Pt+l) has a wait-free implementation

from S, then T has a strongly t-resilient implementa-

tion from S.

In the above theorem, an object of type T can

be shared by N processes, for any N. This is because

T = (OP, S, P) is an arbitrary type and therefore the

cardinality N of P is arbitrary.

5 Robustness in an alternative

model

In this section, we call attention to the significance of

the following two assumptions of the traditional model

of shared objects: (1) The behavior of an object de-

pends only on the operation invoked, without regard to

the virtual process name used in the invocation. More

specifically, if Apply(Pi, op, 0), executed from state a,

returns u and causes O to move to state u), then so

does Appljr(~j, OP,U). (2) There is no restriction on

which access procedure a process may use to apply an

operation on an object. For example, to apply op on

0, a process Q may call Apply(P~, op, 0) and later, to

apply op again, Q may call Apply(Pj, op, o) (j # i).

Our reduction in Section 3 depends crucially

on the second assumption: recall how Q N uses

Apply(PN, *, *) sometimes and uses Apply (PN+I, *, *)

at other times. This led us to consider an alternative

model in which (i) we drop Assumption 1, and (ii) we

require that, for each object O in the system, each pro-

cess Q in the system be bound to a particular virtual

process name P of O. To apply an operation op on O,

Q may oniy call Apply (P, op, 0). Thus, in this alter-

native model, the response from an object may depend

not only on the operation being invoked, but also on

the identity of the process invoking the operation.

Interestingly, the results of Section 3 do not hold

in this model. Furthermore, as the following theorem

states, h: is not robust in this model. The proof is

non-trivial, but is omitted due to space constraints.

Theorem 5.1 In the model described above, there

is a type booster with the follow~ng two propert~es:

h~(booster) = 1 and h~({booster, cons(Pl, P2)}) =

3. Thus, h; is not robust in this model.

One might wonder if a type booster with the

above properties also exists in the traditional model

342

of shared objects. If it does, h: is not robust even in

the traditional model. However, Theorem 3.2 rules out

the existence of such a type in the traditional model.

Thus, we must look for other (perhaps more compli-

cated) ways if we were to succeed in proving that h:

is not robust. On the other hand, since robustness of

hi subsumes Theorem 3.2, we believe that a proof of

robustness would also be very involved.

References

[AGMT921 Y. Afek, D. Greenberg, M. Merritt, and

[BG93]

[DDS87]

[Her88]

[Her91]

[Jay93]

[LAA87]

G. Taubenfeld. Computing with faulty

shared memory. In Proceedings of the llth

Annual Sympostum on Principles of DM-

trabuted Computing, pages 47–58, August

1992.

E. Borowsky and E. Gafni. Generalized

FLP result for t-resilient asynchronous

computations. In Proceedings of the 25th

ACM Sympostum on Theory of Comput-

tng, pages 91–100, 1993.

D. Dolev, C. Dwork, and L. Stockmeyer.

On the minimal synchronism needed for

distributed consensus. Journal of the

ACM, 34(1):77-97, January 1987.

M .P. Herlihy. Impossibility and universal-

ity results for wait-free synchronization. In

Proqeedtngs of the 7th ACM Sympostum

on Principles of Distributed Computmg,

1988.

M .P. Herlihy. Wait-free synchronization.

ACM TOPLAS, 13(1):124-149, 1991.

P. J ayanti. On the robustness of her-

lihy’s hierarchy. In Proceedings of the 12th

Annual Sympostum on Prtnctp!es of Dis-

tributed Computing, August 1993.

M .C. Loui and Abu-Amara. Memory re-

quirements for agreement among unreli-

able asynchronous processes. Advances m

comput~ng research, 4:163–183, 1987.

343

